
Cryptographic Hash Function

BLUE MIDNIGHT WISH

Norwegian University of Science and Technology

Trondheim, Norway

Danilo Gligoroski

Vlastimil Klima

Svein Johan Knapskog

Mohamed El-Hadedy

Jørn Amundsen

Stig Frode Mjølsnes

October 2008

ii

Abstract

This is the supporting documentation that describes in details the cryptographic hash function

BLUE MIDNIGHT WISH which is submitted as a candidate for SHA-3 hash competition organized

by National Institute of Standards and Technology (NIST), according to the public call [1].

BLUE MIDNIGHT WISH is a cryptographic hash function with output size of n bits where n = 224,

256, 384 or 512. Its conjectured cryptographic security is: O(2
n
2) hash computations for finding

collisions, O(2n) hash computations for finding preimages, O(2n−k) hash computations for finding

second preimages for messages shorter than 2k bits. Additionally, it is resistant against length-

extension attacks, and it is resistant against multicollision attacks.

BLUE MIDNIGHT WISH has been designed to be much more efficient than SHA-2 cryptographic

hash functions, while in the same time offering same or better security. The speed of the opti-

mized 32-bit version on defined reference platform is 8.63 cycles/byte for n = 224, 256 and 12.72

cycles/byte for n = 384, 512. The speed of the optimized 64-bit version on defined reference

platform is 7.83 cycles/byte for n = 224, 256 and 4.06 cycles/byte for n = 384, 512.

