Model-based Development of a Controller
and Simulator for a Mobile Robot

Magnus Karsten Oplenskedal, Peter Herrmann

Department of Telematics

Norwegian University of Science and Technology

Trondheim, Norway

Abstract—In this paper, we report on our experiences with
using a model-based development framework for both, the devel-
opment and the simulation of robot control software. Our work
can be seen as a step towards facilitating the development and
maintenance of robot control software. The integrated simulation
supports a development process, where individual components
can be easily tested and validated without the need to have a full
robot system working.

Index Terms—Model-based development; cyber-physical sys-
tems; Reactive Blocks

I. INTRODUCTION

Model-based development for embedded control software
has been studied for some time. Proclaimed advantages com-
prise a closer integration with a variety of development,
analysis, validation and verification tools. Such a seamless
tool chain is, e.g., a goal of AutoFocus [1], our Reactive
Blocks tool sets [2], [3], and the commercial products Mat-
lab/Simulink! and YAKINDU?. An advantage of some of these
techniques, in particular Reactive Blocks, is that one can model
different sub-functionality in separate models which eases
the understanding of the sub-functions and therefore helps to
tackle the complexity of the engineered systems. Moreover,
the models of the sub-functions can be specified once and
reused in various applications [4].

Thanks to these properties, Reactive Blocks facilitates the
parallel development of embedded systems and their control
software. Particularly, one can create a simulator of the physi-
cal system and test the control software based on the simulator
even before the real system is ready. The simulator and control
software can be engineered in separate models which eases the
later porting of the control software to the real system.

The approach is a nice complement to the methodology
introduced in [5]. There we suggest the following procedure
for the engineering of mobile embedded systems:

1) Develop an initial model of the control software.

2) Generate code of this model and use it to test the

physical system in order to find out relevant properties.

3) Based on the detected properties extend and adapt the

initial model to a model of the final system controller.

4) Test the extended model for keeping relevant spatiotem-

poral properties. For that, we use the formal analysis

Uhttp://www.mathworks.com/products/simulink/
Zhttps://www.itemis.com/en/yakindu/statechart-tools/

Jan Olaf Blech
AICAUSE
RMIT University
Melbourne, Australia

Fig. 1. A DiddyBorg robot controlled by a Raspberry Pi

technique BeSpaceD [6] that allows formal verification
of such properties with SAT and SMT solvers.

5) Generate the final code of the controller and integrate it
into the physical system.

Often, a simulator may give good predictions of the relevant
properties such that it gets possible to create the final system
controller already in step 1. Then, the purpose of step 2 is just
to validate that the simulator reflects the real system correctly,
and step 3 has only to be carried out if relevant properties
were wrongly predicted. Thus, the efforts of the development
process may be significantly reduced by the use of a simulator.

In this paper, we report on a student project that developed
a case study for our approach. It comprises the engineering of
control software for our DiddyBorg robots that are operated
with Raspberry Pies [7] (see Fig. 1). In particular, a simulator
of the robots to be used including the applied sensors as well
as a controller were developed and tested in combination.

II. RELATED WORK AND REACTIVE BLOCKS

The system development described in this paper has been
carried out using the Reactive Blocks tool which is tailored
for the development of reactive software systems [3]. A
system model comprises building blocks that are models of
subsystems or sub-functionalities, and can be composed with
each other. A major advantage of this modeling method is its
potential for reuse since a building block is specified once

(createPhysicalState }
hysicalState

(createDestination

osition R init: Physicalst

W Rj init: PhysicalState
GUI Statehandler

setDestination: Position <lag>! desinationin: Position
destinationOut: Position >l >/ destination: Position

stopDevice: boolean —>jmmmg>! stopDevice: boolean

physicalState: PhysicalState <l < updatedPhysicalState: PhysicalState

D < currentPhysicalState: PhysicalState

|| completedDestination: boolean
% 8%
% stopped T sto T stop

!

setPosition: PhysicalState

System model of our robot control system in Reactive Blocks

init /

desinationln / stop / stopped

®

physicalState / cumrentPhysicq
/ destinationOut

shysicalState / completedD..

stop / stopped / stopDevice

[idle] [idle]
® l.-" stopDevice J l;" stopDevice J

Fig. 3. ESM of building block Statehandler

and stored in a tool library. When needed, it can be used
in a system model by simple drag and drop. The behavior
of a building block is modeled by UML activities. These
can contain UML call behavior actions representing its inner
building blocks such that we can describe the behavior system
by a hierarchy of building blocks and their UML activities.
An example from our development is shown in Figure 2.
It describes the simulator consisting of three main building
blocks GUI, Statehandler, and Device.

