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Abstract:
We present a method to engineer the control software of transport systems and analyze their safety
using the Reactive Blocks framework. The development benefits from the model-based approach
and makes the analysis of the systems at design time possible. The software is analyzed for freedom
of collisions and other spatiotemporal properties by combining test runs of already existing devices
to find out their physical constraints with the analysis of simulation runs using the verification
tool BeSpaceD. This allows us to discover potential safety hazards already during the development
of the control software. In particular, we introduce a methodology for the engineering and safety
analysis of transportation systems and elaborate its practical usability by means of a demonstrator
based on Lego Mindstorms.

1 Introduction

In the development of control software for
transport and other cyber-physical systems,
safety is a major challenge to achieve (Lee, 2008).
Particularly, one has to analyze the software for
compliance with spatiotemporal properties like
guaranteeing a sufficient safety distance between
devices at all times. This is mostly achieved
by intensive and costly testing of the software
for functional and quality of service attributes.
To ease the analysis effort, we supplement tra-
ditional test-based development by applying a
model-based software engineering technique. Its
formal semantics facilitates the use of automatic
model-checking and provers that can detect flaws
in the control software. Since we perform the
checks on the models and not on the later code,
these flaws, which might be sources for violations
of spatiotemporal properties, are discovered early
making the overall development process more cost
effective than plain system testing.

As a model-driven development tool, we chose
Reactive Blocks (Kraemer et al., 2009). It pro-
vides the ability to reuse and share building
blocks. Further, Reactive Blocks enables us

to simulate data and control flows, to model
check the building blocks for functional correct-
ness, and to create executable code automati-
cally. Moreover, we use BeSpaceD (Blech and
Schmidt, 2014), which enables the verification of
spatiotemporal properties in safety-critical sys-
tems. It has been deployed in several applica-
tions implemented with Reactive Blocks and sim-
ulated in the Java software environment, e.g.,
(Han et al., 2015; Herrmann et al., 2016).

A contribution of this paper is a methodology
that defines the various engineering and analysis
steps of the control software development process.
It allows us to combine the analysis of kinematic
behavior and other data obtained by gauging ex-
isting devices with the simulation and formal ver-
ification of the control software in order to guar-
antee that a device fulfills certain spatiotempo-
ral properties. An example for measured data is
the worst-case braking distance of a train that
is observed by testing an actual unit. It is di-
rectly considered in a BeSpaced verification prov-
ing that the control software causes the train to
brake sufficiently early such that collisions with
other trains are prevented.

We apply the methodology by developing the



control software of a demonstrator which is built
with Lego Mindstorms together with additional
sensors and servers. Lego Mindstorms offers the
necessary hardware components needed to build a
physical autonomous rail-based system. It is an
affordable way to create demonstrators such as
robots, that can be used in hobby settings as well
as research. Event-driven software can be run on
the Lego Mindstorms components enabling the
control entities to execute actions based on input
received from the different types of sensors. We
describe the Lego Mindstorms demonstrator as
well as the various development steps following
the methodology.

Reactive Blocks and BeSpaceD are introduced
in Sect. 2 followed by the presentation of the
methodology in Sect. 3. In Sect. 4, the demon-
strator is discussed while Sect. 5 describes the
development of its software based on the method-
ology. Section 6 refers to experience with the ap-
proach and in Sect. 7 we present related work.
In Sect. 8, we conclude and name some ideas for
future work.

2 Reactive Blocks and BeSpaceD

The model-driven engineering technique Re-
active Blocks is a tool-set for the development of
reactive software systems (Kraemer et al., 2009).
A system model consists of an arbitrary num-
ber of building blocks, i.e., models of subsystems
or sub-functionalities, that are composed with
each other. A major advantage of this model-
ing method is its reuse potential since a building
block can comprise sub-functionality that is use-
ful in many different applications. The building
block is specified once, stored in a tool library,
and, when needed, moved into a system model by
simple drag and drop. The behavior of a build-
ing block is modeled by UML activities that may
contain UML call behavior actions representing
its inner building blocks. These inner blocks are
also specified by UML activities such that the ap-
proach scales. The interface of a building block
is specified by an External State Machine (ESM)
that describes the abbreviated interface behavior
of the block (Kraemer and Herrmann, 2009). To
make analysis of functional correctness by model
checking possible, the activities and ESMs are
supplemented with formal semantics (Kraemer
and Herrmann, 2010). Moreover, Reactive Blocks
enables the automatic transformation of system
models into well-performing Java code (Kraemer

et al., 2006). Some tool extensions allow us to an-
alyze models also for safety (Sl̊atten et al., 2011)
and probabilistic real-time (Han et al., 2013; Han
et al., 2014) properties.

