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Abstract

In the recent ePrint report 2021/583 titled ”Entropoid-based cryptography is group exponentiation in
disguise” Lorenz Panny gave a cryptanalysis of the entropoid based instances proposed in our eprint report
2021/469. We acknowledge the correctness of his claims for the concrete instances described in our original
report 2021/469.

However, we find that claims for the general applicability of his attack on the general Entropoid frame-
work are misleading. Namely, based on the Theorem 1 in his report, which claims that for every entropic
quasigroup pG, ˚q, there exists an Abelian group pG, ¨q, commuting automorphisms σ, τ of pG, ¨q, and an
element c P G, such that x ˚ y “ σpxq ¨ τpyq ¨ c the author infers that ”all instantiations of the entropoid
framework should be breakable in polynomial time on a quantum computer.”

There are two misleading parts in these claim: 1. It is implicitly assumed that all instantiations of
the entropoid framework would define entropic quasigroups - thus fall within the range of algebraic objects
addressed by Theorem 1. We will show a construction of entropic groupoids that are not quasigroups; 2. It is
implicitly assumed that finding the group pG, ¨q, the commuting automorphisms σ and τ and the constant c
would be easy for every given entropic operation ˚ and its underlying groupoid pG, ˚q. However, the provable
existence of a mathematical object does not guarantee an easy finding of that object.

Treating the original entropic operation ˚ :“ ˚1 as a one-dimensional entropic operation, we construct
multidimensional entropic operations ˚ :“ ˚m, for m ě 2 and we show that newly constructed operations
do not have the properties of ˚ “ ˚1 that led to the recovery of the automorphism σ, the commutative
operation ¨ and the linear isomorphism ι and its inverse ι´1.

We give proof-of-concept implementations in SageMath 9.2 for the new multidimensional entropic op-
erations ˚ :“ ˚m defined over several basic operations ˚ :“ ˚1 and we show how the non-associative and
non-commutative exponentiation works for the key exchange and digital signature schemes originally pro-
posed in report 2021/469.

1 Introduction

We would like to start this rebuttal by giving credits to Lorenz Panny for his ePrint report [7], where he showed
how the instances proposed in our ePrint report [2] can be reduced to a polynomial number of discrete logarithm
problems in Abelian groups - thus solvable efficiently on quantum computers. We give credit to his openness
to discuss his findings and informing us before he published his result on ePrint. Actually, this rebuttal is the
second version (where the first version had to be updated thanks to Lorenz Panny given feedback).

We would also like to give credit to Daniel Nager [5] who first mentioned the possibility to work with
entropic groupoids (magmas) that are not quasigroups (only left quasigroups). In this rebuttal we propose
concrete construction of such groupoids.

The entropic quasigroups in [2] are defined over the set E :“ Fpp´1q2 with the operation ˚:

px1, x2q ˚ py1, y2q “

ˆ

a3pa8b2 ´ b7q

a8b7
` a3x2 `

a8b2y1
b7

` a8x2y1,

´
b2pa8 ´ a3b7q

a8b7
`
a3b7y2
a8

` b2x1 ` b7x1y2

˙

, (1)

where a3, a8, b2, b7 P Fp, a8 ‰ 0 and b7 ‰ 0, and the operations ´ and { are the operations of subtraction and
division in Fp.

The core success of the Lorenz’ attack described in the first part of Section 2 of [7] relies on the following
properties of the instances of the entropic quasigroups proposed in [2]:
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1. The algebraic degree of operation ˚ is 2;

2. The entropic operation ˚ is quasigroup;

3. There exists an element 1 “
´

1
b7
´ a3

a8
, 1
a8
´ b2

b7

¯

which is a multiplicative left unit for the groupoid pE, ˚q;

4. Due to Theorem 1 and Theorem 2 from [9], it is easy to find an automorpism σ : E Ñ E, σpxq “ x ˚ 1
such that x ˚ y “ σpxq ¨ y, where ¨ is a commutative operation

px1, x2q ¨ py1, y2q “

ˆ

b7x1y1 `
a3b7
a8

x1 `
a3b7
a8

y1 `
a23b7 ´ a3a8

a28
,

a8x2y2 `
a8b2
b7

x2 `
a8b2
b7

y2 `
a8b

2
2 ´ b2b7
b27

˙

, (2)

i.e. the algebraic structure pE, ¨q is an Abelian group;

