
Cryptographic Hash Function

BLUE MIDNIGHT WISH

Norwegian University of Science and Technology

Trondheim, Norway

Danilo Gligoroski

Vlastimil Klima

Svein Johan Knapskog

Mohamed El-Hadedy

Jørn Amundsen

Stig Frode Mjølsnes

September 2009

ii

Abstract

This is the supporting documentation that describes in details the tweaked cryptographic hash

function BLUE MIDNIGHT WISH which is submitted as a candidate for the second round of the

SHA-3 hash competition organized by the National Institute of Standards and Technology (NIST),

according to the public call [1].

BLUE MIDNIGHT WISH is a cryptographic hash function with output size of n bits where n = 224,

256, 384 or 512. Its conjectured cryptographic security is: O(2
n
2) hash computations for finding

collisions, O(2n) hash computations for finding preimages, O(2n−k) hash computations for finding

second preimages for messages shorter than 2k bits. Additionally, it is resistant against length-

extension attacks, and it is resistant against multicollision attacks.

BLUE MIDNIGHT WISH has been designed to be much more efficient than SHA-2 cryptographic

hash functions, while in the same time offering same or better security. The speed of the optimized

32-bit version on the defined reference platform using Intel(R) C++ 11.0.072 is 7.76 cycles/byte for

n = 224, 256 and 13.20 cycles/byte for n = 384, 512. The speed of the optimized 64-bit version on

the defined reference platform using Intel(R) C++ 11.0.072 is 7.50 cycles/byte for n = 224, 256 and

3.90 cycles/byte for n = 384, 512.

i

Contents

Cover Page 1

1 Algorithm Specifics 3

1.1 Bit Strings and Integers . 3

1.2 Parameters, variables and constants . 4

1.3 General design properties of BLUE MIDNIGHT WISH 6

1.4 BLUE MIDNIGHT WISH logic functions . 8

1.5 Preprocessing . 8

1.5.1 Padding the message . 9

BWM224 and BMW256 . 9

BWM384 and BMW512 . 9

1.5.2 Parsing the message . 9

BWM224 and BMW256 . 9

BWM384 and BMW512 . 10

1.5.3 Setting the initial double pipe value H(0) . 10

BWM224 . 11

BWM256 . 12

BWM384 . 12

BWM512 . 13

2 Description of the Hash Algorithm Blue Midnight Wish 15

ii

CONTENTS

2.1 Generic description for all variants of the BLUE MIDNIGHT WISH 15

2.1.1 BMW224 and BMW256 . 16

2.1.2 BMW384 and BMW512 . 20

3 Design Rationale 23

3.1 Reasons for default little-endian design . 23

3.2 Reasons for using double pipe iterative structure . 23

3.3 Rationale for constants used in BLUE MIDNIGHT WISH 24

3.3.1 Constants in logical functions . 24

3.3.2 Constants in the expansion part . 24

3.3.3 Constants in the finalization part . 25

3.4 Rationale for the bijective “Step 1” in the function f0 25

3.5 Rationale for the bijective “Step 2” in the function f0 27

3.6 Tunable parameters ExpandRounds1 and ExpandRounds2 28

3.6.1 Statements, relating to the NIST requirements 2.B.1. 30

3.7 Cryptanalysis of BLUE MIDNIGHT WISH . 31

3.7.1 Bijective parts in the compression function of BLUE MIDNIGHT WISH 31

3.7.2 Representation as a generalized PGV1 scheme with a weak block cipher . . . 36

3.7.3 Monomial tests on the components used in BLUE MIDNIGHT WISH 37

3.7.4 Infeasibility of finding collisions, preimages and second preimages 42

3.7.5 Approximation of additions and subtractions with XORs 44

3.7.6 Cryptanalysis of a scaled down BLUE MIDNIGHT WISH 45

3.8 Statements about security, support for applications, HMACs and randomized hashing 50

3.8.1 Security statement relating to the NIST requirement 4.A. 50

3.8.2 Statements relating to the NIST requirement 4.A.iii. 50

3.8.3 Statement about the support of applications 51

3.8.4 Statement about the special requirements . 51

3.8.5 Support of HMAC . 52

iii

CONTENTS

3.8.6 BLUE MIDNIGHT WISH support of randomized hashing 56

3.8.7 Resistance to SHA-2 attacks . 56

4 Estimated Computational Efficiency and Memory Requirements 59

4.1 Speed of BLUE MIDNIGHT WISH on NIST SHA-3 Reference Platform 59

4.1.1 Speed of the Optimized 32–bit version of BLUE MIDNIGHT WISH 60

4.1.2 Speed of the Optimized 64–bit version of BLUE MIDNIGHT WISH 60

4.2 Memory requirements of BLUE MIDNIGHT WISH on NIST SHA-3 Reference Platform 60

4.3 Estimates for efficiency and memory requirements on 8-bit processors 61

4.4 Estimates for a Compact Hardware Implementation 62

4.5 Internal Parallelizability of BLUE MIDNIGHT WISH 63

5 Statements 65

5.1 Statement by the Submitter . 65

5.2 Statement by Patent (and Patent Application) Owner(s) 67

5.3 Statement by Reference/Optimized Implementations’ Owner(s) 68

References 69

iv

Cover page

• Name of the submitted algorithm: BLUE MIDNIGHT WISH

• Principal submitter’s name, e-mail address, telephone, fax, organization, and postal address:

– Name: Svein Johan Knapskog

– Email: knapskog@q2s.ntnu.no

– Tel: +47 735 94328

– Fax: +47 73 59 27 90

– Organization: "Centre for Quantifiable Quality of Service in Communication Systems.

Centre of Excellence"

– Address: O.S. Bragstads plass 2E, N-7491 Trondheim, Norway

• Name of the algorithm inventor(s)/developer(s):

Inventors:

– Danilo Gligoroski

– Vlastimil Klima

Developers and contributors:

– Danilo Gligoroski, Norwegian University of Science and Technology, Norway

– Vlastimil Klima, Independent cryptologist - consultant, Czech Republic

– Svein Johan Knapskog, Norwegian University of Science and Technology, Norway

– Mohamed El-Hadedy, Norwegian University of Science and Technology, Norway

– Jøren Amundsen, Norwegian University of Science and Technology, Norway

– Stig Frode Mjølsnes, Norwegian University of Science and Technology, Norway

1

CONTENTS

• Name of the owner, if any, of the algorithm:

– Danilo Gligoroski

– Vlastimil Klima

• Signature of the submitter

————————————————————

• (optional) Backup point of contact (with telephone, fax, postal address, e-mail address):

– Name: Danilo Gligoroski

– Email: gligoroski@yahoo.com

– Tel: +47 73 59 46 16

– Fax: +47 73 59 69 73

– Organization: Department of Telematics, Faculty of Information Technology, Mathe-

matics and Electrical Engineering, The Norwegian University of Science and Technol-

ogy (NTNU), O.S. Bragstads plass 2B, N-7491 Trondheim, Norway

2

CHAPTER 1

Algorithm Specifics

1.1 Bit Strings and Integers

The following terminology related to bit strings, byte strings and integers will be used:

1. A hex digit is an element of the set {0, 1,..., 9, A, ..., F}. A hex digit is the represen-

tation of a 4–bit string. For example, the hex digit "7" represents the 4–bit string "0111", and

the hex digit "A" represents the 4–bit string "1010".

2. The "little-endian" convention is used when expressing string of bytes stored in memory.

That means that beginning from some address "H" if the content of the memory is repre-

sented as a 1-byte address increment, then 32–bit and 64–bit integers are expressed as in the

example given in Table 1.1. The prefix "0x" is used to annotate that the integer is expressed

in hex digit notation.

3. The "big-endian" convention is used when expressing the "internal bit endianness" for both

32–bit and 64–bit words as integers. That means that within each word, the most signif-

icant bit is stored in the left-most bit position. More concretely, a word is a w–bit string

that may be represented as a sequence of hex digits. To convert a word to hex digits, each

4–bit string is converted to its hex digit equivalent. For example, the 32–bit string "1010

0001 0000 0011 1111 1110 0010 0011" has a hexadecimal representation "0xA103FE23" and its

value as unsigned long integer is 2701393443. The 64–bit string "1010 0001 0000 0011 1111

1110 0010 0011 0011 0010 1110 1111 0011 0000 0001 1010" has a hexadecimal representation

"0xA103FE2332EF301A" and its value as unsigned long long integer is 11602396492168376346.

4. For BLUE MIDNIGHT WISH hash algorithm, the size of m bits of the message block, depends

3

CHAPTER 1: ALGORITHM SPECIFICS

Address in memory Byte value

H 23

H+1 FE

H+2 03

H+3 A1

32–bit integer value: "0xA103FE23"

Address in memory Byte value

H 1A

H+1 30

H+2 EF

H+3 32

H+4 23

H+5 FE

H+6 03

H+7 A1

64–bit integer value: "0xA103FE2332EF301A"

Table 1.1: Default design of the BLUE MIDNIGHT WISH is "Little-endian"

on the variant of algorithm (BMW224, BMW256, BMW384 or BMW512).

(a) For BMW224 and BMW256, each message block has 512 bits, which are represented as

a sequence of sixteen 32–bit words.

(b) For BMW384 and BMW512, each message block has 1024 bits, which are represented as

a sequence of sixteen 64–bit words.

1.2 Parameters, variables and constants

The following parameters and variables are used in the specification of BLUE MIDNIGHT WISH:

H
Double pipe. It is a chaining value that is at minimum two times

wider than the final message digest of n bits.

Q Quadruple pipe.

H(i)

The i-th double pipe value. H(0) is the initial double pipe value.

H(N) is the final double pipe value and is used to determine the

message digest of n bits.

Q(i) The i-th quadruple pipe value.

H
(i)
j

The j-th word of the i-th double pipe value H(i), where H
(i)
0 is the

is the left-most word.

4

CHAPTER 1: ALGORITHM SPECIFICS

Q
(i)
j

The j-th word of the i-th quadruple pipe value Q(i) =

(Q
(i)
0 , . . . , Q

(i)
31), where Q

(i)
0 is the left-most word.

Q
(i)
a The first 16 words from Q(i), i.e. Q

(i)
a = (Q

(i)
0 , . . . , Q

(i)
15).

Q
(i)
b The last 16 words from Q(i), i.e. Q

(i)
b = (Q

(i)
16 , . . . , Q

(i)
31).

k
Number of zeroes appended to a message during the padding

step.

l Length of the message M, in bits.

m Number of bits in a message block, M(i).

M Message to be hashed.

M(i) Message block i, with a size of m bits.

M
(i)
j

The j-th word of the i-th message block M(i) = (M
(i)
0 , . . . , M

(i)
15),

where M
(i)
0 is the is the left-most word.

r
Number of bits to be rotated or shifted when a word is operated

upon.

N Number of blocks in the padded message.

XL, XH
Two temporary words (32–bit or 64–bit – depending on the vari-

ant of the algorithm) used in the computation of the double pipe.

0x05555555
A hex digit representation of a 32–bit constant (unsigned long

integer).

Kj = j × (0x05555555)

j = 16, 17, . . . , 31

A 32–bit constant (unsigned long) obtained by multiplying the

constant 0x05555555 by an integer j, where j is in the range from

16 to 31.

0x0555555555555555
A hex digit representation of a 64–bit constant (unsigned long

long integer).

5

CHAPTER 1: ALGORITHM SPECIFICS

Kj = j × (0x0555555555555555)

j = 16, 17, . . . , 31

A 64–bit constant (unsigned long long) obtained by multiplying

the constant 0x0555555555555555 by an integer j, where j is in

the range from 16 to 31.

ExpandRounds1 = 2,

ExpandRounds2 = 14

Two tunable parameters that determine how many times each of

the two expansion functions will be used in the part of a dou-

ble pipe expansion. These two parameters are connected by the

relation ExpandRounds1 + ExpandRounds2 = 16

CONST f inal for BMW224/256:

(0xaaaaaaa0, 0xaaaaaaa1, 0xaaaaaaa2, 0xaaaaaaa3,

0xaaaaaaa4, 0xaaaaaaa5, 0xaaaaaaa6, 0xaaaaaaa7,

0xaaaaaaa8, 0xaaaaaaa9, 0xaaaaaaaa, 0xaaaaaaab,

0xaaaaaaac, 0xaaaaaaad, 0xaaaaaaae, 0xaaaaaaaf)

CONST f inal for BMW384/512:

(0xaaaaaaaaaaaaaaa0, 0xaaaaaaaaaaaaaaa1, 0xaaaaaaaaaaaaaaa2,

0xaaaaaaaaaaaaaaa3, 0xaaaaaaaaaaaaaaa4, 0xaaaaaaaaaaaaaaa5,

0xaaaaaaaaaaaaaaa6, 0xaaaaaaaaaaaaaaa7, 0xaaaaaaaaaaaaaaa8,

0xaaaaaaaaaaaaaaa9, 0xaaaaaaaaaaaaaaaa, 0xaaaaaaaaaaaaaaab,

0xaaaaaaaaaaaaaaac, 0xaaaaaaaaaaaaaaad, 0xaaaaaaaaaaaaaaae,

0xaaaaaaaaaaaaaaaf)

1.3 General design properties of BLUE MIDNIGHT WISH

BLUE MIDNIGHT WISH follows the general design pattern that is common for most known hash

functions. It means that it has two stages (and several sub-stages within every stage):

1. Preprocessing

(a) padding a message,

(b) parsing the padded message into m–bit blocks, and

(c) setting initialization values to be used in the hash computation.

2. Hash computation

(a) generating a message schedule from the padded message,

6

CHAPTER 1: ALGORITHM SPECIFICS

Algorithm

abbreviation

Message size

l (in bits)

Block size

m (in bits)

Word size

w (in bits)
Endianess

Digest size

n (in bits)

Support of

"one-pass"

streaming

mode

BMW224 < 264 512 32 Little-endian 224 Yes

BMW256 < 264 512 32 Little-endian 256 Yes

BMW384 < 264 1024 64 Little-endian 384 Yes

BMW512 < 264 1024 64 Little-endian 512 Yes

Table 1.2: Basic properties of all four variants of the BLUE MIDNIGHT WISH

(b) using that schedule, along with functions, constants, and word operations to iteratively

generate a series of double pipe values,

(c) the final double pipe value generated by the iterative process in (b) is used as an input

value for a finalization function (which is essentially the same compression function

but with different inputs and constants),

(d) the n Least Significant Bits (LSB) of the finalization function are used to determine the

message digest.

Depending on the context we will sometimes refer to the hash function as BLUE MIDNIGHT WISH

and sometimes as BMW224, BMW256, BMW384 or BMW512.

In Table 1.2, we give the basic properties of all four variants of the BLUE MIDNIGHT WISH hash

algorithms.

The following operations are applied in BLUE MIDNIGHT WISH:

1. Bitwise logic word operations ⊕ – XOR.

2. Addition + and subtraction − modulo 232 or modulo 264.

3. Shift right operation, SHRr(x), where x is a 32–bit or 64–bit word and r is an integer with

0 < r < 32 (resp. 0 < r < 64).

4. Shift left operation, SHLr(x), where x is a 32–bit or 64–bit word and r is an integer with

0 < r < 32 (resp. 0 < r < 64).

5. Rotate left (circular left shift) operation, ROTLr(x), where x is a 32–bit or 64–bit word and r

is an integer with 0 < r < 32 (resp. 0 < r < 64).

7

CHAPTER 1: ALGORITHM SPECIFICS

1.4 BLUE MIDNIGHT WISH logic functions

BLUE MIDNIGHT WISH uses the logic functions, summarized in Table 1.3.

BMW224/BMW256 BMW384/BMW512

s0(x) = SHR1(x)⊕ SHL3(x)⊕ ROTL4(x) ⊕ ROTL19(x) s0(x) = SHR1(x)⊕ SHL3(x)⊕ ROTL4(x)⊕ ROTL37(x)

s1(x) = SHR1(x)⊕ SHL2(x)⊕ ROTL8(x)⊕ ROTL23(x) s1(x) = SHR1(x)⊕ SHL2(x)⊕ ROTL13(x)⊕ ROTL43(x)

s2(x) = SHR2(x)⊕ SHL1(x)⊕ ROTL12(x)⊕ ROTL25(x) s2(x) = SHR2(x)⊕ SHL1(x)⊕ ROTL19(x)⊕ ROTL53(x)

s3(x) = SHR2(x)⊕ SHL2(x)⊕ ROTL15(x)⊕ ROTL29(x) s3(x) = SHR2(x)⊕ SHL2(x)⊕ ROTL28(x)⊕ ROTL59(x)

s4(x) = SHR1(x)⊕ x s4(x) = SHR1(x)⊕ x

s5(x) = SHR2(x)⊕ x s5(x) = SHR2(x)⊕ x

r1(x) = ROTL3(x) r1(x) = ROTL5(x)

r2(x) = ROTL7(x) r2(x) = ROTL11(x)

r3(x) = ROTL13(x) r3(x) = ROTL27(x)

r4(x) = ROTL16(x) r4(x) = ROTL32(x)

r5(x) = ROTL19(x) r5(x) = ROTL37(x)

r6(x) = ROTL23(x) r6(x) = ROTL43(x)

r7(x) = ROTL27(x) r7(x) = ROTL53(x)

AddElement(j) =
(

ROTL(j+1)(M
(i)
j) + ROTL(j+4)(M

(i)
j+3)

− ROTL(j+11)(M
(i)
j+10) + Kj+16

)

⊕ H
(i)
j+7

AddElement(j) =
(

ROTL(j+1)(M
(i)
j) + ROTL(j+4)(M

(i)
j+3)

− ROTL(j+11)(M
(i)
j+10) + Kj+16

)

⊕ H
(i)
j+7

expand1(j) = s1(Q
(i)
j−16

) + s2(Q
(i)
j−15

) + s3(Q
(i)
j−14

) + s0(Q
(i)
j−13

)

+ s1(Q
(i)
j−12) + s2(Q

(i)
j−11) + s3(Q

(i)
j−10) + s0(Q

(i)
j−9)

+ s1(Q
(i)
j−8) + s2(Q

(i)
j−7) + s3(Q

(i)
j−6) + s0(Q

(i)
j−5)

+ s1(Q
(i)
j−4

) + s2(Q
(i)
j−3

) + s3(Q
(i)
j−2

) + s0(Q
(i)
j−1

)

+ AddElement(j− 16)

expand1(j) = s1(Q
(i)
j−16

) + s2(Q
(i)
j−15

) + s3(Q
(i)
j−14

) + s0(Q
(i)
j−13

)

+ s1(Q
(i)
j−12) + s2(Q

(i)
j−11) + s3(Q

(i)
j−10) + s0(Q

(i)
j−9)

+ s1(Q
(i)
j−8) + s2(Q

(i)
j−7) + s3(Q

(i)
j−6) + s0(Q

(i)
j−5)

+ s1(Q
(i)
j−4

) + s2(Q
(i)
j−3

) + s3(Q
(i)
j−2

) + s0(Q
(i)
j−1

)

+ AddElement(j− 16)

expand2(j) = Q
(i)
j−16

+ r1(Q
(i)
j−15

) + Q
(i)
j−14

+ r2(Q
(i)
j−13

)

+ Q
(i)
j−12 + r3(Q

(i)
j−11) + Q

(i)
j−10 + r4(Q

(i)
j−9)

+ Q
(i)
j−8 + r5(Q

(i)
j−7) + Q

(i)
j−6 + r6(Q

(i)
j−5)

+ Q
(i)
j−4

+ r7(Q
(i)
j−3

) + s4(Q
(i)
j−2

) + s5(Q
(i)
j−1

)

+ AddElement(j− 16)

expand2(j) = Q
(i)
j−16

+ r1(Q
(i)
j−15

) + Q
(i)
j−14

+ r2(Q
(i)
j−13

)

+ Q
(i)
j−12 + r3(Q

(i)
j−11) + Q

(i)
j−10 + r4(Q

(i)
j−9)

+ Q
(i)
j−8 + r5(Q

(i)
j−7) + Q

(i)
j−6 + r6(Q

(i)
j−5)

+ Q
(i)
j−4

+ r7(Q
(i)
j−3

) + s4(Q
(i)
j−2

) + s5(Q
(i)
j−1

)

+ AddElement(j− 16)

Table 1.3: Logic functions used in BLUE MIDNIGHT WISH. Note that for the function

AddElement(j) index expressions involving the variable j for left rotations, M and H

are computed modulo 16.

