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Abstract—Modern Intelligent Transportation Systems (ITS)
operate highly automatically. Therefore, they have to be able to
handle a large variety of situations each demanding a particular
system behavior. That aggravates the development of control
software that has to guarantee safe and expedient operation in all
possible situations. To support a suitable reconfiguration of the
controllers to changing environments, the use of self-adaptation
seems to be a highly promising approach. In this paper, we
propose to combine model-based engineering of control software
with simulation. That allows us to create and test controller
software in parallel with the physical systems, it shall operate.
Moreover, this approach makes it possible to safely confront a
transport system with situations that, otherwise, could only be
reproduced taking a significant risk. In particular, we introduce
a framework for the creation of control software using simulators
together with a development structure. The suggested design
process is illustrated with a mobile robot example.

I. INTRODUCTION

The ability to dynamically adapt to changing contexts has
become an increasingly important feature of control software
systems for modern transportation devices. A prominent ex-
ample is the adaptive platform of the well-known software
architecture AUTOSAR [1] that is more and more used in the
car industry. Software adaptation may be necessary throughout
the lifetime of a vehicle in order to deal with changing envi-
ronments, reconfiguration and aging of the physical device.
Reasons for that can be, for instance, to ensure graceful
degradation (see, e.g., the ISO 26262 standard [2]) or to
be able to cope with changes in the software or hardware
environment.

In this paper, we look at the combination of model-based
engineering of adaptive control software with simulation for
mobile systems, so-called Intelligent Transportion Systems
(ITS). The control software used in autonomously operat-
ing ITS has to provide high situational awareness since the
transport devices operate in rapidly changing environments.
In particular, the danger of an impact with humans, other
vehicles, or miscellaneous obstacles may suddenly arise, and
the vehicle has to react instantly in order to protect the safety
of its passengers and other humans in its vicinity. Thus, the
controller must be able to detect changes in its situation and to

react accordingly. For detection purposes, modern devices are
provided with numerous sensors that produce a vast number
of data points to be processed in due time. For example,
a modern diesel locomotive uses around 250 sensors that,
together, generate 150,000 data points in a minute [3]. Due
to the strict real-time properties to be fulfilled, the varying
situations, and the large amount of data to handle, the control
software has to offer context-awareness, timeliness, and, due
to the autonomous operation, self-* properties [4]. That makes
its development process highly complex.

While not yet used very often (e.g., [5], [6]), self-adaptive
control software seems to be a promising approach to handle
the complexity arising from the rapidly changing situations.
In [7], we introduced a software adaptation framework for
autonomous trains that facilitates the engineering and testing
of dynamically reconfigurable controllers for autonomous ITS.

The experiments discussed in [7] were carried out on a
laboratory platform based on Lego Mindstorms. While such
toy platforms can be easily adapted to test particular properties,
that is, of course, more difficult and costly with real transport
units. Therefore, our approach can profit from integrating
simulation into the adaption framework. With this extension,
one can replace actual sensors and actuators by simulators
allowing developers to validate their control systems before
the physical units are in place.

A well-known technology using simulation is the Hardware-
In-the-Loop (HIL) simulation approach (see, e.g., [8], [9]) that
has, amongst others, the following characteristics:

• Reduced development time due to the early availability
of component tests.

• Reduced costs, since components can be tested without
constructing the whole system, although these savings
need to be traded off against the costs of the HIL
infrastructure.

• Enhanced reliability since one can test situations that
could hardly be tested on real systems due to safety
constraints.

Self-adaptive systems seem to be particularly suited for such
an approach since the code is properly structured into compo-
nents that can be dynamically started, stopped, and replaced
during runtime. That significantly eases switching over be-
tween simulators and real sensors resp. actuators. Further, one
cannot only replace the overall physical unit with a simulator
but also freely combine real system parts with simulators.978-1-5386-4633-5/18/$31.00 c©2018 IEEE



This allows us, e.g., to test the impact of a new sensor,
before actually building it into a physical unit, since it can
be simulated while the rest of the unit is real. Moreover,
simulators may help the licensing process. Not all situations to
be tested can be simply reproduced since that would be highly
expensive resp. dangerous for the system to be tested. In that
case, one can temporarily replace actual sensor controllers by
simulators pretending the occurrence of a certain situation.