5. Instead of being represented in the most general form by two commuting automorphisms σ, τ of pG, ¨q,
and an element c P G, such that x ˚ y “ σpxq ¨ τpyq ¨ c, the instances of the operation ˚ are represented in
a simpler way as x ˚ y “ σpxq ¨ y;

6. The group pE, ¨q can be seen as a direct product of two affine algebraic groups (there is no mix of compo-
nents x1 and y2 and of components x2 and y1);

7. It is easy to find a linear isomorphism between pE, ¨q and pFˆp q2, ι : EÑ pFˆp q2 (and its inverse ι´1) where

ιpx1, x2q “ pb7x1 `
a3b7
a8

, a8x2 `
a8b2
b7
q.

Then the attack on the instances proposed in [2] uses the isomorphism ι to map g, σpgq and gA into pFˆp q2,
solve 6 discrete logarithm problems in Fp and one 2ˆ 2 linear system in Z2, and use that solution to construct
an equivalent private key that computes xA for any x P E.

Thus, we praise the author for constructing very efficient attack on this specific instance of the Entropic
Based Cryptography.

What about the general case? Do all instances of the entropoid-based cryptography framework produce
algebraic structures that are quasigroups with the properties 1 - 7 discussed above?

2 Rebuttal to the claims in the General attack

In the subsection 2.1 of [7], there is a proposal for a generic attack on every instance of the entropoid framework.
The attack relies on a proposed theorem that the author composed from three related works by Murdoch [4],
Toyoda [9] and Bruck [1]. We give here the original theorem as it is given in [7] (with a slight notation change
- instead of notation xσ and yτ we use the notation σpxq and τpyq):

Theorem 1 (Theorem 1 in [7]) For every entropic quasigroup pG, ˚q, there exists an abelian group pG, ¨q,
commuting automorphisms σ, τ of pG, ¨q, and an element c P G, such that

x ˚ y “ σpxq ¨ τpyq ¨ c

Based on this theorem the author of [7] infers that ”all instantiations of the entropoid framework should be
breakable in polynomial time on a quantum computer.”

Rebuttal arguments

1. The author of [7] implicitly infers that all instantiations of the entropoid framework will operate with the
algebraic structures that are quasigroups, and thus are addressable by the works of Murdoch, Toyoda and
Bruck. That is not necessary true. In what follows we give a construction of multidimensional entropic
operations based on previously defined simpler entropic operations, that are not quasigroup operations.
They are groupoids (magmas) with only a left cancellation property (left quasigroups).

2. The author of [7] implicitly infers that finding the commuting automorphisms σ, τ of pG, ¨q as well as
the operation ¨ would be easy for every given entropic quasigroup pG, ˚q. Ignoring for a moment the fact
that we do not have a constructive proof of that theorem by which we can measure the complexity of the
proposed attack, we can only point to the fact that a provable existence of a mathematical object does
not guarantee an easy finding of that object. One simple example of this universal principle comes from
the design of cryptographic hash functions: it is easy to prove that there exist infinitely many colliding
pairs of inputs, but for a carefully designed cryptographic hash function, finding a single colliding pair is
hard.
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2.1 Construction of entropic operations that are not quasigroups

Let us first update the notation about the operation ˚ used in equation (1) and in [2]. Since it is designed for
a ”one-dimensional” E we will denote that operation as ˚1:

px1, x2q ˚1 py1, y2q “

ˆ

a3pa8b2 ´ b7q

a8b7
` a3x2 `

a8b2y1
b7

` a8x2y1,

´
b2pa8 ´ a3b7q

a8b7
`
a3b7y2
a8

` b2x1 ` b7x1y2

˙

, (3)

Next, to give a definition of an entropic operation ˚ :“ ˚m over Em “ ppFˆp q2qm we will adapt the ideas for
building multidimensional entropic operations from simpler entropic operations given in a recent ePrint report
2021/444 [6] by Nager and Jianfang, but with the style of D-transformations as defined in [3].

Definition 1 Let x, y P Em, i.e., x “ px0 . . . , xm´1q and y “ py0, . . . , ym´1q. A component-wise product Π of
x and y is defined as:

z “ Πpx, yq “ pz0, . . . , zm´1q, (4)

where zi “ xi ˚1 yi for i P Zm.