i

Contents

Cover Page 1

1 Algorithm Specifics 3

1.1 Bit Strings and Integers . 3

1.2 Parameters, variables and constants . 4

1.3 General design properties of BLUE MIDNIGHT WISH 6

1.4 BLUE MIDNIGHT WISH logic functions . 7

1.5 Preprocessing . 7

1.5.1 Padding the message . 8

BWM224 and BMW256 . 8

BWM384 and BMW512 . 9

1.5.2 Parsing the message . 9

BWM224 and BMW256 . 9

BWM384 and BMW512 . 9

1.5.3 Setting the initial double pipe value H(0) . 10

BWM224 . 10

BWM256 . 11

BWM384 . 11

BWM512 . 12

2 Description of the Hash Algorithm Blue Midnight Wish 13

ii

CONTENTS

2.1 Generic description for all variants of the BLUE MIDNIGHT WISH 13

2.1.1 BMW224 and BMW256 . 15

BMW224 and BMW256 preprocessing . 17

2.1.2 BMW384 and BMW512 . 18

BMW384 and BMW512 preprocessing . 18

3 Design Rationale 19

3.1 Reasons for default little-endian design . 19

3.2 Reasons for using double pipe iterative structure . 19

3.3 Rationale for constants used in BLUE MIDNIGHT WISH 20

3.3.1 Constants in logical functions . 20

3.3.2 Constants in the expansion part . 20

3.4 Rationale for the bijective “Step 1” in the function f0 21

3.5 Rationale for the bijective “Step 2” in the function f0 23

3.6 Tunable parameters ExpandRounds1 and ExpandRounds2 24

3.6.1 Statements, relating to the NIST requirements 2.B.1. 25

3.7 Cryptanalysis of BLUE MIDNIGHT WISH . 26

3.7.1 Bijective parts in the compression function of BLUE MIDNIGHT WISH 26

3.7.2 Representation as a generalized PGV6 scheme 31

3.7.3 Representation as a generalized PGV scheme 33

3.7.4 Monomial tests on the block ciphers used in BLUE MIDNIGHT WISH 35

3.7.5 Infeasibility of finding collisions, preimages and second preimages 39

3.7.6 Approximation of additions and subtractions with XORs 40

3.7.7 Cryptanalysis of a scaled down BLUE MIDNIGHT WISH 41

3.8 Statements about security, support for applications, HMACs and randomized hashing 46

3.8.1 Security statement relating to the NIST requirement 4.A. 46

3.8.2 Statements relating to the NIST requirement 4.A.iii. 46

3.8.3 Statement about the support of applications 46

iii

CONTENTS

3.8.4 Statement about the special requirements . 47

3.8.5 Support of HMAC . 47

3.8.6 BLUE MIDNIGHT WISH support of randomized hashing 51

3.8.7 Resistance to SHA-2 attacks . 51

4 Estimated Computational Efficiency and Memory Requirements 53

4.1 Speed of BLUE MIDNIGHT WISH on NIST SHA-3 Reference Platform 53

4.1.1 Speed of the Optimized 32–bit version of BLUE MIDNIGHT WISH 53

4.1.2 Speed of the Optimized 64–bit version of BLUE MIDNIGHT WISH 54

4.2 Memory requirements of BLUE MIDNIGHT WISH on NIST SHA-3 Reference Platform 54

4.3 Estimates for efficiency and memory requirements on 8-bit processors 55

4.4 Estimates for a Compact Hardware Implementation 55

4.5 Internal Parallelizability of BLUE MIDNIGHT WISH 56

5 Statements 59

5.1 Statement by the Submitter . 59

5.2 Statement by Patent (and Patent Application) Owner(s) 61

5.3 Statement by Reference/Optimized Implementations’ Owner(s) 62

References 63

iv

Cover page

• Name of the submitted algorithm: BLUE MIDNIGHT WISH

• Principal submitter’s name, e-mail address, telephone, fax, organization, and postal address:

– Name: Svein Johan Knapskog

– Email: knapskog@q2s.ntnu.no

– Tel: +47 735 94328

– Fax: +47 73 59 27 90

– Organization: "Centre for Quantifiable Quality of Service in Communication Systems.

Centre of Excellence"

– Address: O.S. Bragstads plass 2E, N-7491 Trondheim, Norway

• Name of the algorithm inventor(s)/developer(s):

Inventors:

– Danilo Gligoroski

– Vlastimil Klima

Developers and contributors:

– Danilo Gligoroski, Norwegian University of Science and Technology, Norway

– Vlastimil Klima, Independent cryptologist - consultant, Czech Republic

– Svein Johan Knapskog, Norwegian University of Science and Technology, Norway

– Mohamed El-Hadedy, Norwegian University of Science and Technology, Norway

– Jøren Amundsen, Norwegian University of Science and Technology, Norway

– Stig Frode Mjølsnes, Norwegian University of Science and Technology, Norway

1

CONTENTS

• Name of the owner, if any, of the algorithm:

– Danilo Gligoroski

– Vlastimil Klima

• Signature of the submitter

————————————————————

• (optional) Backup point of contact (with telephone, fax, postal address, e-mail address):

– Name: Danilo Gligoroski

– Email: gligoroski@yahoo.com

– Tel: +47 73 59 46 16

– Fax: +47 73 59 69 73

– Organization: Department of Telematics, Faculty of Information Technology, Mathe-

matics and Electrical Engineering, The Norwegian University of Science and Technol-

ogy (NTNU), O.S. Bragstads plass 2B, N-7491 Trondheim, Norway

2

CHAPTER 1

Algorithm Specifics

1.1 Bit Strings and Integers

The following terminology related to bit strings, byte strings and integers will be used:

1. A hex digit is an element of the set {0, 1,..., 9, A, ..., F}. A hex digit is the represen-

tation of a 4–bit string. For example, the hex digit "7" represents the 4–bit string "0111", and

the hex digit "A" represents the 4–bit string "1010".

2. The "little-endian" convention is used when expressing string of bytes stored in memory.

That means that beginning from some address "H" if the content of the memory is repre-

sented as a 1-byte address increment, then 32–bit and 64–bit integers are expressed as in the

example given in Table 1.1. The prefix "0x" is used to annotate that the integer is expressed

in hex digit notation.