1.5 Preprocessing

Preprocessing consists of three steps:

1. padding the message M,

2. parsing the padded message into message blocks, and

8

CHAPTER 1: ALGORITHM SPECIFICS

3. setting the initial double pipe value, H(0).

1.5.1 Padding the message

The message M, shall be padded before hash computation begins. The purpose of this padding is

to ensure that the padded message is a multiple of 512 or 1024 bits, depending on the size of the

message digest n.

BWM224 and BMW256

Suppose that the length of the message M is l bits. Append the bit "1" to the end of the message,

followed by k zero bits, where k is the smallest, non-negative solution to the equation l + 1 + k ≡

448 mod 512. Then append the 64–bit block that is equal to the number l expressed using its little-

endian binary representation. For example, the message "abc" encoded in 8–bit ASCII has length

8 × 3 = 24, so the message is padded with the bit "1", then 448 − (24 + 1) = 423 zero bits, and

then the 64–bit binary representation of the number 24, to become the 512–bit padded message.

01100001
︸ ︷︷ ︸

”a”

01100010
︸ ︷︷ ︸

”b”

01100011
︸ ︷︷ ︸

”c”

1

423
︷ ︸︸ ︷

00 . . . 00

64
︷ ︸︸ ︷

00 . . . 011000
︸ ︷︷ ︸

l=24

BWM384 and BMW512

Suppose that the length of the message M is l bits. Append the bit "1" to the end of the message,

followed by k zero bits, where k is the smallest, non-negative solution to the equation l + 1 + k ≡

960 mod 1024. Then append the 64–bit block that is equal to the number l expressed using its little-

endian binary representation. For example, the (8–bit ASCII) message "abc" has length 8 × 3 = 24,

so the message is padded with the bit "1", then 960 − (24 + 1) = 935 zero bits, and then the 64–bit

binary representation of the number 24, to become the 1024–bit padded message.

01100001
︸ ︷︷ ︸

”a”

01100010
︸ ︷︷ ︸

”b”

01100011
︸ ︷︷ ︸

”c”

1

935
︷ ︸︸ ︷

00 . . . 00

64
︷ ︸︸ ︷

00 . . . 011000
︸ ︷︷ ︸

l=24

1.5.2 Parsing the message

After a message has been padded, it must be parsed into N m–bit blocks before the hash compu-

tation can begin.

9

CHAPTER 1: ALGORITHM SPECIFICS

BWM224 and BMW256

For BMW224 and BMW256, the padded message is parsed into N 512–bit blocks, M(1), M(2), . . .,

M(N). Since the 512 bits of the input block may be expressed as sixteen 32–bit words, the first 32

bits of message block i are denoted M
(i)
0 , the next 32 bits are M

(i)
1 , and so on up to M

(i)
15 .

Concretely, for the message M ="abc", the padded and parsed message is represented in Table

1.4. Due to the little-endian nature of BLUE MIDNIGHT WISH notice the little-endian order of the

bytes in Mi as well as the "swapped" order between M14 and M15.

M0 = 0x80636261 M1 = 0x00000000

M2 = 0x00000000 M3 = 0x00000000

M4 = 0x00000000 M5 = 0x00000000

M6 = 0x00000000 M7 = 0x00000000

M8 = 0x00000000 M9 = 0x00000000

M10 = 0x00000000 M11 = 0x00000000

M12 = 0x00000000 M13 = 0x00000000

M14 = 0x00000018 M15 = 0x00000000

Table 1.4: Values for M after the padding of the message "abc" for BMW224/256.

BWM384 and BMW512

For BMW384 and BMW512, the padded message is parsed into N 1024–bit blocks, M(1), M(2), . . .,

M(N). Since the 1024 bits of the input block may be expressed as sixteen 64–bit words, the first 64

bits of message block i are denoted M
(i)
0 , the next 64 bits are M

(i)
1 , and so on up to M

(i)
15 .

Concretely, for the message M ="abc", the padded and parsed message is represented in Table

1.5. Due to the little-endian nature of BLUE MIDNIGHT WISH notice the little-endian order of the

bytes in Mi.

1.5.3 Setting the initial double pipe value H(0)

Before hash computation begins for each of the hash algorithms, the initial double pipe value

H(0) must be set. The size and the value of words in H(0) depends on the message digest size n.

As it is shown in the following subsections, the constants consist of concatenation of consecutive

natural numbers. Since BMW224 is the same as BMW256 except for the final truncation, they

10

CHAPTER 1: ALGORITHM SPECIFICS

M0 = 0x0000000080636261 M1 = 0x0000000000000000

M2 = 0x0000000000000000 M3 = 0x0000000000000000

M4 = 0x0000000000000000 M5 = 0x0000000000000000

M6 = 0x0000000000000000 M7 = 0x0000000000000000

M8 = 0x0000000000000000 M9 = 0x0000000000000000

M10 = 0x0000000000000000 M11 = 0x0000000000000000

M12 = 0x0000000000000000 M13 = 0x0000000000000000

M14 = 0x0000000000000000 M15 = 0x0000000000000018

Table 1.5: Values for M after the padding of the message "abc" for BMW384/512

have to have different initial values. Thus, the initial double pipe of BMW224 starts from the byte

value 0x00 and takes all 64 successive byte values up to the value 0x3F. Then, the initial double

pipe of BMW256 starts from the byte value 0x40 and takes all 64 successive byte values up to the

value 0x7F. The situation is the same with BMW384 and BMW512, but since now the variables are

64-bit long, the initial double pipe of BMW384 starts from the byte value 0x00 and takes all 128

successive byte values up to the value 0x7F and the initial double pipe of BMW512 starts from

the byte value 0x80 and takes all 128 successive byte values up to the value 0xFF. These constants

enable efficient implementation.

BWM224

For BMW224, the initial double pipe value H(0) shall consist of the sixteen 32–bit words given in

Table 1.6.

H
(0)
0 = 0x00010203 H

(0)
1 = 0x04050607

H
(0)
2 = 0x08090A0B H

(0)
3 = 0x0C0D0E0F

H
(0)
4 = 0x10111213 H

(0)
5 = 0x14151617

H
(0)
6 = 0x18191A1B H

(0)
7 = 0x1C1D1E1F

H
(0)
8 = 0x20212223 H

(0)
9 = 0x24252627

H
(0)
10 = 0x28292A2B H

(0)
11 = 0x2C2D2E2F

H
(0)
12 = 0x30313233 H

(0)
13 = 0x34353637

H
(0)
14 = 0x38393A3B H

(0)
15 = 0x3C3D3E3F

Table 1.6: Initial double pipe H(0) for BMW224

11

CHAPTER 1: ALGORITHM SPECIFICS

BWM256

For BMW256, the initial double pipe value H(0) shall consist of the sixteen 32–bit words given in

Table 1.7.

H
(0)
0 = 0x40414243 H

(0)
1 = 0x44454647

H
(0)
2 = 0x48494A4B H

(0)
3 = 0x4C4D4E4F

H
(0)
4 = 0x50515253 H

(0)
5 = 0x54555657

H
(0)
6 = 0x58595A5B H

(0)
7 = 0x5C5D5E5F

H
(0)
8 = 0x60616263 H

(0)
9 = 0x64656667

H
(0)
10 = 0x68696A6B H

(0)
11 = 0x6C6D6E6F

H
(0)
12 = 0x70717273 H

(0)
13 = 0x74757677

H
(0)
14 = 0x78797A7B H

(0)
15 = 0x7C7D7E7F

Table 1.7: Initial double pipe H(0) for BMW256

BWM384

For BMW384, the initial double pipe value H(0) shall consist of the sixteen 64–bit words given in

Table 1.8.

H
(0)
0 = 0x0001020304050607 H

(0)
1 = 0x08090A0B0C0D0E0F

H
(0)
2 = 0x1011121314151617 H

(0)
3 = 0x18191A1B1C1D1E1F

H
(0)
4 = 0x2021222324252627 H

(0)
5 = 0x28292A2B2C2D2E2F

H
(0)
6 = 0x3031323334353637 H

(0)
7 = 0x38393A3B3C3D3E3F

H
(0)
8 = 0x4041424344454647 H

(0)
9 = 0x48494A4B4C4D4E4F

H
(0)
10 = 0x5051525354555657 H

(0)
11 = 0x58595A5B5C5D5E5F

H
(0)
12 = 0x6061626364656667 H

(0)
13 = 0x68696A6B6C6D6E6F

H
(0)
14 = 0x7071727374757677 H

(0)
15 = 0x78797A7B7C7D7E7F

Table 1.8: Initial double pipe H(0) for BMW384

12

CHAPTER 1: ALGORITHM SPECIFICS

BWM512

For BMW512, the initial double pipe value H(0) shall consist of the sixteen 64–bit words given in

Table 1.9.

H
(0)
0 = 0x8081828384858687 H

(0)
1 = 0x88898A8B8C8D8E8F

H
(0)
2 = 0x9091929394959697 H

(0)
3 = 0x98999A9B9C9D9E9F

H
(0)
4 = 0xA0A1A2A3A4A5A6A7 H

(0)
5 = 0xA8A9AAABACADAEAF

H
(0)
6 = 0xB0B1B2B3B4B5B6B7 H

(0)
7 = 0xB8B9BABBBCBDBEBF

H
(0)
8 = 0xC0C1C2C3C4C5C6C7 H

(0)
9 = 0xC8C9CACBCCCDCECF

H
(0)
10 = 0xD0D1D2D3D4D5D6D7 H

(0)
11 = 0xD8D9DADBDCDDDEDF

H
(0)
12 = 0xE0E1E2E3E4E5E6E7 H

(0)
13 = 0xE8E9EAEBECEDEEEF

H
(0)
14 = 0xF0F1F2F3F4F5F6F7 H

(0)
15 = 0xF8F9FAFBFCFDFEFF

Table 1.9: Initial double pipe H(0) for BMW512

13

CHAPTER 1: ALGORITHM SPECIFICS

14

CHAPTER 2

Description of the Hash Algorithm Blue

Midnight Wish

2.1 Generic description for all variants of the BLUE MIDNIGHT WISH

First we are giving a generic description for all variants of the BLUE MIDNIGHT WISH hash al-

gorithm. Then, in the following subsections we will give a detailed functional description for

the specific variants of the BLUE MIDNIGHT WISH hash algorithm for the four different message

digest sizes: n = 224, n = 256, n = 384 and n = 512 bits.

In the generic description we are using three functions:

1. The first function is f0 : {0, 1}2m → {0, 1}m . It takes two arguments M(i) and H(i−1) each of

m bits and for any value H(i−1) it bijectively transforms M(i). Here, M(i) is the i-th message

block and H(i−1) is the current value of the double pipe. The result Q
(i)
a = f0(M(i), H(i−1)) =

A2(A1(M(i) ⊕ H(i−1)) + ROTL1(H(i−1)), is the first part of the extended (quadrupled) pipe.

The concrete definition of the bijections A1, A2 : {0, 1}m → {0, 1}m will be given later. We

denote by ROTL1(H(i−1)) = (H
(i−1)
1 , H

(i−1)
2 , . . . , H

(i−1)
15 , H

(i−1)
0) the rotation by one position

to the left of the vector (H
(i−1)
0 , H

(i−1)
1 , . . . , H

(i−1)
15) and by Q

(i)
a = (Q

(i)
0 , . . . , Q

(i)
15).

2. The second function f1 takes three arguments: a message block M(i) of m bits, the current

value of the double pipe H(i−1) and the value of Q
(i)
a of m bits, to produce the second part

Q
(i)
b = (Q

(i)
16 , . . . , Q

(i)
31) of the extended (quadrupled) pipe Q(i). The function can be briefly

described as f1 : {0, 1}3m → {0, 1}m , and Q
(i)
b = f1(M(i), H(i−1), Q

(i)
a). For any given value

H(i−1) it is a multipermutation between M(i), Q
(i)
a and Q

(i)
b , i.e. for a given pair (M(i), Q

(i)
a)

it uniquely computes Q
(i)
b , for a given pair (M(i), Q

(i)
b) it uniquely computes Q

(i)
a and for a

15

CHAPTER 2: DESCRIPTION OF THE HASH ALGORITHM BLUE MIDNIGHT WISH

Figure 2.1: A graphic representation of the BLUE MIDNIGHT WISH hash algorithm.

given pair (Q
(i)
a , Q

(i)
b) it uniquely computes M(i).

3. For the third function f2 we are using the term folding to describe its mapping property to

map 3m bits to m bits. It takes two arguments: a message block M(i) of m bits and the current

value of the extended pipe Q(i) = (Q
(i)
a , Q

(i)
b) which has 2m bits, to produce a new double

pipe H(i) of m bits. So, f2 : {0, 1}3m → {0, 1}m and H(i) = f2(M(i), Q(i)) ≡ f2(M(i), Q
(i)
a , Q

(i)
b).

The generic description of the BLUE MIDNIGHT WISH hash algorithm is given in Table 2.1. A

graphic representation of the Blue Midnight Wish hash algorithm is given in the Figure 2.1 and its

compression function is given in the Figure 2.2.

The function f0 : {0, 1}2m → {0, 1}m is defined in the Table 2.2.

The function f1 : {0, 1}3m → {0, 1}m is defined in the Table 2.3.

The function f2 : {0, 1}3m → {0, 1}m is defined in the Table 2.4.

2.1.1 BMW224 and BMW256

BMW224 and BMW256 may be used to hash a message M, having a length of l bits, where 0 ≤

l < 264. The algorithms use

1. sixteen 32–bit working variables that are part of the double pipe, and

2. additional sixteen 32–bit working variables that together with the variables of the double

pipe, make the extended (quadruple) pipe.

16

CHAPTER 2: DESCRIPTION OF THE HASH ALGORITHM BLUE MIDNIGHT WISH

Algorithm: BLUE MIDNIGHT WISH

Input: Message M of length l bits, and the message digest size n.

Output: A message digest Hash, that is n bits long.

1. Preprocessing

(a) Pad the message M.

(b) Parse the padded message into N, m-bit message

blocks, M(1), M(2), . . . , M(N).

(c) Set the initial value of the double pipe H(0).

2. Hash computation

For i = 1 to N

{

Q
(i)
a = f0(M(i), H(i−1));

Q
(i)
b = f1(M(i), H(i−1), Q

(i)
a);

H(i) = f2(M(i), Q
(i)
a , Q

(i)
b);

}

3. Finalization

Q
f inal
a = f0(H(N), CONST f inal);

Q
f inal
b = f1(H(N), CONST f inal, Q

f inal
a);

H f inal = f2(H(N), Q
f inal
a , Q

f inal
b);

4. Hash =Take_n_Least_Significant_Bits(H f inal).

Table 2.1: A generic description of the BLUE MIDNIGHT WISH hash algorithm

17

CHAPTER 2: DESCRIPTION OF THE HASH ALGORITHM BLUE MIDNIGHT WISH

Figure 2.2: Graphical representation of the compression function in BLUE MIDNIGHT WISH

The words of the quadruple pipe are labeled Q
(i)
0 , Q

(i)
1 , . . . , Q

(i)
31 . The words of the initial double

pipe are labeled H
(i−1)
0 , H

(i−1)
1 , . . . , H

(i−1)
15 , which will hold the initial double pipe value H(0), re-

placed by each successive intermediate double pipe value (after each message block is processed),

H(i), and ending with the final double pipe value H(N). BMW224 and BMW256 also use two tem-

porary 32–bit words XL and XH. The final result of BMW224 is a 224–bit message digest that are

the least significant 224 bits from the final hash value H f inal i.e. the values (H
(f inal)
9 , . . . , H

(f inal)
15),

and the final result of BMW256 is a 256–bit message digest that are the least significant 256 bits

from the final hash value H f inal i.e. the values (H
(f inal)
8 , . . . , H

(f inal)
15).

