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Abstract:
The model-based engineering technique Reactive Blocks supports the development of reactive sys-
tems by UML-based graphic modeling of control and data flows, model checker supported analysis,
and automated code generation. Moreover, it facilitates the cooperation of teams of engineers by
enabling the definition of formally precise behavioral interfaces that make the separation of the
modelling process into various work packages easy. In this paper, we illustrate the use of Reactive
Blocks for a joint student project that realized the monitoring and control of Lego Mindstorms-
based trains in Norway through a control center in Australia. In particular, we explain how the
Reactive Blocks interfaces and the applied communication protocols were used to split the project
into work packages separately handled by the students involved.

1 Introduction

Development, operation and maintenance of
larger software systems is often done using teams
of software engineers often working in distant
places. Different companies may develop, deploy,
maintain or operate different components of a sys-
tem. Capabilities may be distributed over several
locations, such as off-shore service centres and op-
erations in other places. This is, e.g., the case
in oil, gas and mining. In this paper, we regard
transport systems which are spatially distributed.
Trains and track controllers are inherently geo-
graphically separated from each other.

Well-defined responsibilities as well as clear in-
terfaces between tasks help the work organisation
and the documentation of system components
for maintenance. The benefit may be increased
by using modelling and formal techniques (Lee,
2008). For instance, with respect to software de-
velopment in the transportation domain, we can
distinguish two levels in which formal specifica-
tions can assist the collaboration of various stake-
holders. On the software component specification
level, formal specifications assist the engineering
teams in developing, deploying and maintaining

different software components. Often the teams
need only limited coordination and can therefore
be geographically distributed. In contrast, on the
operation model level, the operation of trains may
be formally modeled which assists us in conduct-
ing the control of a railway system in practice.
Both levels have some interdependencies. For ex-
ample, protocols may be derived from software
component interfaces that influence the operation
model level.

In this paper, we concentrate on the software
component specification level and investigate the
use of the model-based technique Reactive Blocks
for cooperation of engineering teams. We illus-
trate the approach with the development of a
distributed system that enables the remote mon-
itoring and control of a Lego Mindstorms-based
train system (Hordvik et al., 2016) residing in
Trondheim through the visualization infrastruc-
ture VxLab (Blech et al., 2014) in Melbourne.

Below, we will discuss related work followed
by an introduction to Reactive Blocks in Sec. 3
and a discussion in Sec. 4 how this technique can
be used to coordinate different teams of engineers.
Thereafter, we describe our train demonstrator in
Sec. 5 and explain the ways, the involved students
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Figure 8.1: The train monitoring block used in the monitoring system

Figure 1: Building block TrainMonitoringModule.

Figure 2: ESM of building block TrainMonitoring-
Module.

coordinated in Sec. 6. We complete the paper by
a short discussion about future work.

2 Related Work

Tool support for the collaboration of different
stakeholders has been studied for various engi-
neering domains. Early examples comprise tool
support for document sharing, e.g., (Toye et al.,
1994) and work on collaborative software devel-
opment environments, e.g., (Booch and Brown,
2003). Another study (Feiler et al., 2006) lists
challenges for the development of ultra-large-scale
systems. The analysis of collaboration patterns
using social networks has been studied in (Cross
et al., 2002). Results can be used to suggest team

structures.
On the formal side of our work, methodolo-

gies for specifying components or work entities
are of importance. Overall, we follow a design-
by-contract approach (Meyer, 1992). We are pri-
marily interested in contracts that specify the
behavior of a component or an interface such
as interface automata (De Alfaro and Henzinger,
2001). The work described in this paper inte-
grates with behavioral types. Behavioral types
have been used for the specification of real-time
systems (Lee and Xiong, 2004). Furthermore, be-
havioral types are a formal description method
that have been applied for software components
(Blech et al., 2012), industrial automation sys-
tems (Blech et al., 2014) and cyber-physical sys-
tems (Blech and Herrmann, 2015). The idea is to
have descriptions that allow for automatic checks
of interactions between entities in very much the
same way as type compatibility and compliance
checking works in higher programming languages.

Furthermore, a connection of the work de-
scribed in this paper to the collaborative engi-
neering project is envisaged (Blech et al., 2015).
Collaborative engineering provides means for dif-
ferent stakeholders to interact with each other fo-
cusing on maintenance and operation of large in-
dustrial systems.

