
A Document describing all modifications made on the Blue Midnight
Wish cryptographic hash function before entering the Second Round of

SHA-3 hash competition

Danilo Gligoroski1 and Vlastimil Klima2

1 Department of Telematics, Norwegian University of Science and Technology, O.S.Bragstads plass 2B, N-7491 Trondheim,
NORWAY

danilo.gligoroski@item.ntnu.no
2 Independent cryptologist - consultant, Czech Republic

v.klima@volny.cz

Abstract. In this document we elaborate changes to the original Blue Midnight Wish, as it will enter the
Second Round of SHA-3 competition. Generally, we can say that there are two technical changes (or typo correc-
tions) and two minor tweaks in the design. The first technical change is in correcting a typo in the initial double
pipe value H(0) for the 224 and 384 versions, and the second technical change is in correcting a typo in the order
of the use of two logical functions s4 and s5. The tweaks in the design consist of tweaks in functions f0 and f1

and an additional (final) use of the compression function.
For us as designers of Blue Midnight Wish it is very important that the tweaks do not introduce any new
building blocks which would need new analysis. The chosen tweaks are quite simple. They use the same building
blocks which were used in the original Blue Midnight Wish hash function. Only the inputs of the building blocks
are changed in a fully transparent manner. The goals of the proposed tweaks are also simple and transparent.
For instance the first tweak adds the old double pipe to the result of the function f0 and to the “key” of the
function f1. This strongly decouples the original input M ⊕ H into two independently acting variables M and
H. The second tweak is an additional (final) invocation of the compression function. It also uses the old building
block and it is a pivotal security countermeasure against many types of preimage, near, pseudo and other types
of attacks. At first glance it may seem that by this additional final invocation of the compression function we
have over-designed Blue Midnight Wish. However having in mind the excellent speed performance of both
non-tweaked and tweaked function we can say that this additional final invocation of the compression function
brings additional rise in our confidence of the strength and quality of Blue Midnight Wish with only a minor
efficiency penalty.
In fact, the introduced tweaks do not affect the speed of the hash computation on messages longer than 1000
bytes, but it becomes visible on hashing extremely short or short messages, as would be expected. On the other
hand, for the optimized versions of the tweaked Blue Midnight Wish we have documented higher operating
speed than the speed reported in the documentation for the non-tweaked function.

1 Methodology

We will elaborate all changes by the following methodology:

1. We will give the non-tweaked (or non-changed) part in the old submission,
2. We will give the new tweaked (or changed) part,
3. We will give a rationale for the tweak (technical change).

2 Technical change Nr. 1

The original submission of Blue Midnight Wish for the 224-bit digest size had the initial double pipe
H(0) given in Table 1.

Note the value H
(0)
13 = 0x24353637! The value should be H

(0)
13 = 0x34353637, so the corrected H(0) for

BMW224 now is given in Table 2.



H
(0)
0 = 0x00010203 H

(0)
1 = 0x04050607

H
(0)
2 = 0x08090A0B H

(0)
3 = 0x0C0D0E0F

H
(0)
4 = 0x10111213 H

(0)
5 = 0x14151617

H
(0)
6 = 0x18191A1B H

(0)
7 = 0x1C1D1E1F

H
(0)
8 = 0x20212223 H

(0)
9 = 0x24252627

H
(0)
10 = 0x28292A2B H

(0)
11 = 0x2C2D2E2F

H
(0)
12 = 0x30313233 H

(0)
13 = 0x24353637

H
(0)
14 = 0x38393A3B H

(0)
15 = 0x3C3D3E3F

Table 1. Initial double pipe H(0) for old BMW224

H
(0)
0 = 0x00010203 H

(0)
1 = 0x04050607

H
(0)
2 = 0x08090A0B H

(0)
3 = 0x0C0D0E0F

H
(0)
4 = 0x10111213 H

(0)
5 = 0x14151617

H
(0)
6 = 0x18191A1B H

(0)
7 = 0x1C1D1E1F

H
(0)
8 = 0x20212223 H

(0)
9 = 0x24252627

H
(0)
10 = 0x28292A2B H

(0)
11 = 0x2C2D2E2F

H
(0)
12 = 0x30313233 H

(0)
13 = 0x34353637

H
(0)
14 = 0x38393A3B H

(0)
15 = 0x3C3D3E3F

Table 2. Initial double pipe H(0) for tweaked BMW224

H
(0)
0 = 0x0001020304050607 H

(0)
1 = 0x08090A0B0C0D0E0F

H
(0)
2 = 0x1011121314151617 H

(0)
3 = 0x18191A1B1C1D1E1F

H
(0)
4 = 0x2021222324252627 H

(0)
5 = 0x28292A2B2C2D2E2F

H
(0)
6 = 0x3031323324353637 H

(0)
7 = 0x38393A3B3C3D3E3F

H
(0)
8 = 0x4041424344454647 H

(0)
9 = 0x48494A4B4C4D4E4F

H
(0)
10 = 0x5051525354555657 H

(0)
11 = 0x58595A5B5C5D5E5F

H
(0)
12 = 0x6061626364656667 H

(0)
13 = 0x68696A6B6C6D6E6F

H
(0)
14 = 0x7071727374757677 H

(0)
15 = 0x78797A7B7C7D7E7F

Table 3. Initial double pipe H(0) for old BMW384

The original submission of Blue Midnight Wish for the 384-bit digest size had the initial double pipe
H(0) given in Table 3.