18

CHAPTER 2: DESCRIPTION OF THE HASH ALGORITHM BLUE MIDNIGHT WISH

f0 : {0, 1}2m → {0, 1}m

Input: Message block M(i) = (M
(i)
0 , M

(i)
1 , . . . , M

(i)
15), and the previous double pipe H(i−1) = (H

(i−1)
0 , H

(i−1)
1 , . . . , H

(i−1)
15).

Output: First part of the quadruple pipe Q
(i)
a = (Q

(i)
0 , Q

(i)
1 , . . . , Q

(i)
15).

1. Bijective transform of M(i) ⊕ H(i−1):

W
(i)
0 = (M

(i)
5 ⊕ H

(i−1)
5) − (M

(i)
7 ⊕ H

(i−1)
7) + (M

(i)
10 ⊕ H

(i−1)
10) + (M

(i)
13 ⊕ H

(i−1)
13) + (M

(i)
14 ⊕ H

(i−1)
14)

W
(i)
1 = (M

(i)
6 ⊕ H

(i−1)
6) − (M

(i)
8 ⊕ H

(i−1)
8) + (M

(i)
11 ⊕ H

(i−1)
11) + (M

(i)
14 ⊕ H

(i−1)
14) − (M

(i)
15 ⊕ H

(i−1)
15)

W
(i)
2 = (M

(i)
0 ⊕ H

(i−1)
0) + (M

(i)
7 ⊕ H

(i−1)
7) + (M

(i)
9 ⊕ H

(i−1)
9) − (M

(i)
12 ⊕ H

(i−1)
12) + (M

(i)
15 ⊕ H

(i−1)
15)

W
(i)
3 = (M

(i)
0 ⊕ H

(i−1)
0) − (M

(i)
1 ⊕ H

(i−1)
1) + (M

(i)
8 ⊕ H

(i−1)
8) − (M

(i)
10 ⊕ H

(i−1)
10) + (M

(i)
13 ⊕ H

(i−1)
13)

W
(i)
4 = (M

(i)
1 ⊕ H

(i−1)
1) + (M

(i)
2 ⊕ H

(i−1)
2) + (M

(i)
9 ⊕ H

(i−1)
9) − (M

(i)
11 ⊕ H

(i−1)
11) − (M

(i)
14 ⊕ H

(i−1)
14)

W
(i)
5 = (M

(i)
3 ⊕ H

(i−1)
3) − (M

(i)
2 ⊕ H

(i−1)
2) + (M

(i)
10 ⊕ H

(i−1)
10) − (M

(i)
12 ⊕ H

(i−1)
12) + (M

(i)
15 ⊕ H

(i−1)
15)

W
(i)
6 = (M

(i)
4 ⊕ H

(i−1)
4) − (M

(i)
0 ⊕ H

(i−1)
0) − (M

(i)
3 ⊕ H

(i−1)
3) − (M

(i)
11 ⊕ H

(i−1)
11) + (M

(i)
13 ⊕ H

(i−1)
13)

W
(i)
7 = (M

(i)
1 ⊕ H

(i−1)
1) − (M

(i)
4 ⊕ H

(i−1)
4) − (M

(i)
5 ⊕ H

(i−1)
5) − (M

(i)
12 ⊕ H

(i−1)
12) − (M

(i)
14 ⊕ H

(i−1)
14)

W
(i)
8 = (M

(i)
2 ⊕ H

(i−1)
2) − (M

(i)
5 ⊕ H

(i−1)
5) − (M

(i)
6 ⊕ H

(i−1)
6) + (M

(i)
13 ⊕ H

(i−1)
13) − (M

(i)
15 ⊕ H

(i−1)
15)

W
(i)
9 = (M

(i)
0 ⊕ H

(i−1)
0) − (M

(i)
3 ⊕ H

(i−1)
3) + (M

(i)
6 ⊕ H

(i−1)
6) − (M

(i)
7 ⊕ H

(i−1)
7) + (M

(i)
14 ⊕ H

(i−1)
14)

W
(i)
10 = (M

(i)
8 ⊕ H

(i−1)
8) − (M

(i)
1 ⊕ H

(i−1)
1) − (M

(i)
4 ⊕ H

(i−1)
4) − (M

(i)
7 ⊕ H

(i−1)
7) + (M

(i)
15 ⊕ H

(i−1)
15)

W
(i)
11 = (M

(i)
8 ⊕ H

(i−1)
8) − (M

(i)
0 ⊕ H

(i−1)
0) − (M

(i)
2 ⊕ H

(i−1)
2) − (M

(i)
5 ⊕ H

(i−1)
5) + (M

(i)
9 ⊕ H

(i−1)
9)

W
(i)
12 = (M

(i)
1 ⊕ H

(i−1)
1) + (M

(i)
3 ⊕ H

(i−1)
3) − (M

(i)
6 ⊕ H

(i−1)
6) − (M

(i)
9 ⊕ H

(i−1)
9) + (M

(i)
10 ⊕ H

(i−1)
10)

W
(i)
13 = (M

(i)
2 ⊕ H

(i−1)
2) + (M

(i)
4 ⊕ H

(i−1)
4) + (M

(i)
7 ⊕ H

(i−1)
7) + (M

(i)
10 ⊕ H

(i−1)
10) + (M

(i)
11 ⊕ H

(i−1)
11)

W
(i)
14 = (M

(i)
3 ⊕ H

(i−1)
3) − (M

(i)
5 ⊕ H

(i−1)
5) + (M

(i)
8 ⊕ H

(i−1)
8) − (M

(i)
11 ⊕ H

(i−1)
11) − (M

(i)
12 ⊕ H

(i−1)
12)

W
(i)
15 = (M

(i)
12 ⊕ H

(i−1)
12) − (M

(i)
4 ⊕ H

(i−1)
4) − (M

(i)
6 ⊕ H

(i−1)
6) − (M

(i)
9 ⊕ H

(i−1)
9) + (M

(i)
13 ⊕ H

(i−1)
13)

2. Further bijective transform of W
(i)
j , j = 0, . . . , 15:

Q
(i)
0 = s0(W

(i)
0) + H

(i−1)
1 ; Q

(i)
1 = s1(W

(i)
1) + H

(i−1)
2 ; Q

(i)
2 = s2(W

(i)
2) + H

(i−1)
3 ; Q

(i)
3 = s3(W

(i)
3) + H

(i−1)
4 ;

Q
(i)
4 = s4(W

(i)
4) + H

(i−1)
5 ; Q

(i)
5 = s0(W

(i)
5) + H

(i−1)
6 ; Q

(i)
6 = s1(W

(i)
6) + H

(i−1)
7 ; Q

(i)
7 = s2(W

(i)
7) + H

(i−1)
8 ;

Q
(i)
8 = s3(W

(i)
8) + H

(i−1)
9 ; Q

(i)
9 = s4(W

(i)
9) + H

(i−1)
10 ; Q

(i)
10 = s0(W

(i)
10) + H

(i−1)
11 ; Q

(i)
11 = s1(W

(i)
11) + H

(i−1)
12 ;

Q
(i)
12 = s2(W

(i)
12) + H

(i−1)
13 ; Q

(i)
13 = s3(W

(i)
13) + H

(i−1)
14 ; Q

(i)
14 = s4(W

(i)
14) + H

(i−1)
15 ; Q

(i)
15 = s0(W

(i)
15) + H

(i−1)
0 ;

Table 2.2: Definition of the function f0 of BLUE MIDNIGHT WISH

f1 : {0, 1}3m → {0, 1}m

Input: Message block M(i) = (M
(i)
0 , M

(i)
1 , . . . , M

(i)
15), the previous double pipe H(i−1) = (H

(i−1)
0 , H

(i−1)
1 , . . . , H

(i−1)
15) and

the first part of the quadruple pipe Q
(i)
a = (Q

(i)
0 , Q

(i)
1 , . . . , Q

(i)
15).

Output: Second part of the quadruple pipe Q
(i)
b = (Q

(i)
16 , Q

(i)
17 , . . . , Q

(i)
31).

1. Double pipe expansion according to the tunable parameters ExpandRounds1 and ExpandRounds2.

1.1 For ii = 0 to ExpandRounds1 − 1

Q
(i)
ii+16 = expand1(ii + 16)

1.2 For ii = ExpandRounds1 to ExpandRounds1 + ExpandRounds2 − 1

Q
(i)
ii+16 = expand2(ii + 16)

Table 2.3: Definition of the function f1 of BLUE MIDNIGHT WISH

19

CHAPTER 2: DESCRIPTION OF THE HASH ALGORITHM BLUE MIDNIGHT WISH

Folding f2 : {0, 1}3m → {0, 1}m

Input: Message block M(i) = (M
(i)
0 , M

(i)
1 , . . . , M

(i)
15),

quadruple pipe Q(i) = (Q
(i)
0 , Q

(i)
1 , . . . , Q

(i)
15 , Q

(i)
16 , . . . , Q

(i)
31).

Output: New double pipe H(i) = (H
(i)
0 , H

(i)
1 , . . . , H

(i)
15).

1. Compute the cumulative temporary variables XL and XH.

XL = Q
(i)
16 ⊕ Q

(i)
17 ⊕ . . . ⊕ Q

(i)
23

XH = XL ⊕ Q
(i)
24 ⊕ Q

(i)
25 ⊕ . . . ⊕ Q

(i)
31

2. Compute the new double pipe H(i):

H
(i)
0 =

(

SHL5(XH) ⊕ SHR5(Q
(i)
16) ⊕ M

(i)
0

)

+
(

XL ⊕ Q
(i)
24 ⊕ Q

(i)
0

)

H
(i)
1 =

(

SHR7(XH) ⊕ SHL8(Q
(i)
17) ⊕ M

(i)
1

)

+
(

XL ⊕ Q
(i)
25 ⊕ Q

(i)
1

)

H
(i)
2 =

(

SHR5(XH) ⊕ SHL5(Q
(i)
18) ⊕ M

(i)
2

)

+
(

XL ⊕ Q
(i)
26 ⊕ Q

(i)
2

)

H
(i)
3 =

(

SHR1(XH) ⊕ SHL5(Q
(i)
19) ⊕ M

(i)
3

)

+
(

XL ⊕ Q
(i)
27 ⊕ Q

(i)
3

)

H
(i)
4 =

(

SHR3(XH) ⊕ Q
(i)
20 ⊕ M

(i)
4

)

+
(

XL ⊕ Q
(i)
28 ⊕ Q

(i)
4

)

H
(i)
5 =

(

SHL6(XH) ⊕ SHR6(Q
(i)
21) ⊕ M

(i)
5

)

+
(

XL ⊕ Q
(i)
29 ⊕ Q

(i)
5

)

H
(i)
6 =

(

SHR4(XH) ⊕ SHL6(Q
(i)
22) ⊕ M

(i)
6

)

+
(

XL ⊕ Q
(i)
30 ⊕ Q

(i)
6

)

H
(i)
7 =

(

SHR11(XH) ⊕ SHL2(Q
(i)
23) ⊕ M

(i)
7

)

+
(

XL ⊕ Q
(i)
31 ⊕ Q

(i)
7

)

H
(i)
8 = ROTL9(H

(i)
4) +

(

XH ⊕ Q
(i)
24 ⊕ M

(i)
8

)

+
(

SHL8(XL) ⊕ Q
(i)
23 ⊕ Q

(i)
8

)

H
(i)
9 =ROTL10(H

(i)
5) +

(

XH ⊕ Q
(i)
25 ⊕ M

(i)
9

)

+
(

SHR6(XL) ⊕ Q
(i)
16 ⊕ Q

(i)
9

)

H
(i)
10 =ROTL11(H

(i)
6) +

(

XH ⊕ Q
(i)
26 ⊕ M

(i)
10

)

+
(

SHL6(XL) ⊕ Q
(i)
17 ⊕ Q

(i)
10

)

H
(i)
11 =ROTL12(H

(i)
7) +

(

XH ⊕ Q
(i)
27 ⊕ M

(i)
11

)

+
(

SHL4(XL) ⊕ Q
(i)
18 ⊕ Q

(i)
11

)

H
(i)
12 =ROTL13(H

(i)
0) +

(

XH ⊕ Q
(i)
28 ⊕ M

(i)
12

)

+
(

SHR3(XL) ⊕ Q
(i)
19 ⊕ Q

(i)
12

)

H
(i)
13 =ROTL14(H

(i)
1) +

(

XH ⊕ Q
(i)
29 ⊕ M

(i)
13

)

+
(

SHR4(XL) ⊕ Q
(i)
20 ⊕ Q

(i)
13

)

H
(i)
14 =ROTL15(H

(i)
2) +

(

XH ⊕ Q
(i)
30 ⊕ M

(i)
14

)

+
(

SHR7(XL) ⊕ Q
(i)
21 ⊕ Q

(i)
14

)

H
(i)
15 =ROTL16(H

(i)
3) +

(

XH ⊕ Q
(i)
31 ⊕ M

(i)
15

)

+
(

SHR2(XL) ⊕ Q
(i)
22 ⊕ Q

(i)
15

)

Table 2.4: Definition of the folding function f2 of BLUE MIDNIGHT WISH

2.1.2 BMW384 and BMW512

BMW384 and BMW512 may be used to hash a message M, having a length of l bits, where 0 ≤

l < 264. The algorithms use

1. sixteen 64–bit working variables that are part of the double pipe, and

2. additional sixteen 64–bit working variables that together with the variables of the double

pipe, make the extended (quadrupled) pipe.

20

CHAPTER 2: DESCRIPTION OF THE HASH ALGORITHM BLUE MIDNIGHT WISH

The words of the quadruple pipe are labeled Q
(i)
0 , Q

(i)
1 , . . . , Q

(i)
31 . The words of the initial double

pipe are labeled H
(i)
0 , H

(i)
1 , . . . , H

(i)
15 , which will hold the initial double pipe value H(0), replaced

by each successive intermediate double pipe value (after each message block is processed), H(i),

and ending with the final double pipe value H(N). BMW384 and BMW512 also use two temporary

64–bit words XL and XH. The final result of BMW384 is a 384–bit message digest that are the least

significant 384 bits from the final hash value H f inal i.e. the values (H
(f inal)
10 , . . . , H

(f inal)
15), and the

final result of BMW512 is a 512–bit message digest that are the least significant 512 bits from the

final hash value H f inal i.e. the values (H
(f inal)
8 , . . . , H

(f inal)
15).

21

CHAPTER 2: DESCRIPTION OF THE HASH ALGORITHM BLUE MIDNIGHT WISH

22

CHAPTER 3

Design Rationale

3.1 Reasons for default little-endian design

Some of the earlier versions of BLUE MIDNIGHT WISH were designed to be big-endian by default.

However, as the designing phase was coming to its end, and we started the optimization phase, we

changed the default design to be little-endian since an overwhelming majority of CPU platforms

in the world are little-endian.

3.2 Reasons for using double pipe iterative structure

In the design of BLUE MIDNIGHT WISH we have decided to incorporate the suggestions of Lucks

[2, 3] and Coron et al. [4] by setting the size of the chaining pipe to be twice the hash digest size.

This design avoids the weaknesses against the generic attacks of Joux [5] and Kelsy and Schneier

[6], thereby guaranteeing resistance against a generic multicollision attack and length extension

attacks.

Additionally, as we will see later, using the double pipe concept in combination with the used

nonlinear bijections is an effective precaution against differential attacks, because the attacker will

have to use twice the number of variables in the differential paths than in a single pipe.

23

CHAPTER 3: DESIGN RATIONALE

3.3 Rationale for constants used in BLUE MIDNIGHT WISH

3.3.1 Constants in logical functions

The logical functions s0, s1, s2 and s3 are chosen in such a way that they satisfy the following

criteria:

• They are bijections in {0, 1}32 → {0, 1}32 (resp. in {0, 1}64 → {0, 1}64).

• They have different pairs of 1-bit, 2-bits or 3-bits shifts to the left and to the right.

• They have different pairs of rotations to the left, in such a way that one rotation is less than

w/2, w = 32, 64, and the other rotation is bigger than w/2.

• The values of the rotations that are less than w/2 are in the interval of ±2 (resp. ±4) around

numbers {2, 6, 10, 14} (resp. {4, 12, 20, 28}).

• The values of the rotations that are bigger than w/2 are in the interval of ±2 (resp. ±4)

around numbers {18, 22, 26, 30} (resp. {36, 42, 50, 58}).

By computer search we have found hundreds of such bijections and from them we have chosen

the four particular functions s0, s1, s2 and s3. The role of these logical functions is to diffuse a

one-bit difference into 3 or 4 bits differences.

The logical functions s4 and s5 are bijections in {0, 1}32 → {0, 1}32 (resp. in {0, 1}64 → {0, 1}64).

They have only one shift to the right for just one or two bits. Their role is to spread a one-bit

differences mostly into two bits (if the difference bit is the right-most or the bit next to the right-

most bit, then these functions keep a one-bit difference as a one-bit difference).

Logical functions r1, . . . , r7 are rotations with the values that were chosen uniformly at random in

the interval [1, w − 1].

3.3.2 Constants in the expansion part

In the expansion function f1 we use the constants Kj = j × (0x05555555), j = 16, 17, . . . , 31 for

BMW224 and BMW256, or the constants Kj = j × (0x0555555555555555), j = 16, 17, . . . , 31 for

BMW384 and BMW512.

The primary reason why we use constants is that we want to avoid the situation that the message

M = (0, 0, . . . , 0) ≡ 0 and the double pipe value H = (0, 0, . . . , 0) ≡ 0 are a fixed point. Let

24

CHAPTER 3: DESIGN RATIONALE

us for a moment omit the upper index (i) in our notations. If we have in mind that (Qa, Qb) =

(f0(M, H), f1(M, H, f0(M, H))), then if f1 does not have constants we will have the situation that

(0, 0) = (f0(0, 0), f1(0, 0, f0(0, 0))).

We have chosen 0x05555555 and 0x0555555555555555 as a basis for obtaining 16 constants in the

expansion function because we find that their binary representation as a sequence of alternating

0s and 1s is good source of variety.

The reason why we choose 0x05555555 instead of 0x55555555 is simply to avoid complaints

(warnings) of some C compilers that are finding that 16 × (0x55555555) is a constant that goes

out of the range of a 32–bit word (the reason is similar for 0x0555555555555555).