BeSpaceD is a constraint solving and non-
classical model checking framework (Blech and
Schmidt, 2014; Blech and Schmidt, 2013). It
emphasizes particularly on dealing with models
of cyber-physical systems that usually comprise
a large amount of time and space-based aspects.
BeSpaceD provides a modeling language and a li-
brary to reason on models, using techniques such
as state-space exploration, abstraction and re-
duction. It enables the creation of verification
goals for SAT and SMT solvers and provides con-
nections to these tools. Thus, these solvers can
be used based on much more concrete models
than their traditional inputs. On the other hand,
BeSpaceD models are more abstract than typi-
cal use-case specific (meta-)models that are used
in case specific tools. From an expressiveness
point of view, SAT and SMT offer the specifi-
cation elements of propositional logic (+ Pres-
burger arithmetic (Presburger, 1929)). Seman-
tically, using BeSpaceD the notions of time and
space are added. Other semantic carrying ele-
ments are available: They are treated as predicate
parameters and have to be resolved in programs
building on the BeSpaceD frameworks or queries
to BeSpaceD.

BeSpaceD is written in Scala and compati-
ble with Eclipse/Java. The modeling language is
based on abstract datatypes and integrates with
the Scala language. It is possible to write one’s
own programs that construct BeSpaceD models
and to write code using BeSpaceD functionality
for checking it. In fact, as shown in (Herrmann
et al., 2016; Han et al., 2014), an extension of
Reactive Blocks is able to transfer its models to
BeSpaceD models such that they can be directly
analyzed for spatiotemporal properties.

3 Methodology

The creation of control software for transport
systems requires knowledge about central kine-
matic properties like braking distances or maxi-
mum accelerations. Since the systems and their
environments are often too complex to gain such
data exclusively by simulation, it has to be gath-
ered by testing and observing prototypes. This
feature is considered by our methodology (see
Fig. 1). It consists of five major steps:



Development of Initial Control Software

 Prototype Testing of Initial Software

Development of Extended Control Software

Software Analysis with BeSpaceD

Transformation into Executable Code

Figure 1: Methodology overview

1. In parallel to the development of the physical
device, an initial version of the control soft-
ware is engineered with Reactive Blocks. This
first model already contains several functions
that will also be used later in the final version,
e.g., the access to sensors and actuators. The
functions guaranteeing safety, however, are ei-
ther not implemented or based on initial data
concluded from simulations resp. experience
with previous versions.

2. Code is generated from the initial Reactive
Blocks model and used in the prototypes
which are tested in order to find out relevant
kinematic properties.

3. When all relevant properties are observed, the
control software is extended. For that, we
amend the original Reactive Blocks model by
adding building blocks and flows. In this way,
existing sub-functionality will be preserved
making the development process cheaper.

4. The extended Reactive Blocks model is ana-
lyzed by BeSpaceD for compliance with rel-
evant spatiotemporal properties. Depending
on the complexity of the verification runs, we
may carry out the proofs in two different ways:

(a) One extracts a descriptive formula of rel-
evant system functionality from the Reac-
tive Blocks model and transforms it into a
format readable by BeSpaceD. Afterwards,
BeSpaceD verifies that this specification
keeps certain spatiotemporal properties. As
shown in (Herrmann et al., 2016), the ex-
traction of the descriptive formulas can be
carried out automatically if the Reactive
Blocks model was developed based on a cer-
tain course of action and a set of dedicated
building blocks. Due to its completeness,
this kind of analysis is preferred but accord-
ing to the complexity of the problem might
exceed the capabilities of the solvers used
by BeSpaceD.
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Figure 2: Track control zones

(b) One composes the control software model
with a simulator that is also created in Re-
active Blocks (Han et al., 2014). Thus,
several simulation runs can be performed
and their logs are translated into input for
BeSpaceD that analyzes the data for com-
pliance with the spatiotemporal properties.
The log data can be proved very efficiently
(e.g., 10,000’s of different spatiotemporal
coordinates within a split second). But in
contrast to the other solution, this one is
not exhaustive such that it can only guar-
antee the preservation of the properties for
the simulated cases.