Note the value H
(0)
6 = 0x3031323324353637! The value should be H

(0)
6 = 0x3031323334353637, so the

corrected H(0) for BMW384 now is given in Table 4.

H
(0)
0 = 0x0001020304050607 H

(0)
1 = 0x08090A0B0C0D0E0F

H
(0)
2 = 0x1011121314151617 H

(0)
3 = 0x18191A1B1C1D1E1F

H
(0)
4 = 0x2021222324252627 H

(0)
5 = 0x28292A2B2C2D2E2F

H
(0)
6 = 0x3031323334353637 H

(0)
7 = 0x38393A3B3C3D3E3F

H
(0)
8 = 0x4041424344454647 H

(0)
9 = 0x48494A4B4C4D4E4F

H
(0)
10 = 0x5051525354555657 H

(0)
11 = 0x58595A5B5C5D5E5F

H
(0)
12 = 0x6061626364656667 H

(0)
13 = 0x68696A6B6C6D6E6F

H
(0)
14 = 0x7071727374757677 H

(0)
15 = 0x78797A7B7C7D7E7F

Table 4. Initial double pipe H(0) for tweaked BMW384

2



3 Tweak Nr. 1

The tweak Nr. 1 was performed to make infeasible finding free-start near collisions and finding pseudo-
preimages and pseudo-collisions as hard as finding real preimages and real collisions. To achieve that we
tweaked both f0 and f1 functions.

3.1 Tweak in f0

The old f0 had the following form:

f0 : {0, 1}2m → {0, 1}m

Input: Message block M(i) = (M
(i)
0 , M

(i)
1 , . . . , M

(i)
15 ), and the previous double pipe H(i−1) =

(H
(i−1)
0 , H

(i−1)
1 , . . . , H

(i−1)
15 ).

Output: First part of the quadruple pipe Q
(i)
a = (Q

(i)
0 , Q

(i)
1 , . . . , Q

(i)
15 ).

1. Bijective transform of M (i) ⊕H(i−1):

W
(i)
0 = (M

(i)
5 ⊕H

(i−1)
5 ) − (M

(i)
7 ⊕H

(i−1)
7 ) + (M

(i)
10 ⊕H

(i−1)
10 ) + (M

(i)
13 ⊕H

(i−1)
13 ) + (M

(i)
14 ⊕H

(i−1)
14 )

W
(i)
1 = (M

(i)
6 ⊕H

(i−1)
6 ) − (M

(i)
8 ⊕H

(i−1)
8 ) + (M

(i)
11 ⊕H

(i−1)
11 ) + (M

(i)
14 ⊕H

(i−1)
14 ) − (M

(i)
15 ⊕H

(i−1)
15 )

W
(i)
2 = (M

(i)
0 ⊕H

(i−1)
0 ) + (M

(i)
7 ⊕H

(i−1)
7 ) + (M

(i)
9 ⊕H

(i−1)
9 ) − (M

(i)
12 ⊕H

(i−1)
12 ) + (M

(i)
15 ⊕H

(i−1)
15 )

W
(i)
3 = (M

(i)
0 ⊕H

(i−1)
0 ) − (M

(i)
1 ⊕H

(i−1)
1 ) + (M

(i)
8 ⊕H

(i−1)
8 ) − (M

(i)
10 ⊕H

(i−1)
10 ) + (M

(i)
13 ⊕H

(i−1)
13 )

W
(i)
4 = (M

(i)
1 ⊕H

(i−1)
1 ) + (M

(i)
2 ⊕H

(i−1)
2 ) + (M

(i)
9 ⊕H

(i−1)
9 ) − (M

(i)
11 ⊕H

(i−1)
11 ) − (M

(i)
14 ⊕H

(i−1)
14 )

W
(i)
5 = (M

(i)
3 ⊕H

(i−1)
3 ) − (M

(i)
2 ⊕H

(i−1)
2 ) + (M

(i)
10 ⊕H

(i−1)
10 ) − (M

(i)
12 ⊕H

(i−1)
12 ) + (M

(i)
15 ⊕H

(i−1)
15 )

W
(i)
6 = (M

(i)
4 ⊕H

(i−1)
4 ) − (M

(i)
0 ⊕H

(i−1)
0 ) − (M

(i)
3 ⊕H

(i−1)
3 ) − (M

(i)
11 ⊕H

(i−1)
11 ) + (M

(i)
13 ⊕H

(i−1)
13 )