3. The "big-endian" convention is used when expressing the "internal bit endianness" for both

32–bit and 64–bit words as integers. That means that within each word, the most signif-

icant bit is stored in the left-most bit position. More concretely, a word is a w–bit string

that may be represented as a sequence of hex digits. To convert a word to hex digits, each

4–bit string is converted to its hex digit equivalent. For example, the 32–bit string "1010

0001 0000 0011 1111 1110 0010 0011" has a hexadecimal representation "0xA103FE23" and its

value as unsigned long integer is 2701393443. The 64–bit string "1010 0001 0000 0011 1111

1110 0010 0011 0011 0010 1110 1111 0011 0000 0001 1010" has a hexadecimal representation

"0xA103FE2332EF301A" and its value as unsigned long long integer is 11602396492168376346.

4. For BLUE MIDNIGHT WISH hash algorithm, the size of m bits of the message block, depends

3

CHAPTER 1: ALGORITHM SPECIFICS

Address in memory Byte value

H 23

H+1 FE

H+2 03

H+3 A1

32–bit integer value: "0xA103FE23"

Address in memory Byte value

H 1A

H+1 30

H+2 EF

H+3 32

H+4 23

H+5 FE

H+6 03

H+7 A1

64–bit integer value: "0xA103FE2332EF301A"

Table 1.1: Default design of the BLUE MIDNIGHT WISH is "Little-endian"

on the variant of algorithm (BMW224, BMW256, BMW384 or BMW512).

(a) For BMW224 and BMW256, each message block has 512 bits, which are represented as

a sequence of sixteen 32–bit words.

(b) For BMW384 and BMW512, each message block has 1024 bits, which are represented as

a sequence of sixteen 64–bit words.

1.2 Parameters, variables and constants

The following parameters and variables are used in the specification of BLUE MIDNIGHT WISH :

H
Double pipe. It is a chaining value that is at minimum two times

wider than the final message digest of n bits.

Q Quadruple pipe.

H(i)

The i-th double pipe value. H(0) is the initial double pipe value.

H(N) is the final double pipe value and is used to determine the

message digest of n bits.

Q(i) The i-th quadruple pipe value.

H
(i)
j

The j-th word of the i-th double pipe value H(i), where H
(i)
0 is the

is the left-most word.

4

CHAPTER 1: ALGORITHM SPECIFICS

Q
(i)
j

The j-th word of the i-th quadruple pipe value Q(i) =

(Q
(i)
0 , . . . , Q

(i)
31), where Q

(i)
0 is the left-most word.

Q
(i)
a The first 16 words from Q(i), i.e. Q

(i)
a = (Q

(i)
0 , . . . , Q

(i)
15).

Q
(i)
b The last 16 words from Q(i), i.e. Q

(i)
b = (Q

(i)
16 , . . . , Q

(i)
31).

k
Number of zeroes appended to a message during the padding

step.

l Length of the message M, in bits.

m Number of bits in a message block, M(i).

M Message to be hashed.

M(i) Message block i, with a size of m bits.

M
(i)
j

The j-th word of the i-th message block M(i) = (M
(i)
0 , . . . , M

(i)
15),

where M
(i)
0 is the is the left-most word.

r
Number of bits to be rotated or shifted when a word is operated

upon.

N Number of blocks in the padded message.

XL, XH
Two temporary words (32–bit or 64–bit – depending on the vari-

ant of the algorithm) used in the computation of the double pipe.

0x05555555
A hex digit representation of a 32–bit constant (unsigned long

integer).

Kj = j × (0x05555555)

j = 16, 17, . . . , 31

A 32–bit constant (unsigned long) obtained by multiplying the

constant 0x05555555 by an integer j, where j is in the range from

16 to 31.

0x0555555555555555
A hex digit representation of a 64–bit constant (unsigned long

long integer).

5

CHAPTER 1: ALGORITHM SPECIFICS

Kj = j × (0x0555555555555555)

j = 16, 17, . . . , 31

A 64–bit constant (unsigned long long) obtained by multiplying

the constant 0x0555555555555555 by an integer j, where j is in

the range from 16 to 31.