5. When the developed control software fulfills
all desired properties, the Reactive Blocks
model is transformed into code that is in-
stalled in the transport devices and used for
further certification steps.

Depending on the kind of system, these steps can
also be iterated such that the control software is
developed and analyzed in several cycles. Thanks
to the fully automatic nature of the code gener-
ation in Reactive Blocks, the results of the en-
gineering cycles can be easily transformed into
executable code.

Due to the importance of system safety for
life and limb of the later passengers, we do not
see our methodology as a replacement for tra-
ditional certification but as a supplement. Yet,
we expect that the model-based development and
spatiotemporal analysis leads to a better quality
of the produced software. In consequence, the
certification process will have to deal with fewer
software errors and therefore is getting smoother.



Figure 3: Example lego train

4 Demonstrator

As mentioned in the introduction, we use the
Lego Mindstorms train-set to exemplify and eval-
uate our methodology. The overall layout is
sketched in Fig. 2. It consists of five different sta-
tions that are connected by up to four trains that
all operate counterclockwise albeit with possibly
different speeds such that a train might catch up
with another one. A train set comprises a mo-
tor, wheels and a train body (see Fig. 3). Fur-
ther, we provide each train with a color sensor
facing towards the tracks which can be seen on
the right side of Fig. 3. It enables the train to
count sleepers and to detect special sleepers that
are furnished with colored Lego bricks. The coor-
dination of the motor and the color sensor as well
as the connection with a wireless communication
device is provided by an EV3 controller, the stan-
dard control unit of Lego Mindstorms. This unit
is transported in one of the cars.

As also shown in Fig. 2, the tracks are parti-
tioned into four zones marked by different col-
ors. Each of these zones is controlled by an
EV3 unit which coordinates all trains in its zone
and prevents collisions. This resembles the pro-
cedure used in the European Rail Traffic Man-
agement System (ERTMS), a novel train control
system to be used in all European railway net-
works (ERTMS Project, 2015; UNIFE Project,
2015). Moreover, the zone controller drives the
switch points in our system. The beginning of
the zones are marked by colored sleepers such
that the color sensors of a train can detect when
a new zone is entered.

The train controllers are connected with
the zone controllers by means of the Mes-
sage Queuing Telemetry Transport Protocol

Figure 4: Communication architecture between trains
and zone controllers

(MQTT) (MQTT.org, 2015). This is a popular
machine-to-machine connectivity protocol often
used in the “Internet of Things” domain. Usually,
both the routing of connections and the brokerage
of users are done by a number of standard MQTT
servers. Since tests, however, showed that the
use of these servers lead to an unacceptably high
transmission delay, we created our own MQTT
server that is realized on a Raspberry Pi (Upton
and Halfacree, 2014). Figure 4 sketches the com-
munication architecture used. A detailed techni-
cal evaluation of the demonstrator can be found
in (Hordvik and Øseth, 2015).

4.1 Routing Trains

Fig. 2 highlights that a station consists of two
tracks. A stopping track is linked to a platform
that allows passengers to enter and leave trains.
A second track makes it possible that a train not
stopping may pass the station while another one
waits in it. Further, at some points we have al-
ternate routes, e.g., for trains going from the sta-
tion in zone 2 to the one in zone 4. Thus, the
trains have to be routed which is done by the
zone controllers. For that, the demonstrator is
split into 23 different tracks that are each bor-
dered by two switch points. The beginning of
each track is marked by an unambiguously col-
ored sleeper such that a train can always follow
up on which track it is currently located. As
shown in the message-sequence-chart in Fig. 5,
a train provides the responsible zone controller
with its destination. Based on that, the zone con-
troller selects the tracks, the train has to pass in
its zone, and sets the switch points accordingly.
The routing algorithm is based on work described
in (Overskeid, 2015).

The switching of zones by a train is realized
by a sequence of colored sleepers as depicted in



Figure 5: Two trains interacting with a zone controller

Track 1 Track 2 Track 3

Zone 1

Zone 2

. . .