W
(i)
7 = (M

(i)
1 ⊕H

(i−1)
1 ) − (M

(i)
4 ⊕H

(i−1)
4 ) − (M

(i)
5 ⊕H

(i−1)
5 ) − (M

(i)
12 ⊕H

(i−1)
12 ) − (M

(i)
14 ⊕H

(i−1)
14 )

W
(i)
8 = (M

(i)
2 ⊕H

(i−1)
2 ) − (M

(i)
5 ⊕H

(i−1)
5 ) − (M

(i)
6 ⊕H

(i−1)
6 ) + (M

(i)
13 ⊕H

(i−1)
13 ) − (M

(i)
15 ⊕H

(i−1)
15 )

W
(i)
9 = (M

(i)
0 ⊕H

(i−1)
0 ) − (M

(i)
3 ⊕H

(i−1)
3 ) + (M

(i)
6 ⊕H

(i−1)
6 ) − (M

(i)
7 ⊕H

(i−1)
7 ) + (M

(i)
14 ⊕H

(i−1)
14 )

W
(i)
10 = (M

(i)
8 ⊕H

(i−1)
8 ) − (M

(i)
1 ⊕H

(i−1)
1 ) − (M

(i)
4 ⊕H

(i−1)
4 ) − (M

(i)
7 ⊕H

(i−1)
7 ) + (M

(i)
15 ⊕H

(i−1)
15 )

W
(i)
11 = (M

(i)
8 ⊕H

(i−1)
8 ) − (M

(i)
0 ⊕H

(i−1)
0 ) − (M

(i)
2 ⊕H

(i−1)
2 ) − (M

(i)
5 ⊕H

(i−1)
5 ) + (M

(i)
9 ⊕H

(i−1)
9 )

W
(i)
12 = (M

(i)
1 ⊕H

(i−1)
1 ) + (M

(i)
3 ⊕H

(i−1)
3 ) − (M

(i)
6 ⊕H

(i−1)
6 ) − (M

(i)
9 ⊕H

(i−1)
9 ) + (M

(i)
10 ⊕H

(i−1)
10 )

W
(i)
13 = (M

(i)
2 ⊕H

(i−1)
2 ) + (M

(i)
4 ⊕H

(i−1)
4 ) + (M

(i)
7 ⊕H

(i−1)
7 ) + (M

(i)
10 ⊕H

(i−1)
10 ) + (M

(i)
11 ⊕H

(i−1)
11 )

W
(i)
14 = (M

(i)
3 ⊕H

(i−1)
3 ) − (M

(i)
5 ⊕H

(i−1)
5 ) + (M

(i)
8 ⊕H

(i−1)
8 ) − (M

(i)
11 ⊕H

(i−1)
11 ) − (M

(i)
12 ⊕H

(i−1)
12 )

W
(i)
15 = (M

(i)
12 ⊕H

(i−1)
12 ) − (M

(i)
4 ⊕H

(i−1)
4 ) − (M

(i)
6 ⊕H

(i−1)
6 ) − (M

(i)
9 ⊕H

(i−1)
9 ) + (M

(i)
13 ⊕H

(i−1)
13 )

2. Further bijective transform of W
(i)
j , j = 0, . . . , 15:

Q
(i)
0 = s0(W

(i)
0 ); Q

(i)
1 = s1(W

(i)
1 ); Q

(i)
2 = s2(W

(i)
2 ); Q

(i)
3 = s3(W

(i)
3 );

Q
(i)
4 = s4(W

(i)
4 ); Q

(i)
5 = s0(W

(i)
5 ); Q

(i)
6 = s1(W

(i)
6 ); Q

(i)
7 = s2(W

(i)
7 );

Q
(i)
8 = s3(W

(i)
8 ); Q

(i)
9 = s4(W

(i)
9 ); Q

(i)
10 = s0(W

(i)
10 ); Q

(i)
11 = s1(W

(i)
11 );

Q
(i)
12 = s2(W

(i)
12 ); Q

(i)
13 = s3(W

(i)
13 ); Q

(i)
14 = s4(W

(i)
14 ); Q

(i)
15 = s0(W

(i)
15 );

Table 5. Definition of the function f0 in the old Blue Midnight Wish

3



The tweak in f0 is done in the Step 2:

f0 : {0, 1}2m → {0, 1}m

Input: Message block M(i) = (M
(i)
0 , M

(i)
1 , . . . , M

(i)
15 ), and the previous double pipe H(i−1) =

(H
(i−1)
0 , H

(i−1)
1 , . . . , H

(i−1)
15 ).

Output: First part of the quadruple pipe Q
(i)
a = (Q

(i)
0 , Q

(i)
1 , . . . , Q

(i)
15 ).