3 Reactive Blocks

Reactive Blocks (Bitreactive AS, 2016; Krae-
mer et al., 2009) is a model-based engineering



technique for reactive systems. It is Java-based
and uses UML activities (Object Management
Group, 2011) to specify control and data flow be-
havior. To make the approach scalable, an activ-
ity may be enclosed in a so-called building block.
Further, one can represent a building block as
nodes in other activities that are named call be-
havior actions in UML terminology. Thus, one
can describe models as hierarchies of building
blocks and their activities.

As an example, Fig. 1 depicts the activity of
the building block TrainMonitoringModule. At
its edges, the activity is provided by parameter
nodes that are sources and sinks of flows, e.g., a
parameter node init through which flows con-
taining objects of the Java class HashMap may
pass. The call behavior actions of a building block
are endued with pins that correspond to the pa-
rameter nodes of its activity. For instance, our
activity contains a call behavior action of building
block RabbitAMQP that shows all the parameter
nodes of its activity as pins (e.g., init, ready,
and publish).

The parameter nodes of an activity are used
to model flows from the activity of a building
block to the one enclosing its call behavior ac-
tion and vice versa. Our example specifies a
flow that is started somewhere in the environ-
ment of building block TrainMonitoringModule
and passes through pin/parameter node init of
this block. Thereafter it continues in the activ-
ity in Fig. 1 and reaches the operation action
init which is a container of a Java method of
the same denominator being carried out when the
flow passes. Afterwards, the flow reaches the pin
of call behavior action RabbitAMQP such that it
continues within the activity of the corresponding
building block.

The building block concept makes it possible
to specify functionality, that recurs in various ap-
plications, only once in one building block and to
reuse its call behavior actions at various places.
The Reactive Blocks tool contains hundreds of
building blocks covering aspects reaching from
flow control via communication protocols and en-
cryption to domain-specific functions, e.g., for the
Internet of Things, see (Bitreactive AS, 2016).
To alleviate this reuse capability, each building
block is accompanied by an External State Ma-
chine (ESM) (Kraemer and Herrmann, 2009). An
ESM is a UML State Machine that models which
pins/parameter nodes may be traversed in a cer-
tain state of the building block. As an example,
we depict the ESM of building block TrainMoni-

toringModule in Fig. 2. It consists of two states,
i.e., an initial one showing that the block is not
active, as well as active. By tags on the edges,
one describes which flows may appear in a cer-
tain state of the block and into which state the
block changes. For instance, a flow through pa-
rameter node init is only allowed in the initial
state and afterwards the block will be in state
active. Tags within a state designator1 (e.g.,
removeTopic /) describe that the corresponding
flows may occur in the particular state but do
not change the state. Several flows may enter
and leave a block within a single atomic transi-
tion which is described by a list of parameter node
identifiers (e.g., stop / stopped).

Reactive Blocks is provided by formal seman-
tics (Kraemer and Herrmann, 2010) such that the
tool uses a model checker verifying whether both,
the activity enclosed in a block and the one using
its call behavior action, indeed, comply with the
ESM of the block. Moreover, the tool contains a
code generator creating automatically executable
Java code (Kraemer et al., 2006; Kraemer and
Herrmann, 2007).

4 Coordinating Engineers with
Reactive Blocks

The building block concept seems ideal to fos-
ter cooperative software engineering carried out
by various teams of software engineers. In partic-
ular, it allows to structure the software architec-
ture into several work packages. A building block
can be used to define such a work package while
its call behavior actions refer to places in which
the results of this work package are used. The
ESM of the building block provides then a be-
havioral interface description that facilitates the
coordination between a team carrying out a work
package and one using it.

The project planning corresponds to defining a
hierarchy of building blocks that each describes a
work package. In this phase, only an initial frame
of a block is constructed. It does not contain the
complete activity but only the parameter nodes
to be used as well as the ESM. Moreover, the
Java classes assigned to the parameter nodes are
established at this stage.

1The position of the / symbol describes whether
a flow is triggered in the building block itself (left of
the parameter node name, e.g., / failed) or by its
environment (on the right side, e.g., init /).
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Figure 8.5: Railroad layout used for testing the deployed system. The colored areas
shows which EV3 smart brick each point switch is physically connected to. Each
point is tagged with the port of the EV3 it is connected to, and the identifier of the
respective point.

Figure 8.6: Plot showing the flow of messages through the AMQP broker during a
test run.

As shown in Figure 8.6, messages are sent to the broker and distributed to the
appropriate clients. As the figure shows, the number of outbound messages are
always equal or greater than the number of inbound messages. This is due to the
publish-subscribe pattern, i.e. if a message is published by one client (inbound to
the broker) with a topic that four other clients subscribe to, the broker will publish
four messages as a consequence.

Figure 3: The Lego Mindstorms train layout used.