Definition 2 Let x P Em, i.e., x “ px0 . . . , xm´1q and let l P E˚ is a nonzero element of E. A D-transformation
D of x with the respect of the leader element l is defined as:

z “ Dlpxq “ pz0, . . . , zm´1q, (5)

where z0 “ l ˚ x0, and zi “ xi´1 ˚1 xi for i P t1, . . . ,m´ 1u.

Let we denote by ∆m a derangement permutation (a permutation without a fixed element) on indices
Zm “ t0, 1, . . . ,m´1u. In other words ∆mp0, 1, . . . ,m´1q “ pδp0q, . . . , δpm´1qq, where δpiq ‰ i for all i P Zm.

By overloading the notation, let us denote the permutation of elements of x “ px0 . . . , xm´1q with the
derangement ∆m as ∆mpxq “ ∆mpx0 . . . , xm´1q “ pxδp0q, . . . xδpm´1qq .

Definition 3 A one round generalized Feistel transformation Fm,l : Em Ñ Em of an element x P Em with the
respect of a leader l is defined as:

Fm,lpxq :“ ∆mpDlpxqq, (6)

and a Rounds generalized Feistel transformation F pRoundsqm : Em Ñ Em with the respect of a list of leaders
L “ tl1, l2, . . . , lRoundsu is defined as:

F pRoundsqm,L pxq :“ Fm,lRounds
pxq ˝ . . . ˝ Fm,l1pxq. (7)

Definition 4 Let m ě 2, Rounds ě 1, and let x, y P Em. The operation ˚ :“ ˚m,Rounds is defined as:

x ˚ y “ Π

ˆ

y,F pRoundsqm,L

`

Πpx, yq
˘

˙

. (8)

Proposition 1 Operation ˚ is entropic operation i.e. @x, y, z, w P Em,

px ˚ yq ˚ pz ˚ wq “ px ˚ zq ˚ py ˚ wq.

We can easily check that this multidimensional entropic operation ˚ does not have the properties that were
crucial for easily finding the automorphism σ, the abelian operation ¨, the linear isomorphism ι and its inverse
ι´1 in [7]. Even for the smallest dimension beyond 1, i.e. for the dimension m “ 2, the degree of the multivariate
polynomials grows with the pace of the Fibonacci sequence (thus exponentially with the number of Rounds).

Proposition 2 For m “ 2, the minimal degree of the multivariate polynomial describing the operation ˚,
internally having Rounds Feistel rounds, is apRounds` 3q; the maximal degree is apRounds` 4q, where

apnq “ 2 Fibonaccipnq ` 1, (9)

and where Fibonaccipnq is the n-th Fibonacci number.

With higher dimensions, the degree of the multivariate polynomials that describe the operation ˚ grows even
faster. So, having analytical expressions that could help finding the commuting automorphisms σ, τ of pG, ¨q
as well as the commutative group operation ¨ becomes infeasible even with m “ 2 and with number of rounds
Rounds ě 16.

Another observation is that for the dimension m “ 2 and even with the the smallest number of rounds
Rounds “ 1, it is easy to prove (it is just a simple polynomial algebra) that there are neither left nor right unit
elements in E2.
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Proposition 3 For m “ 2 and Rounds “ 1, there are leader values l, such that operation ˚ :“ ˚m,Rounds :“ ˚2,1
has neither left nor right unit elements, i.e., there is no element e P E2 such that @x P E2 it holds that e˚x “ x,
or it holds that x ˚ e “ x.

Once having the operation ˚ :“ ˚m, all the principles for raising to the non-associative and non-commutative
powers described in our original paper ”Entropoid Based Cryptography” still hold.

We want to emphasize here that Definition 4 and equation (8) can be used with any entropic operation ˚1,
not necessarily only the defined operation in equation (3). The following example illustrates that.

Example 1. Let us use one tiny entropic quasigroup operation ˚1 of size 4ˆ 4.