The interface of a building block is specified by an External
State Machine (ESM) [4]. That are state machines expressing
when flows are allowed to pass through the pins at the edges
of a building block. For instance, Fig. 3 describes the ESM
of building block Statehandler. Here, for instance, a flow
may only pass pin init in the initial state which brings the
building block into state idle. ESMs make the analysis of
functional correctness by model checking possible since both,
activities and ESMs are supplemented with formal seman-
tics [8]. Reactive Blocks allows the automatic transformation
of system models into Java code [9] and tool extensions
feature he analysis of models also for safety [10] and proba-
bilistic real-time properties [11], [12]. One particular interest
is the verification of spatiotemporal properties of robotic
systems [13], [14], [5] using our BeSpaceD framework [6].

Our approach bears some similarity to the Hardware in
the Loop (HiL) approach [15]. Here, individual hardware
components are tested in an environment that replaces some
parts of the complete system with software simulated compo-
nents. We have proposed an extension that also covers virtual
commissioning [16].

III. ROBOT SIMULATION SYSTEM

The developed system comprises a true simulation of our
DiddyBorg robots. Among others, it simulates the magnetome-
ter and accelerometer sensors that are on the circuit board that
can be seen on the top of the robot in Fig. 1. Like the real
one, the simulated robot can move from one position to another
using calculations based on the output from these sensors. To
ease the development of the simulation software, the three
distinct types of movement Rotating, Forward and Stopped
were used while we refrained from modeling different speeds
in the current version. To facilitate the porting of the control
software to the real system, the simulation software for the
robot is highly modularized. At the highest level, it consists
of the three modules Command Handler, State Handler and
Device Handler that are introduced in the following.

A. Command Handler

The command handler module is managing external com-
mands given to the robot. The module can accept commands
containing a destination, i.e., coordinates for longitude and
latitude. When the command handler receives a command, it is
added to a queue. The module checks the queue for commands
and executes them in FIFO order. When a command contains
a new destination for the robot, the module extracts the
coordinates from the command, and passes them to the State
Handler module. In Reactive Blocks, the command handler
is realized by a Java method that is embedded in the UML
operation createDestination (see Fig. 2).

B. State Handler

The state handler module is realized by the building block
Statehandler. It controls which movement state the robot
should be in and whether it has reached its destination or
not. The state handler is implemented as a state machine
with the two states idle and active which is directly
reflected by the ESM in Fig. 3. When initiated, the module
starts in the state idle and will stay in this state until it
receives a destination from the command handler module,
which is modeled as flow through the pin destinationIn.
Upon receiving a destination from the command handler, the
module changes its state to active and starts processing
the destination. In state active, the state handler cannot
receive any more destinations from the Command Handler.
When receiving a new destination, the state handler starts by
checking whether or not the robot is already at this position. If
that is not the case, the destination is passed on to the device
handler module via pin destinationOut. While moving,
the state handler gets input of the current robot data, i.e.,
acceleration, velocity, position and bearing, by flows through

Device Handler

»> Engine >

/!

w Magnetometer <

PhysicalState
< Handler

Simulator

Engine
Control

« Accelerometer

Fig. 4. The internal modules of the Device Handler module

Destination(20, 100)

cument bearing = 90°

~._ optimal bearing = 135°

o ab =450

Robot(200, 10)

Fig. 5. Model depicting angle between robot and destination, and optimal
bearing to reach its destination

pin physicalState. The module stays in active until
the destination has been reached or until somebody pushes
an emergency stop button that is realized within the building
block Statehandler. Then the device is notified by a flow
through stop device. When the destination is reached, the
state handler notifies its environment via a flow through pin
completedDestination.

C. Device Handler

The device handler module contains the simulator of the
DiddyBorg robot as well as the functionality needed to access
it. It is realized by the building block Device and has the
responsibility of controlling the communication between the
different simulated physical parts of the robot, i.e., the motors,
the sensors, the control algorithm and the simulator module
(see Fig. 4). The module is also implemented as a final
state machine with the two states 1dle and active. When
the module is started, it is set to idle until it receives a
destination from the state handler. Upon receiving a destination
the module changes the state to act ive, and stays in this state
until it receives a flow stopDevice or stop. In a simulation
step, the device handler executes the algorithm of each of its
sub-modules once. When this is achieved, the module sends
an updated physical state via updatePhysicalState to
the state handler. In the following, we will introduce the sub-
modules of the device handler.