In this paper, we present the extension of our software
adaptation framework such that simulators can be relatively
easily and dynamically integrated into the control software
engineering process. In Sect. II, we sketch our model-based
method to create control software of simulated resp. actual
systems as well as combinations. The main contribution of
this position paper is the presentation of a software adaptation
simulation framework for adaptive ITS that is introduced in
Sect. III. The approach is elucidated by means of an example
in Sect. IV while we discuss flexibility, adaptability, and
scalability issues in Sect. V. The article is completed with
a discussion about related work and a conclusion.

II. MODEL-BASED SOFTWARE DEVELOPMENT

While our approach can be used with many technologies for
adaptive systems, we currently apply OSGi [10] which is based
on the programming language Java. In particular, OSGi makes
it possible to structure program code into Java packages, so-
called business bundles, that each can be freely installed, ac-
tivated, deactivated, replaced, or uninstalled at runtime. When
reconfigurations take place, OSGi automatically preserves the
dependencies between the business bundles used.

Another advantage of OSGi is that it is directly supported
by the model-based software engineering technique Reactive
Blocks [11], [12]. This technique allows us to implement sub-
systems or sub-functionality separately in so-called building
blocks that can be easily composed to larger system models.
Thus, various subsystems and sub-functions can be combined
to an overall system behavior. That supports the reuse of
code since different systems often use identical sub-functions
that are, however, applied in varying contexts. We model a
recurring sub-function as a building block that can be stored
in a library and added to all models of systems needing the
sub-functionality.

The behavior of a building block is modeled as a UML
activity which may contain instances of other building blocks
while its interface is specified by a UML state machine, a so-
called Extended State Machine (ESM). Both, the UML activ-
ities and state machines are provided with a formal semantics
making automatic correctness proofs of functional properties
with a built-in model checker possible (see [13]). Further,
system models can be automatically transformed into various
forms of Java code. Here, we generate OSGi business bundles.
These can be handled during runtime using OSGi platforms
like Eclipse Equinox [14] that we use in our approach.

OSGi supports the communication between business bun-
dles by supporting the well-known publish-subscribe pat-
tern [15]. In this way, the bundles can communicate with each

Fig. 1. Software adaptation framework for a simulated system

other by publishing and subscribing to events sent through the
Equinox framework achieving both, low coupling between the
modules and high cohesion within them.

III. SOFTWARE ADAPTATION FRAMEWORK

The building block concept of Reactive Blocks allows us
to structure the various elements of a control software for
simulated resp. real ITS. In particular, we define a software
adaptation framework that contains various types of business
bundles as well as the interfaces between them. We can then
define libraries of building blocks each implementing sub-
functions relevant for a certain type.

Figure 1 depicts the structure of the framework when a
controller runs on a simulator. Here, Equinox acts as a broker
as described by the purple square. It uses bundles of two
general types marked in gray. Bundles of type Osgi blocks
offer functionality enabling other bundles to be registered and
subsequently applied. Moreover, they support the communica-
tion between bundles using the publish-subscribe-pattern. The
bundles of type General blocks provide Java classes for the
storage of physical properties of a transport unit. Further, they
export special constants to be used by other bundles. Finally,
they offer functions for bundles realizing sensors to interact
with the database shown in red.

Bundles of the four types represented by green blocks in
Fig. 1 form the core of the controller software. The access to
the database storing sensed data is maintained by bundles of
type DataAccess. The bundle type Sensor refers to modules
realizing the access to the simulated sensors. In particular, the
bundles of this type provide functions to access sensor data
computed by the simulator and to forward it to the bundle
DataAccess for storage. The control functionality is stored in
bundles of the type Controller. Such a bundle reads stored
sensor values from the database and computes from them the
input values for the actuator. The actuator access is realized
by the bundles of type Actuator that forward the controller
values to the simulator.

Finally, we have the two amber bundle types that are used
to realize the simulator. Business bundles of type Simulator



Fig. 2. Software adaptation framework for a real system

contain the functions to carry out the actual simulation, i.e, the
computation of the simulated system behavior depending on
the actuator values from which the sensor values are computed.
The bundles of the type Control Panel allow us to manage the
simulator and to output relevant values, e.g., in a graphical
way.