After defining the building block hierarchy,
the block frames are handed over to the various
teams that develop the activities of the blocks
and program the Java methods to which the op-
eration actions of the activity refers. Here, more
complex behavior will lead to the separation of
sub-functions in other building blocks that are
also developed by the particular team or taken
from the tool libraries. In addition, call behavior
actions of blocks referring to other work packages
may be used. When a team completes a building
block, it verifies with the model checker of Re-
active Blocks that their solution fulfills its ESM.
Further, the model checker proves that the ESMs
of the blocks referring to other work packages are
preserved as well.

When all work packages are completed, the
building blocks are assembled and the code for
the entire system is generated. It can be used
to test that the used objects conform with each
other. Due to the comprehensible graphical UML
models, these tests are usually easy.

The coordination of engineers is particularly
important for geographically distributed systems.
It profits from the fact that communication is
traditionally service-oriented, see, e.g., (Tanen-
baum and Wetherall, 2011). That means, dis-
tributed applications access the communication
features via a communication service, that defines
a set of functions like connection establishment
or data transfer. The functions are provided by
communication protocols. The engineers of dif-
ferent physical components can negotiate suit-

able communication services and protocols. They
guarantee a correct communication by developing
their applications such that the communication
services are fulfilled.

Traditionally, communication services and
protocols are specified formally using established
techniques like SDL (ITU-T, 2011). Reactive
Blocks is an alternative to these techniques. The
local unit of a protocol can be realized as a build-
ing block while its ESM forms the corresponding
communication service. For instance, the build-
ing block RabbitAMQP, used in the activity in
Fig. 1, realizes a stack of the Advanced Message
Queueing Protocol (AMQP), see (AMQP.org,
2016), that is popular in the Internet of Things
domain. By following its ESM and by using the
correct Java objects in the flows through its pins
resp. parameter nodes, the correct usage of the
protocol is guaranteed.

5 A Train Demonstrator based on
Reactive Blocks

As mentioned in the introduction, a Lego
Mindstorms-based train system, see (Hordvik
et al., 2016), positioned in Trondheim, Norway,
was connected to the visualization infrastructure
VxLab (Blech et al., 2014) in Melbourne, Aus-
tralia. Thus, the trains can be remotely moni-
tored and, with some limitations, controlled. The
work was done by some master student projects.



Figure 4: A Lego train.

Figure 5: The remote AMQP infrastructure

One project (Svendsen, 2016) covered the de-
velopment of the autonomous train control unit
while a second one (Svae, 2016) realized the trans-
fer of sensor data from Trondheim to Melbourne
and the control commands the other way around.
A third task, i.e., the access of the monitor and
control data on the VxLab is still under progress.

In Fig. 3, we depict the layout of the tracks
that connect five separate stations. The colors
refer to four Lego EV3 controllers that are used
to operate the switches in the layout. A train in-
cludes a motor, an EV3 controller unit as well
as a color sensor that may detect the color of
the sleepers, the train passes (see Fig. 4). As
described in (Svendsen, 2016), the trains oper-
ate autonomously. To guarantee a correct and
safe operation, the EV3 controller of a train has
to communicate with the controllers of the other
trains as well as the ones operating the switches.
For that, the AMQP protocol (AMQP.org, 2016)
is used based on a local server.

To be flexible in defining track layouts, a lay-
out to be used is modeled with the freeware layout
editor BlueBrick (McKenna and Nanty, 2015).
The model is automatically transformed into an
internal map applied by the train controllers to
state the current position of a train.

AMQP is also used for the remote monitoring
and control of the trains (Svae, 2016). Besides to
the local server, the EV3 controllers of the trains
and switches keep also a connection to a remote

AMQP server residing on the Australian cloud
infrastructure Nectar (Nectar, 2016). Status in-
formation like the current position and speed of
a train on a track or the settings of the switches
is sent to the remote AMQP server allowing us
to monitor train systems from the VxLab and
other places “in the cloud”. Likewise, control
commands from the VxLab are sent via the re-
mote server to the train controller and can be di-
rectly executed. The used AMQP infrastructure
is shown in Fig. 5.

6 Collaboration between the
Stakeholders

To coordinate the student projects, the inter-
faces between the work packages had to be de-
fined. As discussed in Sec. 4, building blocks
and communication protocols are suitable formal
means to facilitate this coordination. We used
both methods. For the transfer of monitoring
and control data between Trondheim and Mel-
bourne, the involved students agreed about the
communication protocol and service to be used.
To coordinate the control and remote communi-
cation parts within the EV3 controllers, the af-
fected stakeholders negotiated a building block
interface and the Java classes used in the con-
trol flows via this interface. Both interfaces are
described in the following.