1. Bijective transform of M (i) ⊕H(i−1):

W
(i)
0 = (M

(i)
5 ⊕H

(i−1)
5 ) − (M

(i)
7 ⊕H

(i−1)
7 ) + (M

(i)
10 ⊕H

(i−1)
10 ) + (M

(i)
13 ⊕H

(i−1)
13 ) + (M

(i)
14 ⊕H

(i−1)
14 )

W
(i)
1 = (M

(i)
6 ⊕H

(i−1)
6 ) − (M

(i)
8 ⊕H

(i−1)
8 ) + (M

(i)
11 ⊕H

(i−1)
11 ) + (M

(i)
14 ⊕H

(i−1)
14 ) − (M

(i)
15 ⊕H

(i−1)
15 )

W
(i)
2 = (M

(i)
0 ⊕H

(i−1)
0 ) + (M

(i)
7 ⊕H

(i−1)
7 ) + (M

(i)
9 ⊕H

(i−1)
9 ) − (M

(i)
12 ⊕H

(i−1)
12 ) + (M

(i)
15 ⊕H

(i−1)
15 )

W
(i)
3 = (M

(i)
0 ⊕H

(i−1)
0 ) − (M

(i)
1 ⊕H

(i−1)
1 ) + (M

(i)
8 ⊕H

(i−1)
8 ) − (M

(i)
10 ⊕H

(i−1)
10 ) + (M

(i)
13 ⊕H

(i−1)
13 )

W
(i)
4 = (M

(i)
1 ⊕H

(i−1)
1 ) + (M

(i)
2 ⊕H

(i−1)
2 ) + (M

(i)
9 ⊕H

(i−1)
9 ) − (M

(i)
11 ⊕H

(i−1)
11 ) − (M

(i)
14 ⊕H

(i−1)
14 )

W
(i)
5 = (M

(i)
3 ⊕H

(i−1)
3 ) − (M

(i)
2 ⊕H

(i−1)
2 ) + (M

(i)
10 ⊕H

(i−1)
10 ) − (M

(i)
12 ⊕H

(i−1)
12 ) + (M

(i)
15 ⊕H

(i−1)
15 )

W
(i)
6 = (M

(i)
4 ⊕H

(i−1)
4 ) − (M

(i)
0 ⊕H

(i−1)
0 ) − (M

(i)
3 ⊕H

(i−1)
3 ) − (M

(i)
11 ⊕H

(i−1)
11 ) + (M

(i)
13 ⊕H

(i−1)
13 )

W
(i)
7 = (M

(i)
1 ⊕H

(i−1)
1 ) − (M

(i)
4 ⊕H

(i−1)
4 ) − (M

(i)
5 ⊕H

(i−1)
5 ) − (M

(i)
12 ⊕H

(i−1)
12 ) − (M

(i)
14 ⊕H

(i−1)
14 )

W
(i)
8 = (M

(i)
2 ⊕H

(i−1)
2 ) − (M

(i)
5 ⊕H

(i−1)
5 ) − (M

(i)
6 ⊕H

(i−1)
6 ) + (M

(i)
13 ⊕H

(i−1)
13 ) − (M

(i)
15 ⊕H

(i−1)
15 )

W
(i)
9 = (M

(i)
0 ⊕H

(i−1)
0 ) − (M

(i)
3 ⊕H

(i−1)
3 ) + (M

(i)
6 ⊕H

(i−1)
6 ) − (M

(i)
7 ⊕H

(i−1)
7 ) + (M

(i)
14 ⊕H

(i−1)
14 )

W
(i)
10 = (M

(i)
8 ⊕H

(i−1)
8 ) − (M

(i)
1 ⊕H

(i−1)
1 ) − (M

(i)
4 ⊕H

(i−1)
4 ) − (M

(i)
7 ⊕H

(i−1)
7 ) + (M

(i)
15 ⊕H

(i−1)
15 )

W
(i)
11 = (M

(i)
8 ⊕H

(i−1)
8 ) − (M

(i)
0 ⊕H

(i−1)
0 ) − (M

(i)
2 ⊕H

(i−1)
2 ) − (M

(i)
5 ⊕H

(i−1)
5 ) + (M

(i)
9 ⊕H

(i−1)
9 )

W
(i)
12 = (M

(i)
1 ⊕H

(i−1)
1 ) + (M

(i)
3 ⊕H

(i−1)
3 ) − (M

(i)
6 ⊕H

(i−1)
6 ) − (M

(i)
9 ⊕H

(i−1)
9 ) + (M

(i)
10 ⊕H

(i−1)
10 )

W
(i)
13 = (M

(i)
2 ⊕H

(i−1)
2 ) + (M

(i)
4 ⊕H

(i−1)
4 ) + (M

(i)
7 ⊕H

(i−1)
7 ) + (M

(i)
10 ⊕H

(i−1)
10 ) + (M

(i)
11 ⊕H

(i−1)
11 )

W
(i)
14 = (M

(i)
3 ⊕H

(i−1)
3 ) − (M

(i)
5 ⊕H

(i−1)
5 ) + (M

(i)
8 ⊕H

(i−1)
8 ) − (M

(i)
11 ⊕H

(i−1)
11 ) − (M

(i)
12 ⊕H

(i−1)
12 )