The framework for the control software of real systems is
shown in Fig. 2. It is quite similar to the simulated version.
The Equinox broker, the general blocks and the bundles of
the types DataAccess and Controller are actually identical
fostering the use of the same control software for both,
the real and the simulated versions. Bundles of type Sensor
access now the actual Sensor Software and Hardware but
forward the sensed values to DataAccess exactly in the same
way as in the simulated case. The bundles of type Actuator
compute actuating variables (e.g., the number of revolutions
of an engine) from the data received by the Controller and
send them to the Actuator Software which implements them
on the corresponding Hardware. The sensor and actuator
bundles of both versions have identical interfaces. Thus, the
sensor and actuator functionality can be dynamically switched
over between accessing the simulator resp. the real hardware
depending on the tests to be carried out.

Partly simulated control systems in which some components
are real while others are simulated, are also possible. This
allows for testing of simulated new hardware on real systems
as well as the simulated reproduction of special situations.

IV. MOBILE ROBOT EXAMPLE

As demonstrator, we use DiddyBorg robots [16]. A unit
contains six motors that are controlled by a Raspberry Pi. In
Fig. 3, we show our current layout that contains a number of
sensors. To detect obstacles, we added an ultrasound sensor
providing precise measurements of the distance to objects that
are between 80 cm and 5 m away. Moreover, we provided
the robot with an infrared sensor that can measure obstacles
closer than 60 cm. For self-localization, we further added
a chip containing, amongst others, an accelerometer and a
magnetic sensor to determine the speed and direction of the
robot. The motors of a robot are operated by 10 AA cells

Fig. 3. Mobile robot demonstrator

connected in series while the Raspberry Pi and the sensors get
electricity from a rechargeable 5V battery. This demonstrator
is a good example that the use of self-adaptive controllers can
be expedient. For instance, one can save battery power by
switching off the infrared sensor if the ultrasound sensor does
not detect any obstacles within a certain distance.

The design of the controller follows our software framework
depicted in Fig. 1. As described in Sect. II, the corresponding
OSGi business bundles were created in Reactive Blocks. To
be able to compare the interplay between real and simulated
versions of our approach, we also created a simulator of the
Diddyborg robot specifying its physical aspects.

As a first proof of concept, we concentrated on a situation
in which the robot operates in a flat area free of obstacles such
that only the input of the magnetometer and accelerometer are
relevant (see [17]). To get realistic values for the simulator,
we separately measured the physical behavior of the robot
depending on the voltages provided to the different motors.
Likewise, we tested the behavior of the sensors in the envi-
ronment in which the robot shall be operated. The output of
the accelerometer and magnetometer can be used to calculate
the relative movement of the robot.

The main task of the controller, engineered in this step, is
to move the robot to a certain given position. To keep the
development of the simulation software simple, we restricted
us to the three distinct types of movement Rotating, Forward
and Stopped such that the robot operates only with one speed
and one turn rate in the first iteration of the prototype. In a
DiddyBorg, the three motors on the left side and on the right
side are synchronized. Thus, we had only to consider the two
power settings managing the two sets of motors to compute
the new position and orientation of the robot in the simulator.
The actual numbers were figured out by testing the real device.

In a second step, we added the simulation of the ultrasound
and infrared distance sensors. To realize them, we used their
data sheets and, again, measurements with the real systems to



Fig. 4. Screenshot of user-interface created by the Control Panel bundle

program their behavior in the simulator.
As discussed in Sect. III, we built a bundle of type

Controller to realize the control functionality for both, the
simulated and real robots. It accesses the DataAccess bundle
to query the database for the latest sensor data, and uses this
to set the state of the movement of the robot. Utilizing OSGi
events, the state of movement, i.e., Rotating, Forward and
Stopped, is forwarded to the Actuator bundle that calculates
the corresponding power settings for the motors and forwards
that to the Simulator bundle. In turn, the simulator publishes
the computed values of the new bearing and position. This
is read by the sensor bundles and forwarded to the controller
which completes the simulation loop. Except for the initial
positioning, the provision of new target points for the robot as
well as starting and stopping the simulator, the Control Panel
bundle has no impact on the simulation loop or the control
software. Instead, it creates a graphical user interface allowing
a user of the system to observe the simulated robot moving
on the screen and its simulated physical properties in real-time
(see Fig. 4).

Using the controller also for the real Diddyborg robot
system showed that, in general, the simulator reproduces the
real behavior well enough to guarantee a safe operation. In
particular, we could only find one situation in which the real
but not the simulated system collides with obstacles. That are
low lying heating pipes which distract the infrared sensor and
lead to a delayed braking of the robot (see [18]). To avoid this
problem, the weakness of this sensor must be added to the
simulation. Further, the control software need to be adjusted
accordingly.