6.1 The Remote Control
Connection

We discussed in Sec. 5 that the stakeholders
agreed on using the Advanced Message Queue-
ing Protocol (AMQP) (AMQP.org, 2016) with a
remote server running in the Australian Nectar
cloud (Nectar, 2016). Moreover, it was decided
to use the JavaScript Object Notation (JSON)
(ECMA International, 2013) as data interchange
format. In JSON, information units can be de-
fined as objects of sequences of pairs containing a
name string and a value. Agreement on the exact
JSON object formats for the various train param-
eters (e.g., train identifier, position, train length,
speed, direction, switch position) as well as for
the protocol control information (e.g., sequence
numbers and time stamps) was reached.

Tests revealed that sending all train param-
eters in each communication message consumes
much bandwidth. Therefore, the students de-
cided to send only monitoring data that has



Figure 7: Measured round trip time delays between Trondheim and Melbourne

{
” id ” : 1 ,

” timestamp” : 1449832076300 ,
”sequenceNumber” : 334 ,
” event ” : ”SPEED” ,
” speed ” : 15

}

Figure 6: A JSON communication object example

changed in update messages. As an example,
Fig. 6 lists the JSON object to be transmitted if
a train changed its speed. Its pairs are the iden-
tifier of the train ("id" : 1), a time stamp and
sequence number as protocol control information,
event information ("event : "SPEED"), and the
measured speed ("speed" : 15). To make the
communication more reliable, the update mes-
sages are accompanied by confirmed synchroniza-
tion messages that are sent in certain time inter-
vals. By checking the sequence numbers of the
synchronization messages, one can find out which
update messages were lost and resend the cor-
responding data. Further, remote control com-
mands for the trains are sent via the AMQP link.

The handling of the update and synchroniza-
tion messages in the EV3 controllers is real-
ized by the building block TrainMonitoringMod-
ule (see Fig. 1). For instance, the Java method
encapsulated in the operation handleProperty-
ChangeAndCreateUpdateMessage receives a list
of all train parameters and checks which of them
were changed since sending the last update mes-
sage. For the altered parameters, an update mes-
sage is created and sent via the communication
block RabbitAMQP.

To find out about delays of the AMQP con-

nection, the students carried out intensive round
trip time tests. Figure 7 refers to a test checking
if the round trip delay is fluctuating. For that,
ping messages were sent every other second for 24
hours. As the figure shows, the delays were very
stable between 350 and 360 ms with only very few
fluctuations that never exceeded 880 ms.

6.2 Linking Train Control and
Communication

The building block TrainMonitoringModule de-
picted in Fig. 1 defines the interface between the
control and communication software part in the
EV3 controllers. The involved students agreed
on the data formats: The Java hashmap sent via
parameter init contains the information neces-
sary to build up AMQP connections. The Java
class TrainPropertyChange used in parameter
node propertyChange includes the relevant train
and switch parameters to be send when updated.
Messages received from the remote control are
handed over to the block environment via param-
eter node receiveMessage.

Knowing about these formats as well as about
the ESM of block TrainMonitoringModule, it was
not difficult to build its call behavior action into
the control software (Svendsen, 2016). The fol-
lowing issues had to be solved:

• Maintaining the link to the AMQP server in
the Nectar cloud,

• after the change of at least one train resp.
switch parameter, sending the parameter val-
ues in a Java object of class TrainProperty-
Change via parameter node propertyChange,

• interpreting the JSON objects in messages, re-
ceived via parameter node receiveMessage,



and adjusting the train or switch control ac-
cordingly.

After incorporating the call behavior action of
block TrainMonitoringModule and conducting
the necessary changes, the model checker of Reac-
tive Blocks verified that the ESM of this block is
satisfied by the control software embedding it2.
Thereafter, Reactive Blocks automatically gen-
erated an executable Java bundle that can be
loaded into the EV3 controller and carried out
there. Finally, some conformance tests were car-
ried out revealing that the Java objects were cor-
rectly programmed.

7 Conclusion and Future Work

We explained the capabilities of Reactive
Blocks to facilitate collaboration for development
and maintenance of software systems. In partic-
ular, we have been looking at transportation sys-
tems that, with respect to their software control,
have a cyber-physical flavour. We demonstrated
the capabilities using a remote train monitoring
case study.

Future work comprises extensions for formal-
izing cyber-physical aspects and components and
automatic tools to suggest tasks and supporting
information for different distributed teams.
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