. . .

. . .

. . .

Green Track sleeeper
“New zone coming up”

 Zone Sleeper
(either blue, yellow, green or red)
“Enter new zone”

Track Sleeper
(either blue, yellow, green or red)
“Leave previous zone”

Overlap

Figure 6: Sleepers indicating zone switches

Fig. 6. First, the train passes a green sleeper in-
dicating that not a new track is entered but that

a zone shift is coming up. Since a zone switch af-
fords the time-consuming establishment of a new
connection between the train and zone controller,
we use overlapping segments in which the train is
controlled by both involved zone controllers. The
beginning of the overlapped segment is marked
by a sleeper in the color of the new zone. When
passing it, the train controller starts building up a
MQTT connection with the new zone controller.
The end of the overlapping segment is identified
by a colored sleeper that signals the beginning of a
new track in the newly entered zone. It may only
be passed if the connection with the controller
of the new zone is established and thereafter, the
link with the controller of the old zone is released.



4.2 Collision Avoidance

As mentioned above, the zone controllers are re-
sponsible for preventing collisions of trains in
their zone. For that, they permanently need in-
formation about the exact positions and speeds
of the trains. Since color sensors are the only
sensing equipment used in our demonstrator and
Lego trains have the nice feature that sleepers are
always in the same distance from each other irre-
spectively of the track shape, we use the sleepers
as means to define exact train positions. In par-
ticular, each train controller maintains a so-called
sleeper counter that totals how many regular,
i.e., non-colored, sleepers of the track on which
it currently moves, it already passed. Further,
by using time-stamps and knowing the distance
between the sleepers, a train calculates its cur-
rent speed. Whenever a regular sleeper is passed,
the train sends the value of its sleeper counter
and speed value to the responsible zone controller
(resp. zone controllers if the train is on an over-
lapping track), see Fig. 5.

From these data and its knowledge about the
current track of the train, the zone controller es-
tablishes which sleeper the train just entered. It
sets this sleeper and, with help of the informa-
tion about the train’s length, all other sleepers
that are covered by the train into state occupied.
Due to its knowledge about the system layout,
the zone controller may also consider the sleep-
ers of the previous track if the train just passes a
track border. In addition, the sleepers vacated by
the train since the last notification was received,
are set to free.

The zone controller checks if the train is on a
collision course with another one. Based on the
current speed and position of the train, it calcu-
lates the distance needed for the train to come to
a complete stop. This distance is converted into
the number n of sleepers that are passed before
the train stands after cutting power. Moreover,
taking the communication delay between the zone
and train controllers into consideration, we add a
safety buffer b of sleepers1 to n. If at least one of
the n+b buffers ahead of the train is occupied, the
zone controller sends immediately a stop message
to the train that initiates an emergency stop. Of

1It is important to note that, the bigger the safety
buffer b is, the more states of sleepers need to be
checked, which means more processing time and again
a bigger latency with regards to when the train re-
ceives a response. By testing the braking distances of
the trains with various safety buffer values, we found
out that b = 10 gives the best results.

course, this holds also for sleepers in the subse-
quent track when the train reaches the end of the
previous one. If all the next n+ b buffers are not
occupied, an all-clear signal is sent, and the train
may continue with its current speed. Since the
zone controller may have been broken, the train
it also stopped when no signal at all arrives within
a certain period of time.

The logic also includes the option of using
an extra buffer such that the zone controller will
check the state of sleepers that are even further in
front of the train. Are any of these sleepers occu-
pied, the controller commands the train to slow
down, instead of coming to a complete stop. If
the blocking train in front continues to stand still,
the emergency break is initiated a little closer
to it due to the reduced speed, which leads to
a smoother operation.

5 Engineering the Controllers of
the Demonstrator

The development of the control software for
our demonstrator followed tightly the methodol-
ogy presented in Sect. 3.

5.1 Methodology Step 1

The creation of an initial software version prof-
itted strongly from work by (Overskeid, 2015)
who developed building blocks that facilitated
the handling of the access to the EV3 train and
zone controllers from the Reactive Blocks model.
These blocks could be simply combined to achieve
a first user-managed control system.