W
(i)
15 = (M

(i)
12 ⊕H

(i−1)
12 ) − (M

(i)
4 ⊕H

(i−1)
4 ) − (M

(i)
6 ⊕H

(i−1)
6 ) − (M

(i)
9 ⊕H

(i−1)
9 ) + (M

(i)
13 ⊕H

(i−1)
13 )

2. Further bijective transform of W
(i)
j , j = 0, . . . , 15:

Q
(i)
0 = s0(W

(i)
0 ) + H

(i−1)
1 ; Q

(i)
1 = s1(W

(i)
1 ) + H

(i−1)
2 ; Q

(i)
2 = s2(W

(i)
2 ) + H

(i−1)
3 ; Q

(i)
3 = s3(W

(i)
3 ) + H

(i−1)
4 ;

Q
(i)
4 = s4(W

(i)
4 ) + H

(i−1)
5 ; Q

(i)
5 = s0(W

(i)
5 ) + H

(i−1)
6 ; Q

(i)
6 = s1(W

(i)
6 ) + H

(i−1)
7 ; Q

(i)
7 = s2(W

(i)
7 ) + H

(i−1)
8 ;

Q
(i)
8 = s3(W

(i)
8 ) + H

(i−1)
9 ; Q

(i)
9 = s4(W

(i)
9 ) + H

(i−1)
10 ; Q

(i)
10 = s0(W

(i)
10 ) + H

(i−1)
11 ; Q

(i)
11 = s1(W

(i)
11 ) + H

(i−1)
12 ;

Q
(i)
12 = s2(W

(i)
12 ) + H

(i−1)
13 ; Q

(i)
13 = s3(W

(i)
13 ) + H

(i−1)
14 ; Q

(i)
14 = s4(W

(i)
14 ) + H

(i−1)
15 ; Q

(i)
15 = s0(W

(i)
15 ) + H

(i−1)
0 ;

Table 6. Definition of the function f0 of the tweaked Blue Midnight Wish

If we denote the Step 1 of f0 as a transformation A1 : {0, 1}(16×2)w → {0, 1}16w and the Step 2 as a
transformation A2 : {0, 1}(16×2)w → {0, 1}16w, (where w is 32 or 64) then we can describe the function f0 as

f0(Mi, Hi−1) ≡ A2(A1 · (Mi ⊕Hi−1)) + ROTL1(Hi−1),

where we denote by ROTL1(Hi−1) = (H(i−1)
1 , H

(i−1)
2 , . . . ,H

(i−1)
15 , H

(i−1)
0 ) the rotation by one position to the

left of the vector (H(i−1)
0 , H

(i−1)
1 , . . . ,H

(i−1)
15 ). The reason why we put this additional term ROTL1(Hi−1)

(see that it is not present in the Round 1 version of Blue Midnight Wish) is that we installed two actions
of a decoupling the Mi and Hi−1 in order to prevent pseudo-attacks that can use the fact that Mi⊕Hi−1 = 0
iff Mi = Hi−1. This is the first such decoupling, and the second one is installed in the expansion function f1.

4



3.2 Tweak in f1

The old function f1 had the following description:

f1 : {0, 1}(16×2)w → {0, 1}16w

Input: Message block M(i) = (M
(i)
0 , M

(i)
1 , . . . , M

(i)
15 ), and the first part of quadruple pipe

Q
(i)
a = (Q

(i)
0 , Q

(i)
1 , . . . , Q

(i)
15 ).

Output: Second part of the quadruple pipe Q
(i)
b = (Q

(i)
16 , Q

(i)
17 , . . . , Q

(i)
31 ).

1. Double pipe expansion according to the tunable parameters ExpandRounds1 and ExpandRounds2.
1.1 For ii = 0 to ExpandRounds1 − 1

Q
(i)
ii+16 = expand1(ii + 16)

1.2 For ii = ExpandRounds1 to ExpandRounds1 + ExpandRounds2 − 1
Q

(i)
ii+16 = expand2(ii + 16)

Table 7. Definition of the old function f1

The tweaked function f1 has the following description:

f1 : {0, 1}(16×3)w → {0, 1}16w

Input: Message block M(i) = (M
(i)
0 , M

(i)
1 , . . . , M

(i)
15 ), the previous double pipe

H(i−1) = (H
(i−1)
0 , H

(i−1)
1 , . . . , H

(i−1)
15 ) and the first part of the quadruple pipe Q

(i)
a = (Q

(i)
0 , Q

(i)
1 , . . . , Q

(i)
15 ).

Output: Second part of the quadruple pipe Q
(i)
b = (Q

(i)
16 , Q

(i)
17 , . . . , Q

(i)
31 ).