3.3.3 Constants in the finalization part

In the final invocation of the compression function we have changed the role of the chaining

double pipe and the message. Since there is no more message to be digested, the role that the

message data was performing in the previous invocations of the compression function is now

given to the last obtained double pipe H(N). In such a case the role of the chaining double pipe is

fixed to a constant that we denote as: CONST f inal.

We have chosen 16 components of the vector CONST f inal = (CONST
f inal

0 , . . . , CONST
f inal

15) to be

• CONST
f inal
j = 0xaaaaaaa0+ j, j = 0, 1, . . . , 15 for BMW224 and BMW256.

• CONST
f inal
j = 0xaaaaaaaaaaaaaaa0+ j, j = 0, 1, . . . , 15 for BMW384 and BMW512.

By fixing the CONST f inal we are removing one degree of freedom to the attackers who try to find

pseudo collisions and pseudo-preimages. Additionally, the final invocation of the compression

function is a measure for any attack whereby an attacker can find near collisions or near-pseudo-

collisions of the compression function of BLUE MIDNIGHT WISH.

3.4 Rationale for the bijective “Step 1” in the function f0

Step 1 in the definition of the function f0 is a bijective one when either H(i−1) or M(i) are kept

constant (or can be seen as a bijective transformation of M(i) ⊕ H(i−1)). For this description we can

denote the result of that transformation with an intermediate working variable W:

W = A1 ·
(

M(i) ⊕ H(i−1)
)
,

25

CHAPTER 3: DESIGN RATIONALE

where we denote W(i) = (W
(i)
0 , W

(i)
1 , . . . , W

(i)
15) and the matrix A1 is a 16 × 16 nonsingular matrix

in Z232 and in Z264 . The value of A1 is

A1 =

0 0 0 0 0 1 0 −1 0 0 1 0 0 1 1 0
0 0 0 0 0 0 1 0 −1 0 0 1 0 0 1 −1
1 0 0 0 0 0 0 1 0 1 0 0 −1 0 0 1
1 −1 0 0 0 0 0 0 1 0 −1 0 0 1 0 0
0 1 1 0 0 0 0 0 0 1 0 −1 0 0 −1 0
0 0 −1 1 0 0 0 0 0 0 1 0 −1 0 0 1

−1 0 0 −1 1 0 0 0 0 0 0 −1 0 1 0 0
0 1 0 0 −1 −1 0 0 0 0 0 0 −1 0 −1 0
0 0 1 0 0 −1 −1 0 0 0 0 0 0 1 0 −1
1 0 0 −1 0 0 1 −1 0 0 0 0 0 0 1 0
0 −1 0 0 −1 0 0 −1 1 0 0 0 0 0 0 1

−1 0 −1 0 0 −1 0 0 1 1 0 0 0 0 0 0
0 1 0 1 0 0 −1 0 0 −1 1 0 0 0 0 0
0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0
0 0 0 1 0 −1 0 0 1 0 0 −1 −1 0 0 0
0 0 0 0 −1 0 −1 0 0 −1 0 0 1 1 0 0

.

The matrix A1 was obtained from the matrix

A′
1 =

0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0
0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1
1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1
1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0
0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0
0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1
1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0
0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1
1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0
0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1
1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0
0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0
0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 0

,

by randomly turning some of the values ‘1’ into ‘-1’. Note that the product A′
1 · M(i) can be

expressed as:

A′
1 = ROTR2(M(i)) + ROTR3(M(i)) + ROTR6(M(i)) + ROTR9(M(i)) + ROTR11(M(i)),

where the operations ROTRj(M(i)) are rotations to the right of the vector M(i) = (M
(i)
0 , M

(i)
1 , . . . , M

(i)
15)

by j words and “+” means componentwise addition in Z232 (resp. in Z264). In other words we have

that:
ROTR2(M(i)) = (M

(i)
14 , M

(i)
15 , M

(i)
0 , . . . , M

(i)
13)

ROTR3(M(i)) = (M
(i)
13 , M

(i)
14 , M

(i)
15 , . . . , M

(i)
12)

ROTR6(M(i)) = (M
(i)
10 , M

(i)
11 , M

(i)
12 , . . . , M

(i)
9)

ROTR9(M(i)) = (M
(i)
7 , M

(i)
8 , M

(i)
9 , . . . , M

(i)
6)

ROTR11(M(i)) = (M
(i)
5 , M

(i)
6 , M

(i)
7 , . . . , M

(i)
4)

,

and

A′
1 · M(i) = (M

(i)
14 + M

(i)
13 + M

(i)
10 + M

(i)
7 + M

(i)
5 , . . . , M

(i)
13 + M

(i)
12 + M

(i)
9 + M

(i)
6 + M

(i)
4).

26

CHAPTER 3: DESIGN RATIONALE

It is straightforward to prove the following

Lemma 1. The transformation A′
1 · M(i) diffuses every one bit difference in the vector M(i) into at least

five bits difference.

The matrix A1 is obtained from the matrix A′
1 by randomly selecting some of the values “1” and

turning them into “-1”. It is straightforward to prove the following

Lemma 2. The transformation A1 · M(i) diffuses every one bit difference in the vector M(i) into at least

five bits difference.

The reason why we decided to use the transformation A1 · M(i) instead of the transformation

A′
1 · M(i) is the fact that in any CPU, the computational costs of addition and subtraction are the

same, but the component with mixed usage of additions and subtractions is more complex. It is

reasonable to expect that increased complexity also increases the ability to resist cryptanalysis.

3.5 Rationale for the bijective “Step 2” in the function f0

Step 2 in the definition of the function f0 is also a bijective one, but now the bijective transformation

is achieved for every component of the vector W(i) by applying transformations s0, s1, s2, s3 and

s4 (see the Table 1.3).

It is easy to prove the following

Lemma 3. The transformations si, i = 0, . . . , 5 and ri, i = 1, . . . , 7 defined in the Table 1.3 are bijective

transformations in {0, 1}32 (resp. in {0, 1}64).

For our analysis of the hash function we denote this bijective Step 2 transformation as A2 :

{0, 1}16w → {0, 1}16w . From the composition of Step 1 and Step 2 in the function f0 it is clear

that

f0(Mi, Hi−1) ≡ A2(A1 · (Mi ⊕ Hi−1)) + ROTL1(Hi−1).

We denote by ROTL1(Hi−1) = (H
(i−1)
1 , H

(i−1)
2 , . . . , H

(i−1)
15 , H

(i−1)
0) the rotation by one position to

the left of the vector (H
(i−1)
0 , H

(i−1)
1 , . . . , H

(i−1)
15). The reason why we put this additional term

ROTL1(Hi−1) (it was not present in the Round 1 version of BLUE MIDNIGHT WISH) is that we

installed two actions of a decoupling between Mi and Hi−1 in order to prevent pseudo-attacks that

can use the fact that Mi ⊕ Hi−1 = 0 iff Mi = Hi−1. This is the first such decoupling, and the second

one is installed in the expansion function f1().

27

CHAPTER 3: DESIGN RATIONALE

The differential (diffusion) property for si, i = 0, . . . , 3 transformations is summarized in the fol-

lowing

Lemma 4. The transformations s0, s1, s2 and s3 defined in the Table 1.3 diffuse every one bit difference in

their arguments (32–bit or 64–bit words) into 3 or 4 bits of difference.

The differential (diffusion) property for s4 and s5 transformations is summarized in the following

Lemma 5. The transformations s4 and s5 defined in the Table 1.3 diffuse every one bit difference in their

arguments (32–bit or 64–bit words) into 1 or 2 bits of difference.

The differential (diffusion) property of consecutive application of Step 1 and Step 2 in the function

f0 can be determined by combining Lemma 4 and Lemma 5 and is summarized in the following

Lemma 6. Every one bit difference in the vector W(i) after Step 1 and Step 2 of the function f0 diffuses

into 5 words of the the vector Qa, and the differences in those 5 words are minimum 1 or 2 bits difference,

or minimum 3 or 4 bits difference.

Proof. We have tested all possible one-bit differences with all possible multiple runs of consecutive

bit differences that can be obtained with the operations of addition or subtraction modulo 232 or

modulo 264 after Step 1 of the function f0. Then we have processed those differences further by

s0, . . . , s3, or by s4 and s5. For the cases when those differences are processed by s0, . . . , s3 we have

that the minimum is either 3 or 4 bits, and when we process those differences by s4 and s5 we have

that the minimum is 1 or 2 bits.

3.6 Tunable parameters ExpandRounds1 and ExpandRounds2

The function f1 is designed as a weak block cipher as it is described in Section 2.1. It takes argu-

ments M(i), H(i−1) and Qa = (Q
(i)
0 , Q

(i)
1 , . . . , Q

(i)
15) and computes the values Qb = (Q

(i)
16 , Q

(i)
17 , . . . , Q

(i)
31).

Actually for any given value H(i−1), the function f1 is a multipermutation between M(i), Q
(i)
a and

Q
(i)
b . That means that for a given pair (M(i), Q

(i)
a) it uniquely computes Q

(i)
b , for a given pair

(M(i), Q
(i)
b) it uniquely computes Q

(i)
a and for a given pair (Q

(i)
a , Q

(i)
b) it uniquely computes M(i).

We are achieving that in 16 expansion steps using two types of expansion functions. The first

expansion function expand1() is used in the beginning of the expansion process. In that function,

a difference of a one bit in M(i) or in Qa diffuses much faster than in the second expansion function

28

CHAPTER 3: DESIGN RATIONALE

expand2(). The number of times we will call the first and the second function are connected with

the following relation:

ExpandRounds1 + ExpandRounds2 = 16.

The function

expand1(j) = s1(Q
(i)
j−16) + s2(Q

(i)
j−15) + s3(Q

(i)
j−14) + s0(Q

(i)
j−13)

+ s1(Q
(i)
j−12) + s2(Q

(i)
j−11) + s3(Q

(i)
j−10) + s0(Q

(i)
j−9)

+ s1(Q
(i)
j−8) + s2(Q

(i)
j−7) + s3(Q

(i)
j−6) + s0(Q

(i)
j−5)

+ s1(Q
(i)
j−4) + s2(Q

(i)
j−3) + s3(Q

(i)
j−2) + s0(Q

(i)
j−1)

+ AddElement(j − 16),

is a more complex and more computationally expensive function in the expansion part. However,

as a sort of security/performance tradeoff for the computation of the expanded values, we are

using the second simplified expand function:

expand2(j) = Q
(i)
j−16 + r1(Q

(i)
j−15) + Q

(i)
j−14 + r2(Q

(i)
j−13)

+ Q
(i)
j−12 + r3(Q

(i)
j−11) + Q

(i)
j−10 + r4(Q

(i)
j−9)

+ Q
(i)
j−8 + r5(Q

(i)
j−7) + Q

(i)
j−6 + r6(Q

(i)
j−5)

+ Q
(i)
j−4 + r7(Q

(i)
j−3) + s4(Q

(i)
j−2) + s5(Q

(i)
j−1)

+ AddElement(j − 16).

Our recommendation for these tunable parameters is: ExpandRounds1 = 2, ExpandRounds2 = 14.

Here, the term AddElement(j) is computed by the expression

AddElement(j) =
(

ROTL(j+1)(M
(i)
j) + ROTL(j+4)(M

(i)
j+3) − ROTL(j+11)(M

(i)
j+10) + Kj+16

)

⊕ H
(i)
j+7.

Note that in the Round 1, BLUE MIDNIGHT WISH had a different AddElement(j) element. Namely,

the old expression for this term was:

Old_AddElement(j) = M
(i)
j + M

(i)
j+3 − M

(i)
j+10 + Kj+16.

However, the old term was giving a chance for an attacker to make changes in the most significant

bits of the message and due to the operations of addition, those changes were canceling each

other up to the last variable Q31, thus giving free-start near collisions in the compression function.

The new (tweaked) expression for AddElement(j) rotates the values of the message M(i), and

additionally operates with the vector ROTL7(Hi−1) = (H
(i−1)
7 , H

(i−1)
8 , . . . , H

(i−1)
5 , H

(i−1)
6) which

denotes the rotation by seven position to the left of the vector (H
(i−1)
0 , H

(i−1)
1 , . . . , H

(i−1)
15). This is

29

CHAPTER 3: DESIGN RATIONALE

our second introduction of expressions that decouples the input values of the message M(i) and

the chaining double pipe H(i−1) with the particular values from M(i) and H(i−1) that are repeatedly

used in the BLUE MIDNIGHT WISH expressions.

If we take all elements AddElement(j) for j = 0, 1, . . . , 15, then we can write them shortly and

symbolically as

AddElement(M(i) , H(i)) = (B(rotM(i)) + K)⊕ ROTL7(Hi−1).

The matrix B is:

B =

1 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 −1 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 −1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 −1

−1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 −1 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 −1 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 −1 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 −1 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 −1 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 −1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 1

,

and it is nonsingular over Z2w . The vector rotM(i) is the vector obtained from M(i) where its j-th

component (j = 0, 1, . . . , 15) is rotated to the left for j + 1 positions i.e.:

rotM(i) = (ROTL1(M
(i)
0), ROTL2(M

(i)
1), . . . , ROTL15(M

(i)
14), ROTL16(M

(i)
15)),

and the constants in the vector K are described in the Section 1.2.

3.6.1 Statements, relating to the NIST requirements 2.B.1.

Here we give statements, in relation to the NIST requirements 2.B.1.

I.

The following statements are the same for each digest size n = 224, 256, 384, 512.

II.

Using two consecutive expand1() rounds at the beginning of the weak block cipher f1 means

that the variables Qa = (Q0, . . . , Q15) enter the 16-round block cipher f1 in two different linear

30

CHAPTER 3: DESIGN RATIONALE

combinations of their bits consecutively (excluding Q0, which enters the cipher f1 directly only

once as s1(Q0) and indirectly in Q17, . . . , Q31). For instance Q1 enters f1 in the first two rounds

directly as s2(Q1) and s1(Q1), Q2 enters f1 in the first two rounds directly as s3(Q2) and s2(Q2),

etc. The more rounds of expand1() are used, the more linear combinations of variables of Qa enter

the cipher f1.

III.

By using more rounds of expand1() we can increase the strength (and the complexity) of the cipher

f1, and thus the security of BLUE MIDNIGHT WISH, but we will decrease the speed.

IV.

By using two different round functions expand1() and expand2() we increase the difficulty of find-

ing overall differential paths, because the differentials for the first function expand1() and for the

second function expand2() are completely different.

V.

We are not aware of any weaknesses even for ExpandRounds1 = 0 and ExpandRounds2 = 16 or

ExpandRounds1 = 16 and ExpandRounds2 = 0 or any other combination for ExpandRounds1 +

ExpandRounds2 = 16, but we propose ExpandRounds1 = 2 as an optimal tradeoff between secu-

rity and efficiency.

3.7 Cryptanalysis of BLUE MIDNIGHT WISH

3.7.1 Bijective parts in the compression function of BLUE MIDNIGHT WISH

Here we will write the compression function in such a way that we will emphasize all its functional

entities. Later on, this representation will help us to perform a cryptanalysis of the compression

function.

First let us adopt the following notation for this and the next section:

1. Sometimes we omit the upper index (i) in our notations.

31

CHAPTER 3: DESIGN RATIONALE

2. In that case we denote the i-th message block as Mi (instead of M(i)).

3. Also, in that case we denote the (i − 1)-th double pipe as Hi−1 (instead of H(i−1)).

4. Also in that case we denote the final output from the function f2 as Hi i.e. Hi = f2(Mi, Qa, Qb)

(instead of H(i)).

Having in mind the definition of the function f2 given in Table 2.4 we can rewrite the function f2

as follows.

Let f3 : {0, 1}2m → {0, 1}m be defined as:

f3(Mi, Qb) =

SHL5(XH) ⊕ SHR5(Q
(i)
16) ⊕ M

(i)
0

SHR7(XH) ⊕ SHL8(Q
(i)
17) ⊕ M

(i)
1

SHR5(XH) ⊕ SHL5(Q
(i)
18) ⊕ M

(i)
2

SHR1(XH) ⊕ SHL5(Q
(i)
19) ⊕ M

(i)
3

SHR3(XH) ⊕ Q
(i)
20 ⊕ M

(i)
4

SHL6(XH) ⊕ SHR6(Q
(i)
21) ⊕ M

(i)
5

SHR4(XH) ⊕ SHL6(Q
(i)
22) ⊕ M

(i)
6

SHR11(XH) ⊕ SHL2(Q
(i)
23) ⊕ M

(i)
7

XH ⊕ Q
(i)
24 ⊕ M

(i)
8

XH ⊕ Q
(i)
25 ⊕ M

(i)
9

XH ⊕ Q
(i)
26 ⊕ M

(i)
10

XH ⊕ Q
(i)
27 ⊕ M

(i)
11

XH ⊕ Q
(i)
28 ⊕ M

(i)
12

XH ⊕ Q
(i)
29 ⊕ M

(i)
13

XH ⊕ Q
(i)
30 ⊕ M

(i)
14

XH ⊕ Q
(i)
31 ⊕ M

(i)
15

Further on, let f4 : {0, 1}2m → {0, 1}m be defined as:

f4(Qa, Qb) =

XL ⊕ Q
(i)
24 ⊕ Q

(i)
0

XL ⊕ Q
(i)
25 ⊕ Q

(i)
1

XL ⊕ Q
(i)
26 ⊕ Q

(i)
2

XL ⊕ Q
(i)
27 ⊕ Q

(i)
3

XL ⊕ Q
(i)
28 ⊕ Q

(i)
4

XL ⊕ Q
(i)
29 ⊕ Q

(i)
5

XL ⊕ Q
(i)
30 ⊕ Q

(i)
6

XL ⊕ Q
(i)
31 ⊕ Q

(i)
7

SHL8(XL) ⊕ Q
(i)
23 ⊕ Q

(i)
8

SHR6(XL) ⊕ Q
(i)
16 ⊕ Q

(i)
9

SHL6(XL) ⊕ Q
(i)
17 ⊕ Q

(i)
10

SHL4(XL) ⊕ Q
(i)
18 ⊕ Q

(i)
11

SHR3(XL) ⊕ Q
(i)
19 ⊕ Q

(i)
12

SHR4(XL) ⊕ Q
(i)
20 ⊕ Q

(i)
13

SHR7(XL) ⊕ Q
(i)
21 ⊕ Q

(i)
14

SHR2(XL) ⊕ Q
(i)
22 ⊕ Q

(i)
15

Finally for any X = (X0, X1, . . . , X15) where Xi are w–bit words (w = 32, 64), let us define the

32

CHAPTER 3: DESIGN RATIONALE

function f5 : {0, 1}16w → {0, 1}16w as:

f5(X) =

0
0
0
0
0
0
0
0

ROTL9(X4)
ROTL10(X5)
ROTL11(X6)
ROTL12(X7)
ROTL13(X0)
ROTL14(X1)
ROTL15(X2)
ROTL16(X3)

Now the final output from the f2 function is Hi = (H0, H1, . . . , H15) and can be rewritten as:

Hi = f2(Mi, Qa, Qb) ≡ f3(Mi, Qb) + f4(Qa, Qb) + f5(f3(Mi, Qb) + f4(Qa, Qb)). (3.7.1)

One of the basic security properties of BLUE MIDNIGHT WISH is its nonlinear folding function f2.