5.2 Methodology Step 2

We used the initial control software to find out
the relevant kinematic properties of the trains.
In particular, we analyzed the stopping distances
for five of the seven speed levels2 offered for Lego
Mindstorms trains. Fig. 7 depicts that, as ex-
pected, the braking distances are parabolic albeit
with a relatively small gradient. Using these re-
sults and the fact that two sleepers are in a dis-
tance of 32.5 cm, we could determine the num-
bers n of sleepers to be considered for each speed

2The track layout contains many turns such that
the two highest speed levels would lead to immedi-
ate derailments. Therefore, we did not consider them
further.



Figure 7: Breaking distance for different speed levels

level in the collision avoidance scheme discussed
in Sect. 4.2.

Moreover, in this phase we examined the color
sensors more closely to get good readings. With
respect to speed calculation, we checked three al-
ternatives, i.e., computing the speed after pass-
ing 16.25 cm, 32.5 cm resp. 65 cm. The tests
revealed that the longest distance which corre-
sponds to computing the speed only after every
second sleeper, rendered by far the best measure-
ments. Further, we detected quality issues for
sensing different colors. We found out that we get
better results if the color sensor is in a distance of
12 mm above the track than the 6 mm tried orig-
inally. We also discovered that the likelihood to
detect the correct color is significantly improved
when the thread handling color changes pauses
between two checks for exactly 14 ms. When it
runs without pausing, often white color is falsely
read. In addition, we found out that, in general,
blue and green render better results than red and
yellow. We took these experiments into consid-
eration when deciding which colors to be used at
which points in the layout.

5.3 Methodology Step 3

After getting sufficient knowledge about the kine-
matic behavior of the demonstrator as well as the
correct treatment of the color sensors, we con-
tinued with the creation of the final control logic
using Reactive Blocks. As an example, Fig. 8
depicts the UML activity of the building block
TrainLogic specifying the control logic of the train
controllers. It contains four inner building blocks.
Block Robust MQTT was taken from a Reactive
Blocks library. It specifies the logic to handle con-
nections with the MQTT server. Building block
ControlSensorLogic models the access to the color

sensor and the interpretation of the metered col-
ors as described in Sect. 4. Block Motor is based
on work in (Overskeid, 2015) and specifies the
control of the train engine. Finally, building block
Communication defines the cooperation with the
responsible zone controller(s) via MQTT.

The semantics of UML activities resemble
Petri Nets such that we can interpret a control
or data flow as tokens running via the edges to
the various vertices of the activity. The block
TrainLogic is started by a flow through the in-
coming parameter node3 init that is forked into
three flows. One flow leaving the fork leads to the
operation initMQTTParam that is a carrier of a
Java method creating an object of type Parame-
ters. This object carries the data needed to start
an MQTT connection. It is forwarded towards
pin init of block Robust MQTT. The other two
flows leaving the fork initiate the blocks Com-
munication and Motor. The block ControlSen-
sorLogic does not need to be initialized. It gets
active when the motor starts operating.

The other flows of the activity are only
sketched. There are several flows from Con-
trolSensorLogic to Communication modeling the
notification of the zone controller about the vari-
ous findings of the color sensor. The control of the
train speed by the zone controller is specified as
a flow from pin setMotorAngle of building block
Communication that defines the desired speed
level as an integer value. This flow is forwarded
to pin rotateValue of block Motor after which the
engine speed is adjusted. Two flows from Motor
to ControlSensorLogic realize that the color sen-
sor is only operative if the motor turns. Finally,
the activity contains three event receptions used
to control the train directly from the central con-
sole. They can be used to set destinations for the
train, to manage the motor directly from the con-
sole, and to terminate the train controller. In the
latter case, an event of type STOPANDTERMI-
NATE leads to block Motor in order to stop the
train and to switch off the color sensor before the
building block TrainLogic is terminated by a flow
through parameter node terminate.

The model checker and animator of Reactive
Blocks (Kraemer et al., 2009) proved helpful to
check our controller models for functional cor-
rectness. The built-in model checker verified gen-
eral functional properties, e.g., that all flows in
a block are consistent to the interface descrip-
tions of both, the ESM of this block and those

3The term parameter node refers to pins at the
edge of a UML activity.