˚1 0 1 2 3
0 1 3 0 2
1 0 1 2 3
2 3 2 1 0
3 2 0 3 1

(10)

If we take m “ 2 and the list of leaders to be L “ t2, 3, 1, 1, 0, 1, 0, 0u, then the operation ˚ obtained by the
equation (8) is described by the following Cayley 16ˆ 16 table:

˚ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 9 13 1 5 0 8 4 12 15 7 11 3 6 2 14 10
1 0 8 4 12 6 2 14 10 9 13 1 5 15 7 11 3
2 15 7 11 3 9 13 1 5 6 2 14 10 0 8 4 12
3 6 2 14 10 15 7 11 3 0 8 4 12 9 13 1 5
4 7 3 15 11 13 5 9 1 2 10 6 14 8 12 0 4
5 13 5 9 1 8 12 0 4 7 3 15 11 2 10 6 14
6 2 10 6 14 7 3 15 11 8 12 0 4 13 5 9 1
7 8 12 0 4 2 10 6 14 13 5 9 1 7 3 15 11
8 4 0 12 8 14 6 10 2 1 9 5 13 11 15 3 7
9 14 6 10 2 11 15 3 7 4 0 12 8 1 9 5 13
10 1 9 5 13 4 0 12 8 11 15 3 7 14 6 10 2
11 11 15 3 7 1 9 5 13 14 6 10 2 4 0 12 8
12 10 14 2 6 3 11 7 15 12 4 8 0 5 1 13 9
13 3 11 7 15 5 1 13 9 10 14 2 6 12 4 8 0
14 12 4 8 0 10 14 2 6 5 1 13 9 3 11 7 15
15 5 1 13 9 12 4 8 0 3 11 7 15 10 14 2 6

(11)

Apparently, the operation ˚ in (11) is a quasigroup (the Cayley 16 ˆ 16 table is a Latin Square). It is also an
entropic quasigroup.

However, if we put one more leader element i.e. if we set the list of leaders to be L “ t2, 3, 1, 1, 0, 1, 0, 0, 1u,
then Cayley 16ˆ 16 table is the following:

˚ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 2 13 13 2 1 14 14 1 1 14 14 1 2 13 13 2
1 12 3 3 12 15 0 0 15 15 0 0 15 12 3 3 12
2 15 0 0 15 12 3 3 12 12 3 3 12 15 0 0 15
3 1 14 14 1 2 13 13 2 2 13 13 2 1 14 14 1
4 9 6 6 9 10 5 5 10 10 5 5 10 9 6 6 9
5 7 8 8 7 4 11 11 4 4 11 11 4 7 8 8 7
6 4 11 11 4 7 8 8 7 7 8 8 7 4 11 11 4
7 10 5 5 10 9 6 6 9 9 6 6 9 10 5 5 10
8 5 10 10 5 6 9 9 6 6 9 9 6 5 10 10 5
9 11 4 4 11 8 7 7 8 8 7 7 8 11 4 4 11
10 8 7 7 8 11 4 4 11 11 4 4 11 8 7 7 8
11 6 9 9 6 5 10 10 5 5 10 10 5 6 9 9 6
12 14 1 1 14 13 2 2 13 13 2 2 13 14 1 1 14
13 0 15 15 0 3 12 12 3 3 12 12 3 0 15 15 0
14 3 12 12 3 0 15 15 0 0 15 15 0 3 12 12 3
15 13 2 2 13 14 1 1 14 14 1 1 14 13 2 2 13

(12)

We see that now we do not have a 16ˆ 16 quasigroup, but a groupoid that is an entropic left quasigroup.

Let us now carefully analyze the existing techniques given in the works of Toyoda [9], Murdoch [4], and
Bruck [1] for constructing the Abelian group pG, ¨q with its commuting automorphisms σ, τ .
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A common assumption in the works of Toyoda, Bruck and Murdoch: A common assumption in the
works of Toyoda, Bruck and Murdoch is that the underlying entropic algebraic structure pG, ˚q is a quasigroup.
Then, with different techniques commutative groups are constructed, by finding certain automorphisms and
constants. As we showed so far, the constructed entropic operations ˚ “ ˚m are not necessarily quasigroup
operations.

Toyoda’s paper: In the paper of Toyoda, the entropic operation is given in the field of real numbers. More
concretely, for the conditions of Theorem 1 in Toyoda’s paper, the entropic operation ¨ is constructed as a linear
(affine) function of two variables x and y, i.e. x ¨ y “ λx ` µy ` ν. In our initial ePrint paper ”Entropoid
Based Cryptography” we constructed initially just a little bit more complex quadratic functions for the entropic
operation. Thus, it not hard to find the corresponding group operation following the steps described in Toyoda’s
paper. Namely, having a simple linear form, Toyoda constructs a new operation ` under which pG,`q is an
Abelian group. The operation ` is defined as a ¨ b “ a ¨ s ` r ¨ b. Furthermore, Theorem 1 obtains that the
operation ¨ in G can be expressed as x ¨ y “ Ax`By ` c for some automorphisms A and B on G and for some
fixed element c P G.