We describe here one specially designed part of this function.

Let us denote by La the the following function:

La(Qb) =

SHL5(XH) ⊕ SHR5(Q
(i)
16)

SHR7(XH) ⊕ SHL8(Q
(i)
17)

SHR5(XH) ⊕ SHL5(Q
(i)
18)

SHR1(XH) ⊕ SHL5(Q
(i)
19)

SHR3(XH) ⊕ Q
(i)
20

SHL6(XH) ⊕ SHR6(Q
(i)
21)

SHR4(XH) ⊕ SHL6(Q
(i)
22)

SHR11(XH) ⊕ SHL2(Q
(i)
23)

XH ⊕ Q
(i)
24

XH ⊕ Q
(i)
25

XH ⊕ Q
(i)
26

XH ⊕ Q
(i)
27

XH ⊕ Q
(i)
28

XH ⊕ Q
(i)
29

XH ⊕ Q
(i)
30

XH ⊕ Q
(i)
31

33

CHAPTER 3: DESIGN RATIONALE

Further on, let us denote by Lb the function:

Lb(Qb) =

XL ⊕ Q
(i)
24

XL ⊕ Q
(i)
25

XL ⊕ Q
(i)
26

XL ⊕ Q
(i)
27

XL ⊕ Q
(i)
28

XL ⊕ Q
(i)
29

XL ⊕ Q
(i)
30

XL ⊕ Q
(i)
31

SHL8(XL) ⊕ Q
(i)
23

SHR6(XL) ⊕ Q
(i)
16

SHL6(XL) ⊕ Q
(i)
17

SHL4(XL) ⊕ Q
(i)
18

SHR3(XL) ⊕ Q
(i)
19

SHR4(XL) ⊕ Q
(i)
20

SHR7(XL) ⊕ Q
(i)
21

SHR2(XL) ⊕ Q
(i)
22

Finally, let us define the transformation L : {0, 1}16w → {0, 1}16w as L ≡ La ⊕ Lb i.e.:

L(Qb) =

SHL5(XH) ⊕ SHR5(Q
(i)
16)

SHR7(XH) ⊕ SHL8(Q
(i)
17)

SHR5(XH) ⊕ SHL5(Q
(i)
18)

SHR1(XH) ⊕ SHL5(Q
(i)
19)

SHR3(XH) ⊕ Q
(i)
20

SHL6(XH) ⊕ SHR6(Q
(i)
21)

SHR4(XH) ⊕ SHL6(Q
(i)
22)

SHR11(XH) ⊕ SHL2(Q
(i)
23)

XH ⊕ Q
(i)
24

XH ⊕ Q
(i)
25

XH ⊕ Q
(i)
26

XH ⊕ Q
(i)
27

XH ⊕ Q
(i)
28

XH ⊕ Q
(i)
29

XH ⊕ Q
(i)
30

XH ⊕ Q
(i)
31

⊕

XL ⊕ Q
(i)
24

XL ⊕ Q
(i)
25

XL ⊕ Q
(i)
26

XL ⊕ Q
(i)
27

XL ⊕ Q
(i)
28

XL ⊕ Q
(i)
29

XL ⊕ Q
(i)
30

XL ⊕ Q
(i)
31

SHL8(XL) ⊕ Q
(i)
23

SHR6(XL) ⊕ Q
(i)
16

SHL6(XL) ⊕ Q
(i)
17

SHL4(XL) ⊕ Q
(i)
18

SHR3(XL) ⊕ Q
(i)
19

SHR4(XL) ⊕ Q
(i)
20

SHR7(XL) ⊕ Q
(i)
21

SHR2(XL) ⊕ Q
(i)
22

Theorem 1. The transformation L : {0, 1}16w → {0, 1}16w is a bijection for both values w = 32 and

w = 64.

Proof. A direct linear algebra check of the determinant of the corresponding matrix for the trans-

formation L for both cases w = 32 and w = 64 shows that the determinant is 1 (in GF(2)).

The constants for shifting left or right used in the transformation L were found by a computer

search, such that L is bijective transformation both for w = 32 and w = 64.

The following theorem is true about the different bijective parts of the compression function of

BLUE MIDNIGHT WISH:

34

CHAPTER 3: DESIGN RATIONALE

Theorem 2.

1. When Hi−1 is fixed, f0(Mi, Hi−1) is a bijection.

2. For a given Hi−1, the function f1 is a multipermutation between Mi, Qa and Qb i.e. for a given

pair (Mi, Qa) it uniquely computes Qb, for a given pair (Mi, Qb) it uniquely computes Qa and for a

given pair (Qa, Qb) it uniquely computes Mi.

3. When Qb and Mi are fixed, f2(Mi, Qa, Qb) is a bijection.

4. When Qb and Qa are fixed, f2(Mi, Qa, Qb) is a bijection.

Proof. Item 1. This is a consequence of the non-singularity of the matrix A1 and the Lemma 3.

Item 2. (sketch) Let the pair (Qa, Qb) be given. Then from equation Qb = f1(Mi, Hi−1, Qa) we can

obtain an equation:

B(rotMi) = Const

and since the matrix B is nonsingular we can find the unique solution Mi.

Item 3. (sketch) If Qb and Mi are fixed then Hi = f2(Mi, Qa, Qb) can be rewritten as

Hi = (La(Qb) ⊕ Mi) + (Lb(Qb) ⊕ Qa) = Const1(Qb, Mi) + (Const2(Qb, Mi) ⊕ Qa),

where Const1(Qb, Mi) and Const2(Qb, Mi) are expressions of the constants Qb and Mi. Here

Hi is a bijection of Qa.

Item 4. (sketch) If Qa and Qb are fixed then Hi = f2(Mi, Qa, Qb) can be rewritten as

Hi = (La(Qb) ⊕ Mi) + (Lb(Qb)⊕ Qa) = (Const1(Qa, Qb) ⊕ Mi) + Const2(Qa, Qb),

where Const1(Qa, Qb) and Const2(Qa, Qb) are expressions of the constants Qa and Qb. Here

Hi is a bijection of Mi.

Note: Theorem 2 holds for every combination of ExpandRounds1 and ExpandRounds2 such that

ExpandRounds1 + ExpandRounds2 = 16.

35

CHAPTER 3: DESIGN RATIONALE

3.7.2 Representation as a generalized PGV1 scheme with a weak block cipher

Preneel, Govaerts, and Vandewalle in [7] have located 12 secure schemes for constructing hash

functions from block ciphers. Black et. al., [8] have proved (in an ideal cipher model) that those

schemes are collision-resistant too.

The basic iterative relation for the scheme number 1 (PGV1) is:

Hi = E(Hi−1, Mi) ⊕ Mi

where the notation E(K, X) denotes a block cipher operation with a key K and a plaintext X.

The graphical representation of the scheme is given in Figure 3.1a.

Hi−1 -IE
?

?

Mi

⊕
�

?

Hi

Hi−1 -IE
?

?

Mi

f2
�

?

Hi

a. b.

Figure 3.1: a. The PGV1 one-way compression function, b. Generalized PGV1 one-way compres-

sion function where the feedback information of Mi is combined with the ciphertext

E(Hi−1, Mi) not with a simple xor function ⊕ but with a more complex function f2.

Theorem 3. BLUE MIDNIGHT WISH hash function can be expressed as a generalized PGV1 scheme.

Proof. (sketch) As a block cipher we can take the function f0(Mi, Hi−1) ≡ E(Hi−1, Mi). Then in a

generalized version of PGV1 we can treat that the expression E(Hi−1, Mi) ⊕ Mi is represented in

a generalized form as:

Hi = f2(Mi, Hi−1, E(Hi−1, Mi)).

Note. The underlying block cipher f0 used in this representation of BLUE MIDNIGHT WISH is

not ideal. Actually it is very weak. However, this deficiency of the block cipher used in BLUE

MIDNIGHT WISH is compensated by the more complex feedback function, by the size of the block

36

CHAPTER 3: DESIGN RATIONALE

cipher output which is twice the size of the output of the hash function, and the bijective entan-

glements that are described in Theorem 2.

3.7.3 Monomial tests on the components used in BLUE MIDNIGHT WISH

The monomial tests have been introduced several years ago by Filiol [9] to evaluate the statistical

properties of symmetric ciphers. Later, Saarinen [10] proposed an extension of Filiol’s ideas to a

chosen IV statistical attack, called the “d-monomial test”, and used it to find weaknesses in several

proposed stream ciphers. In 2007, Englund, Johansson and Turan [11] generalized Saarinen’s idea

and proposed a framework for chosen IV statistical attacks using a polynomial description. Their

basic idea is to select a subset of IV bits as variables, assuming all other IV values as well as the key

being fixed. Then, by obtaining the algebraic normal form for such a function they were searching

for some statistical deviations from ideal random Boolean function. A similar approach as that of

Englund et al. is also described by O’Neil in [12].

In order to get a statistical measure of the deviation from ideal random Boolean function of the

components that are used in BLUE MIDNIGHT WISH we have defined NANT - A Normalized

Average Number of Terms (monomials). NANT can be seen as a variant of Englund’s monomial

tests and it is defined in what follows.

Let n ≥ r ≥ 1 be integers and let F : {0, 1}n → {0, 1}r be a vector valued Boolean func-

tion. The vector valued function F can be represented as an r-tuple of Boolean functions F =

(F(1), F(2), . . . , F(r)), where F(s) : {0, 1}n → {0, 1} (s = 1, 2, . . . , r), and the value of F(s)(x1, . . . , xn)

equals the value of the s-th component of F(x1, . . . , xn). The Boolean functions F(s)(x1, . . . , xn) can

be expressed in the Algebraic Normal Form (ANF) as polynomials with n variables x1, . . . , xn of

kind a0 ⊕ a1x1 ⊕ · · · ⊕ anxn ⊕ a1,2x1x2 ⊕ · · · ⊕ an−1,nxn−1xn ⊕ · · · ⊕ a1,2,...,nx1x2 . . . xn, where aλ ∈

{0, 1}. Each ANF have up to 2n terms (i.e. monomials), depending of the values of the coefficients

aλ. Denote by LF(s) the number of terms in the ANF of the function F(s). Then the number of terms

of the vector valued function F is defined to be the number LF =
r

∑
s=1

LF(s).

Definition 1. Let F : {0, 1}n → {0, 1}r be a vector valued Boolean function. For any k ∈ {1, . . . , n}

and any assembly of S subsets σj = {i1, i2, . . . , ik} ⊂ {0, 1, . . . , n − 1} chosen uniformly at random

(1 ≤ j ≤ S), let Fσj
denote the restriction of F defined by

Fσj
(x1, x2, . . . , xn) = F(0, . . . , 0, xi1 , 0, . . . , 0, xi2 , 0, . . . , 0, xik

, 0, . . . , 0).

37

CHAPTER 3: DESIGN RATIONALE

We define a random variable LF – the Normalized Average Number of Terms (NANT) as:

LF = LF(r, k) =
1

r
·

1

2k−1
· lim

S→∞

1

S

S

∑
j=1

LFσj
.

Since the subsets σj are chosen uniformly at random, the average values of L
F

(s)
σj

(s = 1, 2, . . . , r)

are 2k−1 and the average value of LFσj
is r2k−1. Also, L

F
(s)
σj

≤ 2k. So, the following theorem is true:

Theorem 4. For any function F : {0, 1}n → {0, 1}r chosen uniformly at random from the set of all such

functions, for any value of r ≥ 1 and for any k ∈ {1, . . . n}, it is true that

0 ≤ LF ≤ 2

and that the expected value is

EX(LF) = 1.

Note that if we want to apply the NANT measure on every bit of some function F : {0, 1}n →

{0, 1}r then instead of averaging on all r coordinates we are taking that r = 1 i.e., we have to

apply the following formula:

LF = LF(k) =
1

2k−1
· lim

S→∞

1

S

S

∑
j=1

LFσj
.

We have measured NANT for every bit of Qb = (Q16, . . . , Q31), the pair (XL, XH) and the final

chaining value Hi = (H0, . . . , H15).

By performing the NANT tests, we see that the component Q16 is easily distinguishable from

random Boolean function, while for all other variables in Qb the Boolean functions for every bit

act as a random Boolean function. That is shown in Figure 3.2. For the two variables (XL, XH)

which consist in total of 64 bits there are no significant deviations from the value 1.0 and that is

shown in Figure 3.3. For the chaining variable Hi there are also no significant deviations from the

value 1.0 (Figure 3.4).

For digest sizes of 384 and 512 bits we have applied NANT tests on BMW512. The outcome of

the NANT tests is similar with the case of BMW256. Namely, Boolean functions for the bits in Q16

are easily distinguishable from random Boolean function, while for all other variables in Qb the

Boolean functions for every bit act as a random Boolean function. That is shown in Figure 3.5. For

the two variables (XL, XH) which consist in total of 128 bits there are no significant deviations

38

CHAPTER 3: DESIGN RATIONALE

Out[99]=

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

0.5

1.0

1.5

2.0

Figure 3.2: NANT analysis on components of BMW256. Values of LF for every bit (in total 512

bits) in Qb.

Out[111]=

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

0.5

1.0

1.5

2.0

Figure 3.3: NANT analysis on components of BMW256. Values of LF for every bit in (XL, XH) (in

total 64 bits).

from the value 1.0 and that is shown in Figure 3.6. For the chaining variable Hi there are also no

significant deviations from the value 1.0 (Figure 3.7).

39

CHAPTER 3: DESIGN RATIONALE

Out[105]=

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

0.5

1.0

1.5

2.0

Figure 3.4: NANT analysis on components of BMW256. Values of LF for every bit (in total 512

bits) in Hi.

Out[99]=

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

0.5

1.0

1.5

2.0

Figure 3.5: NANT analysis on components of BMW512. Values of LF for every bit (in total 1024

bits) in Qb.

So, we can say that although BLUE MIDNIGHT WISH follows the well established and secure

schemes for designing hash functions from block ciphers (PGV), its underlying block cipher is

40

CHAPTER 3: DESIGN RATIONALE

Out[111]=

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

0.5

1.0

1.5

2.0

Figure 3.6: NANT analysis on components of BMW512. Values of LF for every bit in (XL, XH) (in

total 128 bits).

Out[105]=

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

0.5

1.0

1.5

2.0

Figure 3.7: NANT analysis on components of BMW512. Values of LF for every bit (in total 1024

bits) in Hi.

a weak block cipher. But, does it make the overall design weak? We think that it does not make

the overall hash function weak because of the following reasons:

41

CHAPTER 3: DESIGN RATIONALE

1. The deficiency coming from the distinguishability of the first word (first 4 words) is com-

pensated by the wide block size in BLUE MIDNIGHT WISH which is 512 or 1024 bits long.

2. From the fifth word, all other words in Qb are not distinguishable from random 32-bit (64-bit)

variables.

3. The feedback information is a complex function of the initial inputs to the block cipher and

its output.

Additionally to the arguments described above, we want to justify our recommendation for the

value ExpandRounds1 = 2. Namely, from the NANT analysis we have that the variable Q17 which

is obtained by the expand1() function is already reaching the level of a random Boolean function.

So, we can allow the rest of the variables in Qb (the variables Q18, . . . , Q31) to be computed by the

faster and less complex expansion function expand2().

3.7.4 Infeasibility of finding collisions, preimages and second preimages

The design of BLUE MIDNIGHT WISH heavily uses combinations of bitwise operations of XORing,

rotating and shifting (which can be seen as linear operations in GF(232) and in GF(264)) and op-

erations of addition and subtraction in Z232 or in Z264 (which are nonlinear operations in GF(232)

and in GF(264)). This strategy is combined with the mathematical property that BLUE MIDNIGHT

WISH (without the final invocation of the compression function in the part "Finalize") can be repre-

sented as a generalized PGV1 scheme. The PGV1 design is second-preimage resistant and collision

resistant. Moreover the final calling of the compression function with the constant CONST f inal

applies another robust one-way function on the result. Those are the reasons why we claim that

BLUE MIDNIGHT WISH is a second-preimage resistant and collision resistant hash function.

Additionally, the diffusion characteristics of the Boolean functions si(), i = 0, 1, . . . , 5, f0, f1 and

f2, the size of the chaining value being two times wider than the final message digest size, and

the nonlinear expressions used in the functions f0, f1 and f2, are the cornerstones of the BLUE

MIDNIGHT WISH strength.

More specifically, the chaining part of BLUE MIDNIGHT WISH – “The Double Pipe” is created by

the folding function f2 from three inputs, the current message block itself and the two nonlinear

transformations of the message block and old chaining value (Qa and Qb). By having numerous

bijective and multipermutation properties we can treat in some of those cases Qa and Qb as cipher-

texts, created by non-linear block ciphers, but in a specific manner such that they are bijectively

42

CHAPTER 3: DESIGN RATIONALE

tied together. The bijective entanglement, combined with the nonlinearity of the expressions in f0,

f1 and f2 gives us confidence that it is infeasible to find collisions, preimages or second preimages

of BLUE MIDNIGHT WISH. We think that it is hard to find a way to change consistently all three

inputs (tied by non-linear bijective mappings) in such a way that these changes in 3-times wider

input of the compression function f2 will cancel each other or will lead to controllable changes.