Figure 8: Building block for the train control logic

of the inner blocks. The animation feature which
allows to highlight flows of a block that can be ex-
ecuted in a certain state, was used to analyze our
models for problem-specific properties. For in-
stance, by inspecting all states of building block
TrainLogic (see Fig. 8) we found out that a train
controller does only unsubscribe the MQTT con-
nection with a zone controller if it currently is
connected with two of them. Thus, except for
the system start, a train controller is always con-
nected with at least one zone controller as long
as no MQTT connection breaks.

5.4 Methodology Step 4 (b)

As stated above, the development of the Re-
active Blocks model is in parts based on work
from (Overskeid, 2015) which did not use the
special building blocks needed to enable an auto-
matic extraction of the control logic as described
in step 4a of the methodology. Therefore, we de-
cided to use alternative 4b instead, i.e., we ap-
plied BeSpaceD to check logs of runs observed
by executing the control software. Since Lego
trains are usually not damaged by crashes, we
could not only get runs from pure simulation but
also from running the real trains on the tracks.
In Sect. 4.2, we explained that sleepers form the

BIGAND(
List(
IMPLIES(TimePoint(1429190484062),
BIGAND(List(OccupyNode(288),

OccupyNode(289), OccupyNode(290),
OccupyNode(291), OccupyNode(292),
OccupyNode(293), OccupyNode(294),
OccupyNode(295), OccupyNode(296),
OccupyNode(297)))),

IMPLIES(TimePoint(1429190483864),
BIGAND(List(OccupyNode(287),

OccupyNode(288), OccupyNode(289),
OccupyNode(290), OccupyNode(291),
OccupyNode(292), OccupyNode(293),
OccupyNode(294), OccupyNode(295),
OccupyNode(296)))),

...

Figure 9: Train data in BeSpaceD

basis for describing the locations of trains as well
as breaking distances. Therefore, it seemed natu-
ral to use them also in the BeSpaceD proofs. The
simulation resp. operation of the train and zone
controllers lead to formulas as sketched in Fig. 9.
A formula comprises a long list of conjunctions
marked by a BIGAND statement. Each conjuncted
element features an IMPLIES statement describing



that a time point implies that a train occupies a
certain number of sleepers on the track.

We used BeSpaceD to check runs of various
scenarios mostly to guarantee freedom of colli-
sions. Here, the solvers were used to verify that
no sleeper was occupied by more than one train4

at any time. But we could also validate that the
results observed in step 2 of the methodology are
consistent with the observed runs. For instance,
the higher complexity of the final control soft-
ware did not impact the braking distances com-
pared with the observed ones (see Fig. 7). The
BeSpaceD proofs did not reveal any performance
problems. The longest run comprised 1973 time
points that correspond to more than 32 minutes
of operation and afforded the check of 10,000’s of
sleepers. They were checked within 0.3 s each on
a standard 2.8 Ghz Intel Core i5 running MacOS.

5.5 Methodology Step 5

Finally, we got the implementation by automatic
generation of Java code from the Reactive Blocks
models that was exported to the EV3 controllers
as executable .jar files. This procedure could be
performed for all controllers of our system within
a few minutes.

6 Experience from Building the
Demonstrator

Together with general library blocks like
timers or buffers and, in particular, the blocks to
handle MQTT (MQTT.org, 2015), around 55%
of the model had not to be created from scratch
but could be reused. Albeit we have used Reac-
tive Blocks to build transport system controllers
only for a relatively short time, that is not too far
from the reuse rate of 70% that is usually achieved
when creating models in already well-supported
application domains (Kraemer and Herrmann,
2009).

We were also pleased that the input for-
mulas for BeSpaceD could be easily generated
and proved within very short time frames. We
learned, however, that the necessity to use cer-
tain blocks in order to create descriptive formulas
of the control software as used in alternative 4a

4The inaccuracy of using sleepers for measurement
was compensated by overapproximating the length of
the trains, i.e., we declared a crash even when only
one sleeper lay between those occupied by two trains.

of the methodology, might lead to practical prob-
lems. The engineer likes to be as free as possible
when creating or selecting models in order to be
able to address particular design problems flexi-
bly. Thus, the rigid structure of the blocks needed
to facilitate the creation of the BeSpaceD formu-
las (Herrmann et al., 2016) may be seen as cum-
bersome. We need to spend more work in solving
this conflict between easy development and anal-
ysis.