a) Control module: This is the first module activated
by the device handler. It is implemented as a state machine
with the two states idle and active. The module uses the
current physical state of the robot together with the destination
to calculate the needed power-output for the two engines. In
particular, it starts by calculating the optimal bearing ob of the
device (see Fig. 5), i.e., the bearing the robot needs to stay at in
order to reach its destination. The optimal bearing is computed

i\ Ab==0

=0
Ab<0 A Ab>-180

Ab <= -180
Rotate Right

Robot is on
course

Rotate Left

Ab>0 A Ab>180

»——> Rotate Left

Ab <= 180
Rotate Right

Fig. 6. Rotation logic

by first calculating the angle o between the destination and the
current position of the robot with equation 1:

|a7“cTcm(§—§)
a=|—22=

|)

™

Here AX and AY are the differences between the current
robot position and the destination with respect to the x and y
coordinates. Thereafter, depending whether the destination is
northwest, northeast, southwest, or southeast of the robot, the
optimal bearing can be easily computed (e.g., ob = 90° + «
in Fig. 5).

When the optimal bearing is calculated, the control module
calculates the angle Ab between it and the current bearing of
the robot using formula 2:

Ab = currentBearing — optimal Bearing 2)

Thereafter it corrects the robot angle using the logic described
in Fig. 6. Based on the output from the rotation logic,
the control module outputs the power needed to the engine
modules. The power level is controlled by a value between
-100 to 100, where positive values represent power in relative
forwards direction, negative values represent relative reverse
and O is full stop.

b) Engine module: The engine modules simulate the
access to the robot engines, in particular, the transfer of the
actuator commands controlling the engines.

c) Simulator module: This module realizes the actual
simulator of the physical entity. It receives the current engine
power levels, and based on this, simulates the effects, the
force of the movement would have on the accelerometer
and a magnetometer sensors. Particularly, it calculates the
acceleration in the = and y directions and the current bearing,
within set restrictions for maximum acceleration, deceleration,
velocity and rotation speed. The module outputs the simulated
data to the Accelerometer and Magnetometer modules.

d) Accelerometer and Magnetometer modules: In the
same way the engine module is a place holder for the engine
software, the accelerometer and magnetometer modules are
the place holders for the integration of real sensor software.
They get input from the simulator module and pass it on to
the physical state handler module. Here, we also model the
inaccuracies of the real sensors.

e) Physical State Handler module: The module receives
the current acceleration and bearing of the robot and uses this
together with the robots current physical state, to calculate the

PhysicalStatePacker

main [@] currentPhysicalState: PhysicalState

init: PhysicalState 3} @ c alState J

updateAcceleration |E3*=={& acceleration: Acceleration

updateBearing _J&—1& bearing: fioat

(updateVelocity J
hysicalState

[updateRelativePosition |
hysicalState

updatedPhysicalState: Physicalstate updatePhysicalstate
stop g

Fig. 7. The implementation of the PhysicalStatehandler module in Reactive
Blocks

current speed of the robot and to update its relative position
following the following equations:

Av = La x At Yv = v x*sin(b)
v=10v+ Av r=x+ Xv
Xv =vx*cos(b) y=y+Yv

When all relevant updates of the physical properties are
calculated, the module sends the updated physical state to
the control module via flow updatedPhysicalState, which in
turn sends it out of the device handler module and to the
state handler. As mentioned above, the state handler checks
if the destination has been reached. If that is not the case, the
destination is sent again to the device handler, and the whole
process starts anew until the destination is finally reached.

IV. EVALUATION

Applying the simulator, the controller realized by the control
module and some of the sub-modules of the device module,
works nicely and the destinations are reached on highly precise
trajectories. Nevertheless, a problem of the simulation was to
get suitable values for modeling the inaccuracies of the sensors
and robots. In our project work, we could test the various
voltages for the motors of the DiddyBorg robots such that
our simulation in this respect in quite precise. However, the
accelerometer and magnetometer were not in place when the
project was carried out. Therefore, we used the values of their
data sheets to predict the inaccuracies.

We are currently testing the sensors in the real systems
and it seems that the real inaccuracies are a little greater
than expected. While we could not reconstruct this from
operating the robots with the controller module, we plan to
adapt the simulator with better inaccuracy models, following
step 3 of the methodology from [5] that we introduced in the
introduction. This step has yet to be done.

V. CONCLUSION

We described our work on simulation and development of
robot control software. The work aims at a close integration

of simulation and control software development using model-
based development and the Reactive Blocks tool. In particular,
we introduced a case study that features a Raspberry Pi-based
controller for a DiddyBorg robot. Future work will encompass
the integration of spatiotemporal reasoning techniques for both
development and operation of our control systems according
to adapting the methodology from [5]. This will comprise the
notion of “self-awareness” of the system covering its physical
constraints in relation to its environment.