1. Double pipe expansion according to the tunable parameters ExpandRounds1 and ExpandRounds2.
1.1 For ii = 0 to ExpandRounds1 − 1

Q
(i)
ii+16 = expand1(ii + 16)

1.2 For ii = ExpandRounds1 to ExpandRounds1 + ExpandRounds2 − 1
Q

(i)
ii+16 = expand2(ii + 16)

Table 8. Definition of the tweaked function f1 of Blue Midnight Wish

So in the tweaked f1 we are also using the values of the previous double pipe H(i−1) which was not used
in the old version od Blue Midnight Wish.

We will describe how concretely we are using the values H(i−1) in the tweaked version by the following
comparison.

5



The description of logical functions used in old Blue Midnight Wish was the following:

BMW224/BMW256 BMW384/BMW512

s0(x) = SHR1(x)⊕ SHL3(x)⊕ ROTL4(x) ⊕ ROTL19(x) s0(x) = SHR1(x)⊕ SHL3(x)⊕ ROTL4(x)⊕ ROTL37(x)
s1(x) = SHR1(x)⊕ SHL2(x)⊕ ROTL8(x)⊕ ROTL23(x) s1(x) = SHR1(x)⊕ SHL2(x)⊕ ROTL13(x)⊕ ROTL43(x)
s2(x) = SHR2(x)⊕ SHL1(x)⊕ ROTL12(x)⊕ ROTL25(x) s2(x) = SHR2(x)⊕ SHL1(x)⊕ ROTL19(x)⊕ ROTL53(x)
s3(x) = SHR2(x)⊕ SHL2(x)⊕ ROTL15(x)⊕ ROTL29(x) s3(x) = SHR2(x)⊕ SHL2(x)⊕ ROTL28(x)⊕ ROTL59(x)
s4(x) = SHR1(x)⊕ x s4(x) = SHR1(x)⊕ x
s5(x) = SHR2(x)⊕ x s5(x) = SHR2(x)⊕ x
r1(x) = ROTL3(x) r1(x) = ROTL5(x)
r2(x) = ROTL7(x) r2(x) = ROTL11(x)
r3(x) = ROTL13(x) r3(x) = ROTL27(x)
r4(x) = ROTL16(x) r4(x) = ROTL32(x)
r5(x) = ROTL19(x) r5(x) = ROTL37(x)
r6(x) = ROTL23(x) r6(x) = ROTL43(x)
r7(x) = ROTL27(x) r7(x) = ROTL53(x)

AddElement(j) = M
(i)
j + M

(i)
j+3 −M

(i)
j+10 + Kj+16 AddElement(j) = M

(i)
j + M

(i)
j+3 −M

(i)
j+10 + Kj+16

expand1(j) = s1(Q
(i)
j−16) + s2(Q

(i)
j−15) + s3(Q

(i)
j−14) + s0(Q

(i)
j−13)

+ s1(Q
(i)
j−12) + s2(Q

(i)
j−11) + s3(Q

(i)
j−10) + s0(Q

(i)
j−9)

+ s1(Q
(i)
j−8) + s2(Q

(i)
j−7) + s3(Q

(i)
j−6) + s0(Q

(i)
j−5)

+ s1(Q
(i)
j−4) + s2(Q

(i)
j−3) + s3(Q

(i)
j−2) + s0(Q

(i)
j−1)

+ AddElement(j − 16)

expand1(j) = s1(Q
(i)
j−16) + s2(Q

(i)
j−15) + s3(Q

(i)
j−14) + s0(Q

(i)
j−13)

+ s1(Q
(i)
j−12) + s2(Q

(i)
j−11) + s3(Q

(i)
j−10) + s0(Q

(i)
j−9)

+ s1(Q
(i)
j−8) + s2(Q

(i)
j−7) + s3(Q

(i)
j−6) + s0(Q

(i)
j−5)

+ s1(Q
(i)
j−4) + s2(Q

(i)
j−3) + s3(Q

(i)
j−2) + s0(Q

(i)
j−1)

+ AddElement(j − 16)

expand2(j) = Q
(i)
j−16 + r1(Q

(i)
j−15) + Q

(i)
j−14 + r2(Q

(i)
j−13)

+ Q
(i)
j−12 + r3(Q

(i)
j−11) + Q

(i)
j−10 + r4(Q

(i)
j−9)

+ Q
(i)
j−8 + r5(Q

(i)
j−7) + Q

(i)
j−6 + r6(Q

(i)
j−5)

+ Q
(i)
j−4 + r7(Q

(i)
j−3) + s5(Q

(i)
j−2) + s4(Q

(i)
j−1)

+ AddElement(j − 16)

expand2(j) = Q
(i)
j−16 + r1(Q

(i)
j−15) + Q

(i)
j−14 + r2(Q

(i)
j−13)

+ Q
(i)
j−12 + r3(Q

(i)
j−11) + Q

(i)
j−10 + r4(Q

(i)
j−9)

+ Q
(i)
j−8 + r5(Q

(i)
j−7) + Q

(i)
j−6 + r6(Q

(i)
j−5)

+ Q
(i)
j−4 + r7(Q

(i)
j−3) + s5(Q

(i)
j−2) + s4(Q

(i)
j−1)

+ AddElement(j − 16)

Table 9. Logic functions used in old Blue Midnight Wish. Note that for the function AddElement(j) index expressions involving the variable j for M are
computed modulo 16.