V. FLEXIBILITY, ADAPTABILITY, SCALABILITY

Our first experience with the demonstrator showed that the
development effort for the controller system and the simulator
was relatively low. The two bundles of the simulator were
created by a single person within 10 hours while each of the
bundles realizing the control software could be engineered
within an hour. More laborious was the development of the
supporting building blocks but we had to build these only

Fig. 5. Identical input of a real resp. simulated sensor

once and can thereafter reuse them in many applications of
the framework.

It seems that the approach makes it possible to create
the control software and the simulators of ITS in a highly
modularized and flexible way such that the individual parts
of the system can be easily added, removed or exchanged.
The use of the publish-subscribe pattern allows us further to
exchange parts of the system without having any impact on
the remaining parts, as long as the new bundle publishes the
data with the same topic (see Fig. 5).

Another aspect to consider is the performance of the OSGi-
based software. In [7], we discussed the time delay of the
various aspects of OSGi. In general, the outcome of this
analysis was that OSGi needs only very short time intervals
to reconfigure systems. On the other side, one has to be
careful when realizing the event transfer mechanisms between
bundles since too many incoming events at the time might
cause significant delays. With respect to the example presented
here, we did not detect any performance bottlenecks for either
the simulated or the real version.

As written above, simulation can also be used for extending
existing control systems and to avoid dangerous situations.
For instance, when we want to add an emergency braking
system preventing that a DiddyBorg crashes with obstacles,
we can use a simulator that pretends certain obstacles in the
area and model the according sensing behavior of the ultra-
sound and infrared sensors. The corresponding simulator and
sensor bundles can be applied for both, the purely simulated
system and a real DiddyBorg. Thus, we can test the collision
avoidance behavior in an, in reality, empty area avoiding the
risk of actual collisions which may damage the DiddyBorg or
an obstacle. This is particularly helpful for testing the robot
in situations involving humans. Moreover, the simulated data
can be transmitted from an external computer allowing us to
test the behavior of various interacting systems. There can
also be other more extreme scenarios, which can be hardly
created or recreated. In our approach, also these situations can
be achieved and reproduced with the help of simulated sensors
forwarding simulator data to a real robot.

During the development of control algorithms, it is also
possible to implement several Control bundles in parallel,
each supporting different sub-functionality. The bundles may
then collaborate in controlling a physical device. For example,



Fig. 6. Situational disabling of sensors

the localization and emergency braking functionality can be
managed separately. The cooperation between the different
controller bundles (e.g., notifying the localization controller
about an emergency brake such that it does not issue contrary
commands) can be suitably provided using OSGi events.
Alternatively, we can create different Control bundles, in
which each one handles a particular situation. Here, we can
use Equinox to replace a bundle by another one if the sensors
detect a change in the overall situation of the system (see [7],
[18]).

Another advantage of the flexible, loosely coupled design is
reconfiguration support (see Fig. 6 and [18]). For instance, the
sensor input to the control system can be used to manage the
life-cycle of some parts of the physical device. Battery power
is often a limiting factor and not all sensors and actuators are
needed in every situation. An example for switching system
parts off is to use the infrared sensor only when the ultrasound
sensor measures an obstacle within a certain distance, e.g.,
2 m. In practice, when the ultrasound sensor does not detect
any obstacle within the distance, the Sensor bundle of the
infrared sensor calls the corresponding Sensor Software bundle
to shut down the sensor hardware. Thereafter, both bundles of
the infrared sensor can be deactivated. When the sensor is
needed again, the two bundles are reactivated and the run-up
of the infrared sensor is initiated. With the simulator, we can,
of course, test if the life-cycle management is useful, correct,
and expeditious.

Independently from the use of simulation, the flexible mod-
ule structure also supports the reuse of the control software.
Software often exists for many years and outlives the devices,
it was originally created for. For instance, we want to be able to
use the core of our control software for the DiddyBorg robots
even when, e.g., new and more precise sensors are built into
it. The costs of a total rewrite of the software are often very
expensive. Therefore, it is helpful to create the software right
from the start in a way that makes modifications easy. This
is especially important for the development of software in a
new application area and with a lot of unknown variables.
Our approach focuses on modifiability and scalability. The
low coupling between the bundles in the system and the high
cohesion within them provide an environment allowing us to

change parts of a system without affecting others. For example,
when replacing a sensor with another one, we just have to
recreate the corresponding Sensor bundles for the simulated
and real cases as well as the Sensor Software. The flexibility
further affects the scalability of the control systems, since
adding new bundles with new features to the system can be
done without big changes in other parts of the system.