The BLUE MIDNIGHT WISH entanglement of the message, previous double pipe and the next

double pipe is shown in Figure 2.2 for the compression function. The set of bijective entanglements

in functions f0, f1, f2 and in their inputs are the principle of defense of BLUE MIDNIGHT WISH

against collisions and preimages or their pseudo or near variants.

For instance when M is fixed, the function f0 ensures the (controlled) change in Qa and in AddElement

as inputs (plaintext and the key) for the block cipher f1. Let us suppose that the attacker is now

able to solve the most difficult part of the scheme and suppose that he/she is now able to control

the changes in the f1 output (the ciphertext Qb). Now, it is very improbable that he/she is also

able to control the expression f2(f ixedM, Qa, Qb) thus making the attack noneffective. If we admit

that the attacker is able to obtain even very near collision (for instance one bit difference) in the

value f2, the final invocation of the compression function will diffuse it into two hash values with

approximately ideal Hamming distance (one half of the message digest).

Also, when H is fixed, bijectivity of f0 ensures the (controlled) change in Qa and in AddElement as

inputs (plaintext and the key) for the block cipher f1. The situation is now a little bit more complex

then in previous case. But let us suppose that the attacker is now able to solve the most difficult

part of the scheme and suppose that he/she is now able to control the changes in the f1 output (the

ciphertext Qb). Now, it is very improbable that he/she is also able to control also the expression

f2(M, Qa, Qb). And again, even if we admit that the attacker is able to obtain very near collision

(for instance one bit difference) in the value f2, the final invocation of the compression function

will diffuse it into two hash values with approximately ideal Hamming distance (one half of the

message digest).

The third case in this analysis is when Qa is fixed. The values of AddElement as a key for the

fixed plaintext Qa are variable, and can be used to control the value Qb, but we see that controlling

all three values M, H and f2(M, Qa, Qb) is very difficult and improbable. And as a last line of

the defence we have again the final invocation of the compression function which will diffuse

any near collision into two hashes with approximately ideal Hamming distance (one half of the

message digest).

Another approach to attack BLUE MIDNIGHT WISH can be for instance to fix the pair (Qa, Qb).

43

CHAPTER 3: DESIGN RATIONALE

But from the multipermutation property of f1 we obtain unique value of AddElement(M, H) =

(B(rotM) + K) ⊕ ROTL7(H). Additionally we have another relationship between M and H com-

ing from the Qa = f0(M, H) ≡ A2(A1 · (M ⊕ H)) + ROTL1(H). So, we have two equations for

two variables M, H. When we substitute from the first equation the variable H into the second

equation, we obtain one equation for one 16 ∗ w-bit variable M. This is in fact a system of 16 ∗ w

non-linear equations for 16 ∗ w bit-variables (bits of M). This system is non-linear and complex

(AXR – Addition, Xoring and Rotations) and there is no known effective method how to find a

solution. Let us suppose that the attacker is able to solve it. Moreover let us suppose that he/she

find out two different solutions M. Then he/she computes H and thus has two different pairs

(M, H) leading to the same hash value. It is improbable that the attacker will obtain a solution of

the form (M, IV), so that at the best case what he/she obtains is a pseudo-collision.

There are more ways how to try to control some of the inputs, intermediate variables and output

variables of BLUE MIDNIGHT WISH. But these variables are connected in such a way, that every

time any change leads to guaranteed change or changes on several places in BLUE MIDNIGHT

WISH due to the bijective entanglement of all variables.

And again, as a last line of the defence we have the final invocation of the compression function

which will diffuse any near collision of two hash values into hashes with approximately ideal

Hamming distance (one half of the message digest).

3.7.5 Approximation of additions and subtractions with XORs

As mentioned in the previous subsection the compression function of BLUE MIDNIGHT WISH

uses bitwise operations of XORing, rotating and shifting (as linear operations in GF(232) and in

GF(264)) and operations of addition and subtraction in Z232 or in Z264 (as nonlinear operations in

GF(232) and in GF(264)).

A natural idea is to try to find values for which additions and subtractions behave as XORs. In

such a case, one would have a completely linear system in the ring (Z
n
2 , +,×) for which collisions,

preimages and second preimages can easily be found. However, getting all the additions to behave

as XORs is hard.

There are several significant works that are related with analysis of differential probabilities of

operations that combine additions modulo 2n, XORs and left rotations. In 1993, Berson has made

a differential cryptanalysis of addition modulo 232 and applied it on MD5 [13]. In 2001, Lipmaa

and Moriai, have constructed efficient algorithms for computing differential properties of addition

44

CHAPTER 3: DESIGN RATIONALE

modulo 2n [14], and in 2004, Lipmaa, Wallén and Dumas have constructed a linear-time algorithm

for computing the additive differential probability of exclusive-or [15].

All of these works are determining the additive differential probability of exclusive-or:

Pr[((x + α) ⊕ (y + β)) − (x ⊕ y) = γ]

and the exclusive-or differential probability of addition:

Pr[((x ⊕ α) + (y ⊕ β)) ⊕ (x + y) = γ]

where probability is computed for all pairs (x, y) ∈ Z2n × Z2n and for any predetermined triplet

(α, β, γ) ∈ Z2n × Z2n × Z2n .

Recently Paul and Preneel [16] have successfully solved the problem of finding solutions in poly-

nomial time of differential equations of addition with two variables x and y of type (x + y)⊕ ((x ⊕

α) + (y ⊕ β)) = γ where α, β and γ are constants. Someone can use their algorithm to try to attack

BLUE MIDNIGHT WISH. The problem is that their algorithm is for equations with two variables,

and their strategy extended to solving systems of differential equations of addition with three or

more variables has exponential complexity i.e. is of the order O(2b×k) where b is the bit length of

the variables, and k is the number of equations.

So, in the case of BLUE MIDNIGHT WISH instead of a simple combination of two 32–bit (or 64–bit)

variables once by additions then by xoring, we have a complex multivariate system of equations.

In these equations both bitwise operations (XORing, shifting or rotation) and word-oriented oper-

ations (addition or subtraction) are mutually embedded one into the other. At the time of writing,

we do not see how the results in [16] will help in finding solutions for the BLUE MIDNIGHT WISH

equations.

3.7.6 Cryptanalysis of a scaled down BLUE MIDNIGHT WISH

Note: The results in this section were performed on the non-tweaked version of BLUE MIDNIGHT

WISH. For the tweaked version we did not perform statistical tests on scaled down version of

BLUE MIDNIGHT WISH but having in mind that the tweaked version is slightly more complex

and have additional final invocation of the compression function, we expect that the statistical

properties of the scaled down version of the tweaked BLUE MIDNIGHT WISH will be similar as

the previous non-tweaked version.

In order to gain knowledge of how robust and sound the design of BLUE MIDNIGHT WISH is, we

analyzed a scaled down version of the algorithm. However, down-scaling of BLUE MIDNIGHT

45

CHAPTER 3: DESIGN RATIONALE

WISH require a different approach than that which is usually taken when the hash function has

a big number of internal iterative steps which BLUE MIDNIGHT WISH does not have. It has 16

expansion steps but those steps can not be reduced (since it will destroy the essence of the design -

working with different interconnected bijections). We have decided to down-scale the BLUE MID-

NIGHT WISH by reducing the size of the word to 4 bits (corresponding to BMW224 and BMW256)

and to 8 bits (corresponding to BMW384 and BMW512). In such a case we defined BMW28 (which

has output of 7, 4–bit words i.e. 28 bits), BMW32 (which has output of 8, 4–bit words i.e. 32 bits),

BMW48 (which has output of 6, 8–bit words i.e. 48 bits) and BMW64 (which has output of 8, 8–bit

words i.e. 64 bits). The summary is given in Table 3.1.

Algorithm

abbreviation

Block size

m (in bits)

Word size

w (in bits)

Digest size

n (in bits)

BMW28 64 4 28

BMW32 64 4 32

BMW48 128 8 48

BMW64 128 8 64

Table 3.1: Basic properties of scaled-down variants of the BLUE MIDNIGHT WISH

In order for this down-scaling to be correct, we had to change (adapt) the logical functions used.

In Table 3.2 we are listing the logical functions that we have used in the down-scaled version of

BLUE MIDNIGHT WISH. Note that we use the notation ROTL0(x) ≡ x in order to show the con-

sistency of the shape of logical functions in the scale-down function with the original construction

of BLUE MIDNIGHT WISH. All logical functions in the scaled-down hash function, similarly as in

the original construction, are bijections in GF(2w) where w = 4, 8, 32, 64, is the size of the word on

which these functions operate. The initial double-pipe value H for this scaled-down functions has

the value of the w least significant bits of the double-pipe H in the original design.

Having such a small hash outputs, it is easy to analyze and to find collisions for the compression

functions of BMW28, BMW32 and BMW48 (but not so easy for BMW64 on our PC with 4GB RAM

memory). The average number of calls to the compression functions before finding a collision in a

hash of n bits is given in the Table 3.3. Note that in the second column we give the average number

An of calls to the compression function before finding a collision, and in the third column we give

the theoretically expected number Tn of calls to the compression function for finding a collision.

Besides the attempts of finding collisions we have checked how good the randomness produced

by the compression functions of these heavily scaled-down hash functions is. For doing that, for all

four variants: BMW28, BMW32, BMW48 and BMW64, we have produced a 500 MBbytes file and

46

CHAPTER 3: DESIGN RATIONALE

BMW28/BMW32 BMW48/BMW64

s0(x) = SHR1(x)⊕ SHL1(x)⊕ ROTL0(x) ⊕ ROTL3(x) s0(x) = SHR1(x)⊕ SHL1(x)⊕ ROTL3(x)⊕ ROTL4(x)

s1(x) = SHR1(x)⊕ SHL2(x)⊕ ROTL1(x)⊕ ROTL3(x) s1(x) = SHR1(x)⊕ SHL2(x)⊕ ROTL1(x)⊕ ROTL6(x)

s2(x) = SHR2(x)⊕ SHL1(x)⊕ ROTL3(x)⊕ ROTL0(x) s2(x) = SHR2(x)⊕ SHL5(x)⊕ ROTL19(x)⊕ ROTL7(x)

s3(x) = SHR2(x)⊕ SHL2(x)⊕ ROTL3(x)⊕ ROTL0(x) s3(x) = SHR2(x)⊕ SHL1(x)⊕ ROTL28(x)⊕ ROTL4(x)

s4(x) = SHR1(x)⊕ x s4(x) = SHR1(x)⊕ x

s5(x) = SHR2(x)⊕ x s5(x) = SHR2(x)⊕ x

r1(x) = ROTL1(x) r1(x) = ROTL1(x)

r2(x) = ROTL2(x) r2(x) = ROTL2(x)

r3(x) = ROTL3(x) r3(x) = ROTL3(x)

r4(x) = ROTL0(x) r4(x) = ROTL4(x)

r5(x) = ROTL1(x) r5(x) = ROTL5(x)

r6(x) = ROTL2(x) r6(x) = ROTL6(x)

r7(x) = ROTL3(x) r7(x) = ROTL7(x)

Table 3.2: Logic functions used in scaled-down BLUE MIDNIGHT WISH

n An Tn

28 20,108 20,480

32 84,511 81,920

48 21,469,868 20,971,520

64 / 5,368,709,120

Table 3.3: Finding collisions on scaled-down BLUE MIDNIGHT WISH

examined its randomness by the "TestU01" - a C library for empirical testing of random number

generators [17]. The methodology of producing those 500 MBbytes files was the following: We

have represented the input message M as a 64–bits (resp. 128 bits) counter with a starting value 1

increasing in steps of 1. Then the counter M was represented as 16, 4–bit (resp. 8–bit) variables and

we computed h = Take_n_LS_bits(f2(M, f1(M, H))). The values h were concatenated in order to

build a 500 MBbytes file.

Report of TestU01 (applying two test batteries - Rabbit and the NIST FIPS-140-2) for BMW28 is

given in Table 3.4 and for BMW32 in Table 3.5. From the reports it is clear that there are certain

statistical tests that can distinguish the output of the compression function of BMW28 and BMW32

from an ideal source of randomness. Although the collision analysis for BMW28 and BMW32

are very close to those that are theoretically expected, intuitively it is expected that such heavily

scaled-down instances of the original BLUE MIDNIGHT WISH will be distinguishable from an ideal

source of uniformly distributed random bits.

However, if we consider that scaling down from 64–bit words to 8–bit words is a significant down-

47

CHAPTER 3: DESIGN RATIONALE

========= Summary results of Rabbit =========

Version: TestU01 1.2.1

File: BMW4Bits28Hash500MB.bin

Number of bits: 2139095040

Number of statistics: 40

Total CPU time: 00:10:54.17

The following tests gave p-values outside [0.001, 0.9990]:

(eps means a value < 1.0e-300):

(eps1 means a value < 1.0e-015):

Test p-value

--

1 MultinomialBitsOver 2.8e-05

8 Fourier3 3.3e-28

10 PeriodsInStrings 3.0e-04

12 HammingCorr, L = 32 1.2e-08

13 HammingCorr, L = 64 8.0e-07

14 HammingCorr, L = 128 4.1e-09

17 HammingIndep, L = 64 7.2e-04

20 Run of bits 4.4e-04

24 RandomWalk1 H 4.8e-05

25 RandomWalk1 M (L = 1024) 5.2e-04

--

All other tests were passed

============== Summary results of FIPS-140-2 ==============

File: BMW4Bits28Hash500MB.bin

Number of bits: 20000

Test s-value p-value FIPS Decision

--

Monobit 9961 0.71 Pass

Poker 6.75 0.96 Pass

0 Runs, length 1: 2501 Pass

0 Runs, length 2: 1213 Pass

0 Runs, length 3: 603 Pass

0 Runs, length 4: 344 Pass

0 Runs, length 5: 156 Pass

0 Runs, length 6+: 160 Pass

1 Runs, length 1: 2467 Pass

1 Runs, length 2: 1259 Pass

1 Runs, length 3: 614 Pass

1 Runs, length 4: 332 Pass

1 Runs, length 5: 159 Pass

1 Runs, length 6+: 146 Pass

Longest run of 0: 14 0.46 Pass

Longest run of 1: 13 0.50 Pass

--

All values are within the required intervals of FIPS-140-2

Table 3.4: Summary of the TestU01 report for BMW28 (running the Rabbit and FIPS-140-2 battery)

========= Summary results of Rabbit =========

Version: TestU01 1.2.1

File: BMW4Bits32Hash500MB.bin

Number of bits: 2139095040

Number of statistics: 40

Total CPU time: 00:11:07.34

The following tests gave p-values outside [0.001, 0.9990]:

(eps means a value < 1.0e-300):

(eps1 means a value < 1.0e-015):

Test p-value

--

8 Fourier3 3.6e-30

12 HammingCorr, L = 32 1.7e-14

13 HammingCorr, L = 64 eps

14 HammingCorr, L = 128 7.5e-08

24 RandomWalk1 H 6.6e-05

24 RandomWalk1 J 7.5e-04

25 RandomWalk1 H (L = 1024) 5.5e-04

--

All other tests were passed

============== Summary results of FIPS-140-2 ==============

File: BMW4Bits32Hash500MB.bin

Number of bits: 20000

Test s-value p-value FIPS Decision

--

Monobit 10017 0.41 Pass

Poker 9.50 0.85 Pass

0 Runs, length 1: 2533 Pass

0 Runs, length 2: 1239 Pass

0 Runs, length 3: 605 Pass

0 Runs, length 4: 328 Pass

0 Runs, length 5: 139 Pass

0 Runs, length 6+: 161 Pass

1 Runs, length 1: 2479 Pass

1 Runs, length 2: 1257 Pass

1 Runs, length 3: 650 Pass

1 Runs, length 4: 315 Pass

1 Runs, length 5: 152 Pass

1 Runs, length 6+: 152 Pass

Longest run of 0: 13 0.50 Pass

Longest run of 1: 14 0.46 Pass

--

All values are within the required intervals of FIPS-140-2

Table 3.5: Summary of the TestU01 report for BMW32 (running the Rabbit and FIPS-140-2 battery)

48

CHAPTER 3: DESIGN RATIONALE

scaling, we were surprised to see that BMW48 and BMW64 actually pass all statistical tests from

Rabbit and FIPS-140-2 batteries. This clearly demonstrates the robustness of BLUE MIDNIGHT

WISH design. TestU01 reports (applying again the test batteries - Rabbit and the NIST FIPS-140-2)

are given in Table 3.6 and in Table 3.7. BMW48 and BMW64 pass all of these statistical tests.