The new description of the used logical functions is the following:

BMW224/BMW256 BMW384/BMW512

s0(x) = SHR1(x)⊕ SHL3(x)⊕ ROTL4(x) ⊕ ROTL19(x) s0(x) = SHR1(x)⊕ SHL3(x)⊕ ROTL4(x)⊕ ROTL37(x)
s1(x) = SHR1(x)⊕ SHL2(x)⊕ ROTL8(x)⊕ ROTL23(x) s1(x) = SHR1(x)⊕ SHL2(x)⊕ ROTL13(x)⊕ ROTL43(x)
s2(x) = SHR2(x)⊕ SHL1(x)⊕ ROTL12(x)⊕ ROTL25(x) s2(x) = SHR2(x)⊕ SHL1(x)⊕ ROTL19(x)⊕ ROTL53(x)
s3(x) = SHR2(x)⊕ SHL2(x)⊕ ROTL15(x)⊕ ROTL29(x) s3(x) = SHR2(x)⊕ SHL2(x)⊕ ROTL28(x)⊕ ROTL59(x)
s4(x) = SHR1(x)⊕ x s4(x) = SHR1(x)⊕ x
s5(x) = SHR2(x)⊕ x s5(x) = SHR2(x)⊕ x
r1(x) = ROTL3(x) r1(x) = ROTL5(x)
r2(x) = ROTL7(x) r2(x) = ROTL11(x)
r3(x) = ROTL13(x) r3(x) = ROTL27(x)
r4(x) = ROTL16(x) r4(x) = ROTL32(x)
r5(x) = ROTL19(x) r5(x) = ROTL37(x)
r6(x) = ROTL23(x) r6(x) = ROTL43(x)
r7(x) = ROTL27(x) r7(x) = ROTL53(x)

AddElement(j) =
(

ROTL(j+1)(M
(i)
j ) + ROTL(j+4)(M

(i)
j+3)

− ROTL(j+11)(M
(i)
j+10) + Kj+16

)
⊕H

(i)
j+7

AddElement(j) =
(

ROTL(j+1)(M
(i)
j ) + ROTL(j+4)(M

(i)
j+3)

− ROTL(j+11)(M
(i)
j+10) + Kj+16

)
⊕H

(i)
j+7

expand1(j) = s1(Q
(i)
j−16) + s2(Q

(i)
j−15) + s3(Q

(i)
j−14) + s0(Q

(i)
j−13)

+ s1(Q
(i)
j−12) + s2(Q

(i)
j−11) + s3(Q

(i)
j−10) + s0(Q

(i)
j−9)

+ s1(Q
(i)
j−8) + s2(Q

(i)
j−7) + s3(Q

(i)
j−6) + s0(Q

(i)
j−5)

+ s1(Q
(i)
j−4) + s2(Q

(i)
j−3) + s3(Q

(i)
j−2) + s0(Q

(i)
j−1)

+ AddElement(j − 16)

expand1(j) = s1(Q
(i)
j−16) + s2(Q

(i)
j−15) + s3(Q

(i)
j−14) + s0(Q

(i)
j−13)

+ s1(Q
(i)
j−12) + s2(Q

(i)
j−11) + s3(Q

(i)
j−10) + s0(Q

(i)
j−9)

+ s1(Q
(i)
j−8) + s2(Q

(i)
j−7) + s3(Q

(i)
j−6) + s0(Q

(i)
j−5)

+ s1(Q
(i)
j−4) + s2(Q

(i)
j−3) + s3(Q

(i)
j−2) + s0(Q

(i)
j−1)

+ AddElement(j − 16)

expand2(j) = Q
(i)
j−16 + r1(Q

(i)
j−15) + Q

(i)
j−14 + r2(Q

(i)
j−13)

+ Q
(i)
j−12 + r3(Q

(i)
j−11) + Q

(i)
j−10 + r4(Q

(i)
j−9)

+ Q
(i)
j−8 + r5(Q

(i)
j−7) + Q

(i)
j−6 + r6(Q

(i)
j−5)

+ Q
(i)
j−4 + r7(Q

(i)
j−3) + s4(Q

(i)
j−2) + s5(Q

(i)
j−1)

+ AddElement(j − 16)

expand2(j) = Q
(i)
j−16 + r1(Q

(i)
j−15) + Q

(i)
j−14 + r2(Q

(i)
j−13)

+ Q
(i)
j−12 + r3(Q

(i)
j−11) + Q

(i)
j−10 + r4(Q

(i)
j−9)

+ Q
(i)
j−8 + r5(Q

(i)
j−7) + Q

(i)
j−6 + r6(Q

(i)
j−5)

+ Q
(i)
j−4 + r7(Q

(i)
j−3) + s4(Q

(i)
j−2) + s5(Q

(i)
j−1)

+ AddElement(j − 16)

Table 10. Logic functions used in tweaked Blue Midnight Wish. Note that for the function AddElement(j) index expressions involving the variable j for left
rotations, M and H are computed modulo 16.