REFERENCES

[1] F. Holzl and M. Feilkas, “AutoFocus 3: A Scientific Tool Prototype for
Model-Based Development of Component-Based, Reactive, Distributed
Systems,” in Model-Based Engineering of Embedded Real-Time Systems.
Springer, 2010, pp. 317-322.

[2] F. A. Kraemer, “Engineering Reactive Systems: A Compositional and
Model-Driven Method Based on Collaborative Building Blocks,” Ph.D.
dissertation, Norwegian University of Science and Technology, 2008.

[3] E A. Kraemer, V. Slitten, and P. Herrmann, “Tool Support for the
Rapid Composition, Analysis and Implementation of Reactive Services,”
Journal of Systems and Software, vol. 82, no. 12, pp. 2068-2080, 2009.

[4] F. A. Kraemer and P. Herrmann, “Automated Encapsulation of UML
Activities for Incremental Development and Verification,” in Model
Driven Engineering Languages and Systems (MoDELS), ser. LNCS
5795. Springer-Verlag, 2009, pp. 571-585.

[5] S.Hordvik, K. @seth, J. O. Blech, and P. Herrmann, “A Methodology for
Model-based Development and Safety Analysis of Transport Systems,”
in 11th International Conference on Evaluation of Novel Approaches to
Software Engineering (ENASE), 2016, to appear.

[6] J. O. Blech and H. Schmidt, “BeSpaceD: Towards a Tool Framework and
Methodology for the Specification and Verification of Spatial Behavior
of Distributed Software Component Systems,” arXiv.org, Tech. Rep.,
2014.

[7]1 E. Upton and G. Halfacree, Raspberry Pi User Guide. Wiley, 2014.

[8] F. A. Kraemer and P. Herrmann, “Reactive Semantics for Distributed
UML Activities,” in Joint WG6.1 International Conference (FMOODS)
and WG6.1 International Conference (FORTE), ser. LNCS 6117.
Springer-Verlag, 2010, pp. 17-31.

[9]1 F. A. Kraemer, P. Herrmann, and R. Brak, “Aligning UML 2.0 State

Machines and Temporal Logic for the Efficient Execution of Services,”

in 8th International Symposium on Distributed Objects and Applications

(DOA06), ser. LNCS 4276. Springer-Verlag, 2006, pp. 1614-1632.

V. Slatten, F. Kraemer, and P. Herrmann, “Towards Automatic Genera-

tion of Formal Specifications to Validate and Verify Reliable Distributed

System: A Method Exemplified by an Industrial Case Study,” in /0th

International Conference on Generative Programming and Component

Engineering (GPCE’11). ACM, 2011, pp. 147-156.

F. Han, J. O. Blech, P. Herrmann, and H. Schmidt, “Towards Ver-

ifying Safety Properties of Real-Time Probability Systems,” in /Ith

International Workshop on Formal Engineering approaches to Software

Components and Architectures (FESCA). EPTCS, 2014.

F. Han, P. Herrmann, and H. Le, “Modeling and Verifying Real-Time

Properties of Reactive Systems,” in /8th International Conference on

Engineering of Complex Computer Systems (ICECCS). 1EEE Computer,

2013, pp. 14-23.

F. Han, J. O. Blech, P. Herrmann, and H. Schmidt, “Model-based

Engineering and Analysis of Space-aware Systems Communicating via

IEEE 802.11,” in 39th Annual International Computers, Software &

Applications Conference (COMPSAC). 1EEE Computer, 2015, pp. 638—

646.

P. Herrmann, J. O. Blech, F. Han, and H. Schmidt, “A Model-based

Toolchain to Verify Spatial Behavior of Cyber-Physical Systems,” Inter-

national Journal of Web Services Research (IJWSR), vol. 13, no. 1, pp.

40-52, 2016.

R. Isermann, J. Schaffnit, and S. Sinsel, “Hardware-in-the-loop simu-

lation for the design and testing of engine-control systems,” Control

Engineering Practice, vol. 7, no. 5, pp. 643-653, 1999.

J. O. Blech, M. Spichkova, I. Peake, and H. Schmidt, “Cyber-Virtual

Systems: Simulation, Validation & Visualization,” in 9th International

Conference on Evaluation of Novel Approaches to Software Engineering

(ENASE). IEEE, 2014, pp. 1-8.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