VI. RELATED WORK

Simulation-based development and evaluation of ITS in
general, and adaptive ITS in particular, has been considered
to some extent by the ITS community. In the iTETRIS
project [19], a large-scale simulation platform is proposed to
improve traffic management and routing policies, and eval-
uate ITS strategies based on cooperative ITS in a close-to-
real environment. Similarly, in [20], an integrated framework
for vehicular networks simulation is proposed to achieve
a complete integration between the mobility and network
components in ITS, inspired by the fact that the networking
dynamics are greatly dependent on the mobility aspect. With
a similar goal, the IntelliDrive simulation environment [21]
is aimed to integrate both microscopic traffic simulation and
a wireless communications network simulator. The above
simulation frameworks are useful when the overall operation
of an ITS is under assessment and appropriate adaptation
decisions are needed to improve high-level ITS functions.

In the area of context-awareness and adaptivity of vehic-
ular control systems, DySCAS [22] is aimed to devise a
middleware technology to facilitate context-aware dynamic
reconfiguration of automotive control systems. By introduc-
ing self-management into vehicular systems, it promises to
improve robustness through dynamic fault handling and ef-
ficiency through dynamic reconfiguration to reduce power
consumption. Considering the related work in multi-agent sys-
tems [23], they are more suitable for simulating and adapting
the behavior of various components of urban ITS (e.g., traffic
flows management, management of temporal and geographical
aspects, and multi-modality transport).

Most early work in the HIL area focuses on using HIL
for modeling real-time systems. For example, in [9], HIL
simulation is used to verify the performance of a controller
module for production power trains. Later, HIL was proposed
to test drive trains in their operational environment. In this
work category, HIL simulated systems provide virtual vehicles
for system validation and verification. For instance, in [24],
the motor model for the vehicle simulator is developed,
making it possible to analyze the motor characteristics for
various configurations. The above views to HIL simulation are
different from our approach in which a methodology for HIL-
based modeling and evaluation of adaptive Cyber-Physical
Systems (CPS) is proposed.

Recently, HIL simulation has also been used to examine
new control strategies and diagnostic functions in Electronic
Control Units (ECU) in order to reduce the effort and the
cost of the testing phase [25]. Similarly, HIL is used for
ECU inspection in the manufacturing phase. In [26], a virtual



vehicle environment is proposed to simulate an ECU using
a virtual engine system model that specifies the operations
of every ECU function during a simulation. These types of
approaches are basically focused on fine-grained simulating
and assessing of control functionalities in ECU, which can
be complementary to our methodological view to HIL in
transportation systems.

In designing distributed real-time software for CPS, HIL
has the potential to facilitate the modeling and programming
phases. In [27], a programming framework is presented which
serves as a coordination language for the model-based design
of distributed real-time embedded systems. The framework
enables integration of models of software, network and phys-
ical plants, which can be in a simulated form and HIL-
based. In distributed smart grid systems, as a type of CPS,
HIL is proposed to perform real-time simulation after off-line
simulation [28]. This eases the evaluation of the controllers
for smart grid hardware systems. The above approaches do not
specifically address HIL-based simplification when designing
adaptive CPS, which, however, is the focus of this paper.

VII. CONCLUSION

In this paper, we outlined a methodology for developing
self-adaptive transport systems. Our methodology is based on
simulation: Following an approach that is inspired by HIL, we
simulate cyber-physical parts of Intelligent Transport Systems
(ITS) in order to evaluate the control software. In addition
to the presentation of the methodology, we described an
example in the area of mobile robots deployed in our lab. The
use of OSGi in combination with the implemented publish-
subscribe pattern provided the foundation for the systems
loosely coupled modules. Applying the Reactive Blocks tool
has given an easy way to reuse code and to share functionality
between the bundles in the system.

The next step is, of course, to test whether the approach
is scalable. For that, we work on more complex scenarios
with laboratory platforms. More significant, however, will be
to use the approach with real-life ITS. A cooperation with the
Norwegian Public Road Administration helps us to get access
to real test-beds.
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