There is no direct algorithmic approach for finding explicitly the Abelian group (and the accompanied
automorphisms) for the newly constructed multidimensional entropic operation ˚ “ ˚m, that now has an
unknown analytic form of multivariate polynomials with degrees higher than few millions.

Toyoda’s approach to find the corresponding Abelian group, followed in Theorem 2, relies on the existence
of a unit element for the entropic operation, and the existence of such a unit element for the newly defined
multidimensional variant of the operation ˚ :“ ˚m is not guaranteed.

Bruck’s paper (viewed as extension of Murdoch’s work): In Section 10 of his work, Bruck shows with
Lemma 13 how to construct an entropic quasigroups (which he calls Abelian quasigroups) with a unique right
or left unit element which is isotopic to any given entropic quasigroup pQ, ¨q. For constructing the isotope with
the unique right unit element, first he fixes an element g P Q, then he uses the inverse map R´1

g of the right
mapping Rg where Rgpxq “ x ¨ g. Then an isotopic quasigroup pQ, ˝q is constructed as a ˝ b “ R´1

g paq ¨ b.
Now for the operation ˝ the element g is a unique right unit i.e. a ˝ g “ a. A similar technique is applied for
obtaining an isotopic operation with a unique left unit with the use of the inverse L´1

g of the left mapping where
Lgpxq “ g ¨ x.

Then, in Theorem 11 Bruck gives the construction of the Abelian group pG, ˝q isomorphic to the isotopes
of pQ, ¨q that poses unit elements. The group is G ” QpR´1

g , L´1
f q i.e. where a ˝ b “ R´1

g paq ¨ L
´1
f pbq for some

fixed elements f and g in G. Finally, in Theorem 12 Bruck shows that every entropic quasigroup pG, ¨q, that is
isotopic to an Abelian group, is isomorphic to some other quasigroup pG, ˝q, where a ˝ b “ f ¨ Spaq ¨ T pbq where
f P G is a fixed element, and where S and T are commutative automorphisms of G.

Note that the construction of pG, ˝q in Theorem 11 assumes the knowledge of two inverse mappings R´1
g and

L´1
f . Note also that the isomorphism in Theorem 12 is between two quasigroups, and the construction of the

automorphisms S and T of the group G assumes the knowledge of the inverse elements in G and the knowledge
of two isomorphisms U and V for the isotopes with unit elements.

3 Conclusions

Being entropic operation ˚ that is not a quasigroup, without having explicit analytical expressions for it, without
having a unit element for that operation, without the knowledge of the hidden corresponding Abelian group
pG, ¨q (if existing at all), without the knowledge of its commuting automorphisms σ and τ and without the
knowledge of the isomorphism ι and its inverse ι´1, we can say that

Entropid Based Cryptography is cryptography with hidden sub-quasigroup and hidden sub-group exponentiation

As with the initial publication of the paper ”Entropoid Based Cryptography”, we accompany this rebuttal
with proof-of-the-concept Jupyter notebook implementations in Sagemath 9.2 which can be taken from the
following link: http://people.item.ntnu.no/~danilog/EntropoidBasedCryptography/.

For the key exchange the implementation uses a small but convenient prime number: the fourth Fermat
prime number F4 “ p “ 22

4

`1 and defines an operation ˚1 defined over the entropoid Ep. To reach the magma
structures with 2256, 2384 and 2512 elements, the dmensions defined by m should be m “ 8, 12, 16. We use
Rounds “ 14 or Rounds “ 21.

The signatures implementation are still with the big prime numbers and the proof-of-concept implementa-
tion is just to show that signing and verification work well with the newly defined multi-dimensional entropic
operations.

Several open research questions are raising with this rebuttal:
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• What is the size of the underlying entropic sub-quasigroup?

• How the number of rounds and the used derangement permutation are related in respect to the newly
obtained groupoids? What are the guarantees that the structure is (is not) a quasigroup?

• What are the optimal practical parameters?

We hope that the implementation and this rebuttal will inspire further interest and further analysis of the
strengths and weaknesses of the Entropoid Based Cryptography. We also plan soon to update the initial paper
”Entropoid Based Cryptography” with the proposed multi-dimensional entropic operations.
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