6



By comparing old and new list of logical functions used in f1 the difference is in the definition of the
element AddElement(). The old term was giving a chance an attacker to make changes in the most significant
bits of the message and due to the operations of addition, those changes were canceling each other up to
the last variable Q31, thus giving free-start near collisions in the compression function. The new (tweaked)
expression for AddElement(j) rotates the values of the message M (i), and additionally operates with the
vector ROTL7(Hi−1) = (H(i−1)

7 , H
(i−1)
8 , . . . ,H

(i−1)
5 , H

(i−1)
6 ) which is a rotation by seven position to the left

of the vector (H(i−1)
0 , H

(i−1)
1 , . . . ,H

(i−1)
15 ). This is our second introduction of expressions that decouples the

input values of the message M (i) and the chaining double pipe H(i−1) with the particular values from M (i)

and H(i−1) that are repeatedly used in the Blue Midnight Wish expressions.

4 A technical typo correction in f1

We have corrected another technical typo that was present in the previous version of Blue Midnight
Wish.

Namely, in the old f1 we had the following order of using the logical functions s4 and s5 in the expression

expand2(j) = . . . + s5(Q(i)
j−2) + s4(Q(i)

j−1) + . . .

The proper order of using s4 and s5 should be as it is done in the new tweaked version:

expand2(j) = . . . + s4(Q(i)
j−2) + s5(Q(i)

j−1) + . . .

5 Tweak Nr. 2

The second tweak consist of an additional (final) use of the compression function.
The generic description of the old Blue Midnight Wish had the following structure:

Algorithm: Blue Midnight Wish
Input: Message M of length l bits, and the message digest size n.
Output: A message digest Hash, that is long n bits.

1. Preprocessing
(a) Pad the message M .
(b) Parse the padded message into N , m-bit message blocks, M (1), M (2),

. . . , M (N).
(c) Set the initial value of the double pipe H(0).

2. Hash computation
For i = 1 to N
{

Q
(i)
a = f0(M (i), H(i−1));

Q
(i)
b = f1(M (i), Q

(i)
a );

H(i) = f2(M (i), Q
(i)
a , Q

(i)
b );

}
3. Hash =Take n Least Significant Bits(H(N)).

Table 11. A generic description of the Blue Midnight Wish hash algorithm

Together with the tweak introduced in f0 and f1 the generic description of the tweaked Blue Midnight
Wish has the following structure:

7



Algorithm: Blue Midnight Wish
Input: Message M of length l bits, and the message digest size n.
Output: A message digest Hash, that is n bits long.

1. Preprocessing
(a) Pad the message M .
(b) Parse the padded message into N , m-bit message blocks, M (1), M (2),

. . . , M (N).
(c) Set the initial value of the double pipe H(0).

2. Hash computation
For i = 1 to N
{

Q
(i)
a = f0(M (i), H(i−1));

Q
(i)
b = f1(M (i), H(i−1), Q

(i)
a );

H(i) = f2(M (i), Q
(i)
a , Q

(i)
b );

}
3. Finalization

Qfinal
a = f0(H(N), CONST final);

Qfinal
b = f1(H(N), CONST final, Qfinal

a );

Hfinal = f2(H(N), Qfinal
a , Qfinal

b );
4. Hash =Take n Least Significant Bits(Hfinal).

Table 12. A generic description of the Blue Midnight Wish hash algorithm

As it is shown in Table 12, in the final invocation of the compression function we have changed the role
of the chaining double pipe and the message. Since there is no more message to be digested, the role that
the message data was performing in the previous invocations of the compression function is now given to
the last obtained double pipe H(N). In such a case the role of the chaining double pipe is fixed to a constant
that we denote as: CONST final.

We have chosen 16 components of the vector CONST final = (CONST final
0 , . . . , CONST final

15 ) to be

– CONST final
j = 0xaaaaaaa0 + j, j = 0, 1, . . . , 15 for BMW224 and BMW256.

– CONST final
j = 0xaaaaaaaaaaaaaaa0 + j, j = 0, 1, . . . , 15 for BMW384 and BMW512.

By fixing the CONST final we are removing this variable from the attacker’s repository, in his attempt to
find pseudo collisions and pseudo-preimages. Additionally the final invocation of the compression function
is a measure for any attack that can find near collisions or near-pseudo-collisions or near preimages or
near-pseudo-preimages of the compression function of Blue Midnight Wish.

Acknowledgement

We would like to thank Søren S. Thomsen, the member of Grøstl team, for his analysis and his discovery of
near and pseudo attacks on the initial Blue Midnight Wish submission and to Niels Ferguson, the member
of Skein team, for his remark (send to us privately in his analysis of Edon-R) about the cryptographic value
of having additional final invocation of the compression function.

8