========= Summary results of Rabbit =========

Version: TestU01 1.2.1

File: BMW8Bits48Hash500MB.bin

Number of bits: 2139095040

Number of statistics: 40

Total CPU time: 00:11:05.42

All tests were passed

============== Summary results of FIPS-140-2 ==============

File: BMW8Bits48Hash500MB.bin

Number of bits: 20000

Test s-value p-value FIPS Decision

--

Monobit 10111 0.06 Pass

Poker 6.69 0.97 Pass

0 Runs, length 1: 2493 Pass

0 Runs, length 2: 1247 Pass

0 Runs, length 3: 655 Pass

0 Runs, length 4: 309 Pass

0 Runs, length 5: 142 Pass

0 Runs, length 6+: 145 Pass

1 Runs, length 1: 2464 Pass

1 Runs, length 2: 1272 Pass

1 Runs, length 3: 602 Pass

1 Runs, length 4: 329 Pass

1 Runs, length 5: 149 Pass

1 Runs, length 6+: 175 Pass

Longest run of 0: 11 0.91 Pass

Longest run of 1: 14 0.46 Pass

--

All values are within the required intervals of FIPS-140-2

Table 3.6: Summary of the TestU01 report for BMW48 (running the Rabbit and FIPS-140-2 battery)

49

CHAPTER 3: DESIGN RATIONALE

========= Summary results of Rabbit =========

Version: TestU01 1.2.1

File: BMW8Bits64Hash500MB.bin

Number of bits: 2139095040

Number of statistics: 40

Total CPU time: 00:12:32.89

All tests were passed

============== Summary results of FIPS-140-2 ==============

File: BMW8Bits64Hash500MB.bin

Number of bits: 20000

Test s-value p-value FIPS Decision

--

Monobit 10030 0.34 Pass

Poker 13.89 0.53 Pass

0 Runs, length 1: 2541 Pass

0 Runs, length 2: 1250 Pass

0 Runs, length 3: 614 Pass

0 Runs, length 4: 304 Pass

0 Runs, length 5: 147 Pass

0 Runs, length 6+: 161 Pass

1 Runs, length 1: 2463 Pass

1 Runs, length 2: 1296 Pass

1 Runs, length 3: 643 Pass

1 Runs, length 4: 297 Pass

1 Runs, length 5: 176 Pass

1 Runs, length 6+: 142 Pass

Longest run of 0: 15 0.26 Pass

Longest run of 1: 11 0.91 Pass

--

All values are within the required intervals of FIPS-140-2

Table 3.7: Summary of the TestU01 report for BMW64 (running the Rabbit and FIPS-140-2 battery)

3.8 Statements about security, support for applications, HMACs and

randomized hashing

3.8.1 Security statement relating to the NIST requirement 4.A.

Security provided by BLUE MIDNIGHT WISH variants (BMW224, BMW256, BMW384, BMW512)

in all applications (standards) is claimed to be the same or better than commensurate SHA-2 vari-

ants (SHA-224, SHA-256, SHA-384, SHA-512).

3.8.2 Statements relating to the NIST requirement 4.A.iii.

According to the analysis in previous sections we give a statement of the cryptographic strength

of BLUE MIDNIGHT WISH against attacks for finding collisions, preimages, second preimages and

resistance to length-extension attacks and multicollision attacks which is summarized in Table 3.8.

BLUE MIDNIGHT WISH of message digest size n (n = 224, 256, 384, 512) meet the following secu-

rity requirements:

• Collision resistance of approximately n
2 bits,

50

CHAPTER 3: DESIGN RATIONALE

• Preimage resistance of approximately n bits,

• Second-preimage resistance of approximately n− k bits for any message shorter than 2k bits,

• Resistance to length-extension attacks,

• Resistance to multicollision attacks, and

• Any m-bit hash function specified by taking a fixed subset of the BLUE MIDNIGHT WISH’s

output bits meets the above requirements with m replacing n.

Algorithm

abbreviation

Digest size

n (in bits)

Work factor for

finding collision

Work factor for

finding a preimage

Work factor for finding

a second preimage of a

message shorter than 2k

bits

Resistance to

length-

extension

attacks

Resistance to

multicollision

attacks

BMW224 224 ≈ 2112 ≈ 2224 ≈ 2224−k Yes Yes

BMW256 256 ≈ 2128 ≈ 2256 ≈ 2256−k Yes Yes

BMW384 384 ≈ 2192 ≈ 2384 ≈ 2384−k Yes Yes

BMW512 512 ≈ 2256 ≈ 2512 ≈ 2512−k Yes Yes

Table 3.8: Cryptographic strength of the BLUE MIDNIGHT WISH

3.8.3 Statement about the support of applications

All BLUE MIDNIGHT WISH variants (BMW224, BMW256, BMW384, BMW512) support wide vari-

ety of cryptographic applications, including digital signatures (FIPS 186-2), key derivation (NIST

Special Publication 800-56A), hash-based message authentication codes (FIPS 198), deterministic

random bit generators (SP 800-90) in the same way as the corresponding SHA-2 variants (SHA-

224, SHA-256, SHA-384, SHA-512).

3.8.4 Statement about the special requirements

There are no special requirements when hash function BLUE MIDNIGHT WISH is used to sup-

port HMAC, PRF and randomized hashing constructions. All BLUE MIDNIGHT WISH variants

(BMW224, BMW256, BMW384, BMW512) are used in these constructions (and in all appropriate

standards) in the same way as the corresponding SHA-2 variants (SHA-224, SHA-256, SHA-384,

SHA-512).

51

CHAPTER 3: DESIGN RATIONALE

3.8.5 Support of HMAC

BLUE MIDNIGHT WISH is an iterative cryptographic hash function. Thus, in combination with a

shared secret key it can be used in the HMAC standard as it is defined in [18–20].

As the cryptographic strength of HMAC depends on the properties of the underlying hash func-

tion, and the conjectured cryptographic strength of BLUE MIDNIGHT WISH is claimed in the Sec-

tion 3.8.2, we can formally state that BLUE MIDNIGHT WISH can be securely used with the HMAC.

In what follows we are giving 4 examples for every digest size of 224, 256, 384 and 512 bits.

52

CHAPTER 3: DESIGN RATIONALE

BMW224-MAC Test Examples

Key:

00010203 04050607 08090A0B 0C0D0E0F 10111213 14151617 18191A1B 1C1D1E1F

20212223 24252627 28292A2B 2C2D2E2F 30313233 34353637 38393A3B 3C3D3E3F

Key_length: 64

Data:

’Sample #1’

Data_length: 9

HMAC:

A208BC28 7D297A96 7C12801F 12302EB7 FB5511DE 357D5B56 77D8C050

Key:

30313233 34353637 38393A3B 3C3D3E3F 40414243

Key_length: 20

Data:

’Sample #2’

Data_length: 9

HMAC:

525E551A 5B890B00 A7A99E27 FF8C99AC 6CD77E89 E3B80300 7710DF4B

Key:

50515253 54555657 58595A5B 5C5D5E5F 60616263 64656667 68696A6B 6C6D6E6F

70717273 74757677 78797A7B 7C7D7E7F 80818283 84858687 88898A8B 8C8D8E8F

90919293 94959697 98999A9B 9C9D9E9F A0A1A2A3 A4A5A6A7 A8A9AAAB ACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic.’

Data_length: 110

HMAC:

D1674B83 B37830E6 AF7DBCC6 260E3DEC B8BB23F5 6DDA2CA8 28C60B87

Key:

50515253 54555657 58595A5B 5C5D5E5F 60616263 64656667 68696A6B 6C6D6E6F

70717273 74757677 78797A7B 7C7D7E7F 80818283 84858687 88898A8B 8C8D8E8F

90919293 94959697 98999A9B 9C9D9E9F A0A1A2A3 A4A5A6A7 A8A9AAAB ACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic: there is a chance that

a source with no knowledge of the key can present a purported MAC.’

Data_length: 200

HMAC:

16F9D79E F410A118 DDD39839 6A6A3FD0 AC9816ED 7110ECA9 0A05430A

53

CHAPTER 3: DESIGN RATIONALE

BMW256-MAC Test Examples

Key:

00010203 04050607 08090A0B 0C0D0E0F 10111213 14151617 18191A1B 1C1D1E1F

20212223 24252627 28292A2B 2C2D2E2F 30313233 34353637 38393A3B 3C3D3E3F

Key_length: 64

Data:

’Sample #1’

Data_length: 9

HMAC:

B5F059FD 59189FA9 B4C0C11C 2B132C67 D89CBAE1 F116A2D2 A1539344 D8E2F938

Key:

30313233 34353637 38393A3B 3C3D3E3F 40414243

Key_length: 20

Data:

’Sample #2’

Data_length: 9

HMAC:

7B203B54 15EEF50E 6E64C1C7 58BD06D0 ED23D993 1F74F713 D49BD075 83251FFE

Key:

50515253 54555657 58595A5B 5C5D5E5F 60616263 64656667 68696A6B 6C6D6E6F

70717273 74757677 78797A7B 7C7D7E7F 80818283 84858687 88898A8B 8C8D8E8F

90919293 94959697 98999A9B 9C9D9E9F A0A1A2A3 A4A5A6A7 A8A9AAAB ACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic.’

Data_length: 110

HMAC:

6696C409 4F8D89BC EE17AF43 50DC4D3E 84A2E2CA 1A239DE8 C5B689F0 7FAF6248

Key:

50515253 54555657 58595A5B 5C5D5E5F 60616263 64656667 68696A6B 6C6D6E6F

70717273 74757677 78797A7B 7C7D7E7F 80818283 84858687 88898A8B 8C8D8E8F

90919293 94959697 98999A9B 9C9D9E9F A0A1A2A3 A4A5A6A7 A8A9AAAB ACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic: there is a chance that

a source with no knowledge of the key can present a purported MAC.’

Data_length: 200

HMAC:

F5C8A1F5 31FD09D1 F33845E7 05075A8C E5EEB29B 33EFF70B AE97B750 E3231383

54

CHAPTER 3: DESIGN RATIONALE

BMW384-MAC Test Examples

Key:

0001020304050607 08090A0B0C0D0E0F 1011121314151617 18191A1B1C1D1E1F

2021222324252627 28292A2B2C2D2E2F 3031323334353637 38393A3B3C3D3E3F

Key_length: 64

Data:

’Sample #1’

Data_length: 9

HMAC:

E7BEAC8B685724D5 B625E79E007172DF 97FC85DB120DF5B7 52E618A676860EBB

73F46E70FAA0F084 937BFD6A21404913

Key:

3031323334353637 38393A3B3C3D3E3F 40414243

Key_length: 20

Data:

’Sample #2’

Data_length: 9

HMAC:

9E7DAF3407CB1BC0 CA3101F93A3D857B 44815D0C7203BC66 DE907C6C3DE7E322

E78A9072B285C97B EED23A85521F5EE7

Key:

5051525354555657 58595A5B5C5D5E5F 6061626364656667 68696A6B6C6D6E6F

7071727374757677 78797A7B7C7D7E7F 8081828384858687 88898A8B8C8D8E8F

9091929394959697 98999A9B9C9D9E9F A0A1A2A3A4A5A6A7 A8A9AAABACADAEAF

B0B1B2B350515253 5455565758595A5B 5C5D5E5F60616263 6465666768696A6B

6C6D6E6F70717273 7475767778797A7B 7C7D7E7F80818283 8485868788898A8B

8C8D8E8F90919293 9495969798999A9B 9C9D9E9FA0A1A2A3 A4A5A6A7A8A9AAAB

ACADAEAFB0B1B2B3

Key_length: 200

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic.’

Data_length: 110

HMAC:

515079D15A09C721 C63F3E1011DC7883 7D1362753377F861 FF34F9E884B84EA0

A60ADA03AF5FC724 870CCA900EC8E3B5

Key:

5051525354555657 58595A5B5C5D5E5F 6061626364656667 68696A6B6C6D6E6F

7071727374757677 78797A7B7C7D7E7F 8081828384858687 88898A8B8C8D8E8F

9091929394959697 98999A9B9C9D9E9F A0A1A2A3A4A5A6A7 A8A9AAABACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic: there is a chance that

a source with no knowledge of the key can present a purported MAC.’

Data_length: 200

HMAC:

9525578E38E7DD70 CB9FECB6DC72DEC0 388072FD3C63F6EC 733E26466DA7EEA2

3A5CD49C5B566D8E 730E30838F4C5563

55

CHAPTER 3: DESIGN RATIONALE

BMW512-MAC Test Examples

Key:

0001020304050607 08090A0B0C0D0E0F 1011121314151617 18191A1B1C1D1E1F

2021222324252627 28292A2B2C2D2E2F 3031323334353637 38393A3B3C3D3E3F

Key_length: 64

Data:

’Sample #1’

Data_length: 9

HMAC:

7017DB5D590A803E CDD0E87818083D65 7BB85636ED039BAA D3185D8CAB82E017

2D1957757D6E5E2F 288D43E032635E8F C4B9FAA9FD445CB1 161F7786D805529F

Key:

3031323334353637 38393A3B3C3D3E3F 40414243

Key_length: 20

Data:

’Sample #2’

Data_length: 9

HMAC:

CEF9110B1F90A240 80C8CE794FD922F8 669A1A0A74299DB9 789D9BD9CCC8BA7E

9438BD2383F14D3C 9278FDB65C0A3FCF CBF2EB570C085884 88F5F9AF428D8F67

Key:

5051525354555657 58595A5B5C5D5E5F 6061626364656667 68696A6B6C6D6E6F

7071727374757677 78797A7B7C7D7E7F 8081828384858687 88898A8B8C8D8E8F

9091929394959697 98999A9B9C9D9E9F A0A1A2A3A4A5A6A7 A8A9AAABACADAEAF

B0B1B2B350515253 5455565758595A5B 5C5D5E5F60616263 6465666768696A6B

6C6D6E6F70717273 7475767778797A7B 7C7D7E7F80818283 8485868788898A8B

8C8D8E8F90919293 9495969798999A9B 9C9D9E9FA0A1A2A3 A4A5A6A7A8A9AAAB

ACADAEAFB0B1B2B3

Key_length: 200

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic.’

Data_length: 110

HMAC:

8519939233A45472 58AFB322FAABDECF BE3F99B83CD0F760 944B3F9B9FC0CD2D

BBA98A069CC267CA 80B53D9BA6D9E89C 5A02173C661E5E71 5902D5F5B23FEA9F

Key:

5051525354555657 58595A5B5C5D5E5F 6061626364656667 68696A6B6C6D6E6F

7071727374757677 78797A7B7C7D7E7F 8081828384858687 88898A8B8C8D8E8F

9091929394959697 98999A9B9C9D9E9F A0A1A2A3A4A5A6A7 A8A9AAABACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic: there is a chance that

a source with no knowledge of the key can present a purported MAC.’

Data_length: 200

HMAC:

44FCDF6C712B75BE 3CA93EB2F98ECEAB 23D7C5A3839C2D26 7CFE0A9A202E7375

6B8B30882D94725A 82D2C705B5256154 231EC14756CCF4A7 132E911CA24C1AAB

3.8.6 BLUE MIDNIGHT WISH support of randomized hashing

BLUE MIDNIGHT WISH can be used in the randomizing scheme proposed in [21, 22].

3.8.7 Resistance to SHA-2 attacks

BLUE MIDNIGHT WISH is designed to have a security strength that is at least as good as the

hash algorithms currently specified in FIPS 180-3 [23], and this security strength is achieved with

significantly improved efficiency. Also, BLUE MIDNIGHT WISH is designed so that a possibly

successful attack on the SHA-2 hash functions is unlikely to be applicable to BLUE MIDNIGHT

WISH.

Is it possible to use any idea from the attacks on SHA-2 (or any other hash function) also to BLUE

MIDNIGHT WISH? Most ideas hardly use the concrete structure and operations of SHA-2. These

concrete combinations of sums of variables, concrete operations, shifts, additions, xors, etc. are

very important in any concrete attack. Any change, sometimes only a tiny change in the design

56

CHAPTER 3: DESIGN RATIONALE

(the shift, xor instead of add, adding another variable) may require a massively changed attack

to be mounted. The change in internal structure from SHA-2 to BLUE MIDNIGHT WISH is huge.

Different operations and combinations are used. All local collisions, neutral bits and so on, used

in known attacks on SHA-2 (SHA-1) are thus ineffective and non-applicable, against BLUE MID-

NIGHT WISH. No general method is known from the attacks on SHA-2, which would be applicable

to BLUE MIDNIGHT WISH.

The most important changes which have very strong effect in BLUE MIDNIGHT WISH vs. SHA-2:

a. The use of bijections - it guarantees that any change on the input will give a change of the

output. There are a lot of bijections in BLUE MIDNIGHT WISH and we found that it is difficult

to cancel their influence.

b. The core of the bijections are non-linear transformations.

c. The use of bijections with good propagation characteristics - all linear and arithmetical bijec-

tions, used in BLUE MIDNIGHT WISH are designed to have precise (and good) propagation

properties.

d. 16 summands (operands) are used in most operations. Unlike many other hash functions

where in the compression functions they use basic mixing operation on 4, 5 or 8 operands,

BLUE MIDNIGHT WISH in its core uses 16 operands (see the definition of the function f1).

It is very difficult to control many differences in operands of consecutive operations. To-

gether with the bijective property of the transformations, we have a property that a single

differential propagates very fast in the consecutive (iterative) core operations. From this, it

follows that to break BLUE MIDNIGHT WISH it is necessary to develop new local collisions,

new "rectangular relations", new neutral bits and even new strategies, rather than the old

ones used in the analysis and the attacks on SHA-2 or on any other known hash function

family.

57

CHAPTER 3: DESIGN RATIONALE

58

CHAPTER 4

Estimated Computational Efficiency and

Memory Requirements

4.1 Speed of BLUE MIDNIGHT WISH on NIST SHA-3 Reference Plat-

form

We have developed and measured the performances of BLUE MIDNIGHT WISH on a platform with

the following characteristics:

CPU: Intel Core 2 Duo,

Clock speed: 2.4 GHz,

Memory: 4GB RAM,

Operating system: Windows VistaTM Ultimate 64-bit (x64) Edition with Service Pack 1,

Compiler: Intel(R) C++ 11.0.072.

We also tested it with the ANSI C compiler in the Microsoft Visual Studio 2005 Professional Edi-

tion, but that compiler was always giving worse results compared with the Intel compiler.

For measuring the speed of the hash function expressed as cycles/byte we have used the rdtsc()

function and a modified version of a source code that was given to us by Dr. Brian Gladman from

his optimized realization of SHA-2 hash function [24].

59

CHAPTER 4: ESTIMATED COMPUTATIONAL EFFICIENCY AND MEMORY REQUIREMENTS

Speed in cycles/byte for different lengths

(in bytes) of the digested message.

MD Size 1 10 100 1000 10,000 100,000

224 3745.00 374.50 55.21 8.65 7.87 7.76

256 1165.00 115.30 17.17 8.66 7.87 7.76

384 8377.00 843.70 86.05 23.48 14.20 13.20

512 8497.00 848.50 86.05 23.48 14.17 13.20

Table 4.1: The performance of optimized 32–bit version of BLUE MIDNIGHT WISH in machine

cycles per data byte on Intel Core 2 Duo for different hash data lengths

Speed in cycles/byte for different lengths

(in bytes) of the digested message.