7 Related Work

In the past, verification and analysis tools
have been typically studied with respect to the
underlying verification and analysis techniques
rather than emphasizing the domain. PHAVer
(Frehse, 2005) is a tool that allows the analysis
of spatial properties in hybrid-systems. Another
application of formal verification techniques to
train systems is described in (Platzer and Quesel,
2009). Here, deduction-based verification tech-
niques from the KeYmaera system (Platzer and
Quesel, 2008) are applied. An application of the
SPIN model checker for the verification of con-
trol software aspects of a railway system is de-
scribed in (Cimatti et al., 1998). A variety of
other generic tools, recent work and approaches,
e.g., (Caires and Torres Vieira, 2012; Cimatti
et al., 2015; Tiwari, 2015) for model checking
spatial properties of cyber physical systems ex-
ist. The combination of Reactive Blocks with
BeSpaceD has been studied, e.g., in (Han et al.,
2015; Herrmann et al., 2016). Here, the empha-
size is on robots and either measured or simulated
spatiotemporal values. Unlike in this paper, the
combination of simulation and measured values
was not considered.

The European Rail Traffic Management Sys-
tem (ERTMS) is a major industrial project un-
dertaken by the Association of the European Rail
Industry members. Its main focus is on creating
a seamless integrated railway system in Europe
to increase European railways competitiveness,
capacity, reliability rates and safety (ERTMS
Project, 2015; UNIFE Project, 2015). A relevant
focus is the automatic train protection system
named European Train Control System (ETCS),
and the Global System for Mobile Communica-
tions – Railway (GSM-R). GSM-R is based on
the GSM standard and provides voice and data
communication between the track controllers and
the train. It uses frequencies specifically re-



served for railroad applications. A variety of
other large scale European funded projects exists
in the domain of safety-critical cyber-physical sys-
tem. For example, the ARTEMIS Chess (CHESS-
Consortium, 2010) project includes a focus on the
rail domain. Among other results, it produced a
modeling language.

Our work uses a similar lego infrastructure
as (Overskeid, 2015) where new means for pub-
lic transport have been studied based on Lego
Mindstorms and Reactive Blocks. In contrast to
Overskeid’s work, however, ours is more centered
on software quality, in particular, with respect to
making systems safe. For that, the separation of
the control functionality between train and zone
software is performed in a novel way that dis-
burdens the performance of the EV3 controllers
better when a larger number of trains has to be
coordinated. Further, the use of BeSpaceD en-
ables us to verify relevant spatiotemporal proper-
ties formally. Finally, following the methodology
presented in Sect. 3 facilitates carrying out a well-
regulated software engineering process.

8 Conclusion

We described our methodology that is able to
check safety properties on measured and simu-
lated data collected from a transportation sys-
tem. A major effort of the paper is the realiza-
tion of a demonstrator and the application of the
methodology to the demonstrator, as well as its
evaluation.

Currently, we continue our work by using the
introduced methodology for two other projects.
The one is an extension of the train layout such
that traffic in both directions will be possible.
Further, the zone controllers shall be replaced
by direct collaborations of the train controllers
that work together in order to achieve the spa-
tiotemporal properties. The other approach will
use the methodology for a set of robots controlled
by Raspberry Pies (Upton and Halfacree, 2014)
that, in addition to not colliding, shall cooper-
ate in order to, e.g., transport certain pieces to-
gether without letting them fall down. Moreover,
we discuss with Statens Vegvesen, the Norwe-
gian Public Roads Administration, and Jernban-
everket, the Norwegian Government’s Agency for
Railway Services, how to introduce our research
into the development and licensing process of real
transport systems.

Other future work centers on investigating the

use of the introduced platform and methodology
in the context of collaborative engineering (Blech
et al., 2014). In particular, we aim at provid-
ing the BeSpaceD-based safety analysis as a cloud
based service. We are also working on using anal-
ysis results to provide adequate views to opera-
tors and other stakeholders using devices provid-
ing different form factors. A first practical usage
is the remote monitoring of the Lego Mindstorms
demonstrator. For that, several methods to visu-
alize the operational state of the trains are under
development.
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