MD Size 1 10 100 1000 10,000 100,000

224 3601.00 362.50 52.81 8.37 7.59 7.50

256 1129.00 111.70 16.45 8.37 7.59 7.50

384 1177.00 115.30 11.65 4.57 3.95 3.90

512 1153.00 115.30 11.65 4.59 3.95 3.90

Table 4.2: The performance of optimized 64–bit version of BLUE MIDNIGHT WISH in machine

cycles per data byte on Intel Core 2 Duo for different hash data lengths

4.1.1 Speed of the Optimized 32–bit version of BLUE MIDNIGHT WISH

In the Table 4.1 we are giving the speed of all four instances of BLUE MIDNIGHT WISH for the

optimized 32–bit version.

4.1.2 Speed of the Optimized 64–bit version of BLUE MIDNIGHT WISH

In the Table 4.2 we are giving the speed of all four instances of BLUE MIDNIGHT WISH for the

optimized 64–bit version.

4.2 Memory requirements of BLUE MIDNIGHT WISH on NIST SHA-3

Reference Platform

When processing the message block M(i) = (M
(i)
0 , M

(i)
1 , . . . , M

(i)
15), we need memory for the current

value of the double pipe H(i−1) = (H
(i−1)
0 , H

(i−1)
1 , . . . , H

(i−1)
15), two auxiliary words XL and XH,

60

CHAPTER 4: ESTIMATED COMPUTATIONAL EFFICIENCY AND MEMORY REQUIREMENTS

and value of the quadruple pipe Q(i) = (Q
(i)
0 , Q

(i)
1 , . . . , Q

(i)
31).

The need of memory is thus:

• 16 words of M(i),

• 16 words of H(i),

• 2 words XL, XH,

• 32 words of Q(i).

which is in total 66 words. That means that BMW224 and BMW256 use 264 bytes and BMW384

and BMW512 use 528 bytes.

4.3 Estimates for efficiency and memory requirements on 8-bit proces-

sors

Daniel Otte has developed "AVR-Crypto-Lib" - a crypto library for 8-bit AVR microcontrollers [25]

and implemented in C the non-tweaked version of BLUE MIDNIGHT WISH achieving the following

results:

Name
Size (Flash)

(bytes)

Cycles

(per byte)

BMW256 6024 67.56

BMW512 15128 455.88

Table 4.3: Daniel Otte’s results of the implementation of non-tweaked BLUE MIDNIGHT WISH

In a private communication with Daniel Otte we got the information that he can reduce the size

of the code in a range of 20% – 50% and increase the speed in the same range if BLUE MIDNIGHT

WISH is realized in assembler.

We estimate that the tweaked version of BLUE MIDNIGHT WISH can achieve similar results (with

approximately 10% penalty on the size and the speed).

Note: The rest of the claims given in this section are taken from the old documentation for the

previous non-tweaked version of BLUE MIDNIGHT WISH.

We have used 8-bit Atmel processors ATmega16 and ATmega64 to test the implementation and

performance of the compression function of the two main representatives of the BLUE MIDNIGHT

61

CHAPTER 4: ESTIMATED COMPUTATIONAL EFFICIENCY AND MEMORY REQUIREMENTS

WISH hash function: BMW256 and BMW512. We have used WinAVR – an open source software

development tools for the Atmel AVR series of RISC microprocessors and for simulation we have

used the AVR Studio v 4.14. In Table 4.4 we are giving the length of the produced executable code

and the speed in number of cycles per byte.

Name
Code size

(.text + .data + .bootloader)

in bytes

Speed

(cycles/byte)
8–bit MCU

BMW224/256 10414 1369 ATmega16

BMW384/512 55810 2793 ATmega64

Table 4.4: The size and the speed of code for the compression functions for BMW224/256 and

BMW384/512

From the analysis of the produced executable code we can project that by direct assembler pro-

gramming BLUE MIDNIGHT WISH can be implemented in less than 8 Kbytes (BMW256) and in

less than 32 KBytes (BMW512) but this claim will have to be confirmed in the forthcoming period

during the NIST competition.

4.4 Estimates for a Compact Hardware Implementation

Note: The claims given in this section are taken from the old documentation for the previous non-

tweaked version of BLUE MIDNIGHT WISH. Additionally we can say that our estimates for the

tweaked BLUE MIDNIGHT WISH are the same as those for the non-tweaked version.

Our initial (non-optimized) VHDL implementation of BLUE MIDNIGHT WISH was done on Xilinx

v3200efg1156-8 FPGA. In Table 4.5 we are giving obtained equivalent gate count and also esti-

mates for the compact hardware implementation of the compression function of BLUE MIDNIGHT

WISH. These estimates are based on the minimal memory requirements described in Section 4.2.

Name
Obtained equivalent gate

count for Xilinx

v3200efg1156-8

Estimated gate count for the

needed memory

Estimated gate

count for the

optimized

algorithm logic

Estimated minimal

total gate count

BMW224/256 44,983 12,672 ≈4,000 ≈16,672

BMW384/512 84,515 25,344 ≈6,000 ≈31,344

Table 4.5: Obtained non-optimized gate count for the Xilinx v3200efg1156-8 FPGA, and estimated

number of gate count for realization of the compression functions for BMW224/256 and

BMW384/512

62

CHAPTER 4: ESTIMATED COMPUTATIONAL EFFICIENCY AND MEMORY REQUIREMENTS

4.5 Internal Parallelizability of BLUE MIDNIGHT WISH

The design of BLUE MIDNIGHT WISH allows very high level of parallelization in computation of

its compression function. This parallelism can be achieved by using specifically designed hard-

ware, and indeed with the advent of multicore CPUs, those parts can be computed in different

cores in parallel. From the specification given below, we claim that BLUE MIDNIGHT WISH can

be computed after 20 "parallel" steps. Of course those 20 "parallel" steps have different hardware

specification and different implementation specifics, but can serve as a general measure of the par-

allelizability of BLUE MIDNIGHT WISH. The high level parallel specification of BLUE MIDNIGHT

WISH is as follows:

Computing f0

Step 1: Computation of all 16 parts of W
(i)
0 , W

(i)
1 , . . . , W

(i)
15 can be done in parallel.

Step 2: Computing the values of all 16 parts of Qa can be done in parallel.

Computing f1

Step 1: It has 16 expansion steps and each step depends from the previous one. But every

expansion step have an internal structure that can be parallelized, and a pipelined setup

can compute parts from the next expansion steps that do not depend on the previous

expansion value.

Computing f2

Step 1: This step can be computed together with the computation of Step 1 of the function

f1.

Step 2 (First half): Computation of the first 8 words H
(i)
0 , H

(i)
1 , . . . , H

(i)
7 can be done in par-

allel.

Step 2 (Second half): Computation of the last 8 words H
(i)
8 , H

(i)
9 , . . . , H

(i)
15 can be done in

parallel.

63

CHAPTER 4: ESTIMATED COMPUTATIONAL EFFICIENCY AND MEMORY REQUIREMENTS

64

CHAPTER 5

Statements

5.1 Statement by the Submitter

I, Svein Johan Knapskog, do hereby declare that, to the best of my knowledge, the practice of the al-

gorithm, reference implementation, and optimized implementations that I have submitted, known

as BLUE MIDNIGHT WISH may be covered by the following U.S. and/or foreign patents: NONE.

I do hereby declare that I am aware of no patent applications that may cover the practice of my

submitted algorithm, reference implementation or optimized implementations.

I do hereby understand that my submitted algorithm may not be selected for inclusion in the

Secure Hash Standard. I also understand and agree that after the close of the submission period,

my submission may not be withdrawn from public consideration for SHA-3. I further understand

that I will not receive financial compensation from the U.S. Government for my submission. I

certify that, to the best of my knowledge, I have fully disclosed all patents and patent applications

relating to my algorithm. I also understand that the U.S. Government may, during the course of the

lifetime of the SHS or during the FIPS public review process, modify the algorithm’s specifications

(e.g., to protect against a newly discovered vulnerability). Should my submission be selected for

SHA-3, I hereby agree not to place any restrictions on the use of the algorithm, intending it to be

available on a worldwide, non-exclusive, royalty-free basis.

I do hereby agree to provide the statements required by Sections 5.2 and 5.3, below, for any patent

or patent application identified to cover the practice of my algorithm, reference implementation

or optimized implementations and the right to use such implementations for the purposes of the

SHA-3 evaluation process.

I understand that NIST will announce the selected algorithm(s) and proceed to publish the draft

65

CHAPTER 5: STATEMENTS

FIPS for public comment. If my algorithm (or the derived algorithm) is not selected for SHA-3

(including those that are not selected for the second round of public evaluation), I understand

that all rights, including use rights of the reference and optimized implementations, revert back

to the submitter (and other owner[s, as appropriate). Additionally, should the U.S. Government

not select my algorithm for SHA-3 at the time NIST ends the competition, all rights revert to the

submitter (and other owners as appropriate).

Signed: Svein Johan Knapskog

Title:Prof.

Dated: 27 October 2008

Place: Trondheim, Norway

66

CHAPTER 5: STATEMENTS

5.2 Statement by Patent (and Patent Application) Owner(s)

N/A

67

CHAPTER 5: STATEMENTS

5.3 Statement by Reference/Optimized Implementations’ Owner(s)

We, Danilo Gligoroski and Vlastimil Klima, are the owners of the submitted reference implementa-

tion and optimized implementations and hereby grant the U.S. Government and any interested

party the right to use such implementations for the purposes of the SHA-3 evaluation process,

notwithstanding that the implementations may be copyrighted.

Signed: Danilo Gligoroski Signed: Vlastimil Klima

Title: Prof. Title: Mr.

Dated: 27 October 2008 Dated: 27 October 2008

Place: Trondheim, Norway Place: Prague, Czech Republic

68

References

[1] Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algo-

rithm (SHA-3) Family, 2007. NIST. http://csrc.nist.gov/groups/ST/hash/index.html.

[2] S. Lucks. Design principles for iterated hash functions. Cryptology ePrint Archive, Report

2004/253, 2004. http://eprint.iacr.org/.

[3] S. Lucks. A failure-friendly design principle for hash functions. In Proceeding of ASIACRYPT

2005, volume 3788 of LNCS, pages 474–494, 2005.

[4] C. Malinaud J.-S. Coron, Y. Dodis and P. Puniya. Merkle–Damgård revisited: How to con-

struct a hash function. In Proceeding of CRYPTO 2005, volume 3621 of LNCS, pages 430–440,

2005.

[5] A. Joux. Multicollisions in iterated hash functions. application to cascaded constructions. In

Proceeding of CRYPTO 2004, volume 3152 of LNCS, pages 430–440, 2004.

[6] J. Kelsey and B. Schneier. Second preimages on n-bit hash functions for much less than 2n

work. In Proceeding of EUROCRYPT 2005, volume 3494 of LNCS, pages 474–490, 2005.

[7] R. Govaerts B. Preneel and J. Vandewalle. Hash functions based on block ciphers: A synthetic

approach. In Proceedings of CRYPTO 1993, volume 773 of LNCS, pages 368–378, 1994.

[8] P. Rogaway J. Black and T. Shrimpton. Black-box analysis of the block-cipher-based hash

function constructions from pgv. In Proceedings of CRYPTO 2002, volume 2442 of LNCS, pages

320–335, 2002.

[9] E. Filiol. A new statistical testing for symmetric ciphers and hash functions. In Proceedings,

ICICS 2002, volume 2513 of LNCS, pages 342–353, 2002.

[10] M.-J. O. Saarinen. Chosen-iv statistical attacks on estream ciphers. In Proceeding of SECRYPT

2006, pages 260–266, 2006.

69

http://csrc.nist.gov/groups/ST/hash/index.html
http://eprint.iacr.org/

REFERENCES

[11] T. Johansson H. Englund and M. S. Turan. A framework for chosen iv statistical analysis of

stream ciphers. pages 268–281, 2007.

[12] S. O’neil. Algebraic structure defectoscopy, 2007. http://eprint.iacr.org/2007/378.

[13] T. A. Berson. Differential cryptanalysis mod 232 with applications to md5. In Proceedings of

EUROCRYPT 1992, volume 658 of LNCS, pages 71–80, 1993.

[14] H. Lipmaa and S. Moriai. Efficient algorithms for computing differential properties of addi-

tion. In Proceedings of FSE 2001, volume 2355 of LNCS, pages 336–350, 2002.

[15] H. Lipmaa, J. Wallén, and P. Dumas. On the Additive Differential Probability of Exclusive-Or.

In Proceedings of FSE 2004, volume 3017 of LNCS, pages 317–331, 2004.

[16] S. Paul and B. Preneel. Solving systems of differential equations of addition. In Proceedings of

ACISP 2005, volume 3574 of LNCS, pages 75–88, 2005.

[17] P. L’Ecuyer and R. Simard. Testu01: A c library for empirical testing of random number

generators. ACM Trans. Math. Softw., 33(4):22, 2007.

[18] M. Bellare H. Krawczyk and R. Canetti. RFC2104 - HMAC: Keyed-Hashing for Message Authen-

tication. Internet Engineering Task Force, 1997. http://www.faqs.org/rfcs/rfc2104.html.

[19] American Bankers Association. Keyed Hash Message Authentication Code. ANSI X9.71, Wash-

ington, D.C., 2000.

[20] National Institute of Standards and Technology. The Keyed-Hash Message Authentication Code

(HMAC), FIPS PUB 198-1. Federal Information Processing Standards Publication, July, 2008.

http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf.

[21] S. Halevi and H. Krawczyk. Strengthening digital signatures via randomized hashing. In

Proceedings of CRYPTO 2006, volume 4117 of LNCS, pages 41–59, 2006.

[22] National Institute of Standards and Technology. Randomized Hash-

ing for Digital Signatures - Draft NIST Special Publication 800-106. Fed-

eral Information Processing Standards Publication, August, 2008.

http://csrc.nist.gov/publications/drafts/800-106/2nd-Draft_SP800-106_July2008.pdf.

[23] National Institute of Standards and Technology. Secure Hash Standard (SHS), FIPS

PUB 180-3. Federal Information Processing Standards Publication, October 2008.

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf.

70

http://eprint.iacr.org/2007/378
http://www.faqs.org/rfcs/rfc2104.html
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/drafts/800-106/2nd-Draft_SP800-106_July2008.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

REFERENCES

[24] B. Gladman. Sha1, sha2, hmac and key derivation in c.

http://fp.gladman.plus.com/cryptography_technology/sha/index.htm.

[25] AVR-Crypto-Lib, 2009. Das LABOR e.V., Bochum. http://avrcryptolib.das-labor.org/trac.

71

http://fp.gladman.plus.com/cryptography_technology/sha/index.htm
http://avrcryptolib.das-labor.org/trac

	Titlepage
	Abstract
	Cover Page
	Cover page
	1 Algorithm Specifics
	Algorithm Specifics
	1.1 Bit Strings and Integers
	1.2 Parameters, variables and constants
	1.3 General design properties of Blue Midnight Wish
	1.4 Blue Midnight Wish logic functions
	1.5 Preprocessing
	1.5.1 Padding the message
	 BWM224 and BMW256
	 BWM384 and BMW512
	1.5.2 Parsing the message
	 BWM224 and BMW256
	 BWM384 and BMW512
	1.5.3 Setting the initial double pipe value H(0)
	 BWM224
	 BWM256
	 BWM384
	 BWM512

	2 Description of the Hash Algorithm Blue Midnight Wish
	Description of the Hash Algorithm Blue Midnight Wish
	2.1 Generic description for all variants of the Blue Midnight Wish
	2.1.1 BMW224 and BMW256
	2.1.2 BMW384 and BMW512

	3 Design Rationale
	Design Rationales
	3.1 Reasons for default little-endian design
	3.2 Reasons for using double pipe iterative structure
	3.3 Rationale for constants used in Blue Midnight Wish
	3.3.1 Constants in logical functions
	3.3.2 Constants in the expansion part
	3.3.3 Constants in the finalization part

	3.4 Rationale for the bijective ``Step 1'' in the function f0
	3.5 Rationale for the bijective ``Step 2'' in the function f0
	3.6 Tunable parameters ExpandRounds1 and ExpandRounds2
	3.6.1 Statements, relating to the NIST requirements 2.B.1.

	3.7 Cryptanalysis of Blue Midnight Wish
	3.7.1 Bijective parts in the compression function of Blue Midnight Wish
	3.7.2 Representation as a generalized PGV1 scheme with a weak block cipher
	3.7.3 Monomial tests on the components used in Blue Midnight Wish
	3.7.4 Infeasibility of finding collisions, preimages and second preimages
	3.7.5 Approximation of additions and subtractions with XORs
	3.7.6 Cryptanalysis of a scaled down Blue Midnight Wish

	3.8 Statements about security, support for applications, HMACs and randomized hashing
	3.8.1 Security statement relating to the NIST requirement 4.A.
	3.8.2 Statements relating to the NIST requirement 4.A.iii.
	3.8.3 Statement about the support of applications
	3.8.4 Statement about the special requirements
	3.8.5 Support of HMAC
	3.8.6 Blue Midnight Wish support of randomized hashing
	3.8.7 Resistance to SHA-2 attacks

	4 Estimated Computational Efficiency and Memory Requirements
	Estimated Computational Efficiency and Memory Requirements
	4.1 Speed of Blue Midnight Wish on NIST SHA-3 Reference Platform
	4.1.1 Speed of the Optimized 32--bit version of Blue Midnight Wish
	4.1.2 Speed of the Optimized 64--bit version of Blue Midnight Wish

	4.2 Memory requirements of Blue Midnight Wish on NIST SHA-3 Reference Platform
	4.3 Estimates for efficiency and memory requirements on 8-bit processors
	4.4 Estimates for a Compact Hardware Implementation
	4.5 Internal Parallelizability of Blue Midnight Wish

	5 Statements
	Statements
	5.1 Statement by the Submitter
	5.2 Statement by Patent (and Patent Application) Owner(s)

	Statement by Patent (and Patent Application) Owner(s)
	5.3 Statement by Reference/Optimized Implementations' Owner(s)

	Statement by Reference/Optimized Implementations' Owner(s)
	References