ExpandRounds1 = 2,

ExpandRounds2 = 14

Two tunable parameters that determine how many times each of

the two expansion functions will be used in the part of a dou-

ble pipe expansion. These two parameters are connected by the

relation ExpandRounds1 + ExpandRounds2 = 16

1.3 General design properties of BLUE MIDNIGHT WISH

BLUE MIDNIGHT WISH follows the general design pattern that is common for most known hash

functions. It means that it has two stages (and several sub-stages within every stage):

1. Preprocessing

(a) padding a message,

(b) parsing the padded message into m–bit blocks, and

(c) setting initialization values to be used in the hash computation.

2. Hash computation

(a) generating a message schedule from the padded message,

(b) using that schedule, along with functions, constants, and word operations to iteratively

generate a series of double pipe values,

(c) The n Least Significant Bits (LSB) of the final double pipe value generated by the hash

computation are used to determine the message digest.

Depending on the context we will sometimes refer to the hash function as BLUE MIDNIGHT WISH

and sometimes as BMW224, BMW256, BMW384 or BMW512.

In Table 1.2, we give the basic properties of all four variants of the BLUE MIDNIGHT WISH hash

algorithms.

The following operations are applied in BLUE MIDNIGHT WISH :

6

CHAPTER 1: ALGORITHM SPECIFICS

Algorithm

abbreviation

Message size

l (in bits)

Block size

m (in bits)

Word size

w (in bits)
Endianess

Digest size

n (in bits)

Support of

"one-pass"

streaming

mode

BMW224 < 264 512 32 Little-endian 224 Yes

BMW256 < 264 512 32 Little-endian 256 Yes

BMW384 < 264 1024 64 Little-endian 384 Yes

BMW512 < 264 1024 64 Little-endian 512 Yes

Table 1.2: Basic properties of all four variants of the BLUE MIDNIGHT WISH

1. Bitwise logic word operations ⊕ – XOR.

2. Addition + and subtraction − modulo 232 or modulo 264.

3. Shift right operation, SHRr(x), where x is a 32–bit or 64–bit word and r is an integer with

0 < r < 32 (resp. 0 < r < 64).

4. Shift left operation, SHLr(x), where x is a 32–bit or 64–bit word and r is an integer with

0 < r < 32 (resp. 0 < r < 64).

5. Rotate left (circular left shift) operation, ROTLr(x), where x is a 32–bit or 64–bit word and r

is an integer with 0 < r < 32 (resp. 0 < r < 64).

1.4 BLUE MIDNIGHT WISH logic functions

BLUE MIDNIGHT WISH uses the logic functions, summarized in Table 1.3.

1.5 Preprocessing

Preprocessing consists of three steps:

1. padding the message M,

2. parsing the padded message into message blocks, and

3. setting the initial double pipe value, H(0).

7

CHAPTER 1: ALGORITHM SPECIFICS

BMW224/BMW256 BMW384/BMW512

s0(x) = SHR1(x)⊕ SHL3(x)⊕ ROTL4(x) ⊕ ROTL19(x) s0(x) = SHR1(x)⊕ SHL3(x)⊕ ROTL4(x)⊕ ROTL37(x)

s1(x) = SHR1(x)⊕ SHL2(x)⊕ ROTL8(x)⊕ ROTL23(x) s1(x) = SHR1(x)⊕ SHL2(x)⊕ ROTL13(x)⊕ ROTL43(x)

s2(x) = SHR2(x)⊕ SHL1(x)⊕ ROTL12(x)⊕ ROTL25(x) s2(x) = SHR2(x)⊕ SHL1(x)⊕ ROTL19(x)⊕ ROTL53(x)

s3(x) = SHR2(x)⊕ SHL2(x)⊕ ROTL15(x)⊕ ROTL29(x) s3(x) = SHR2(x)⊕ SHL2(x)⊕ ROTL28(x)⊕ ROTL59(x)

s4(x) = SHR1(x)⊕ x s4(x) = SHR1(x)⊕ x

s5(x) = SHR2(x)⊕ x s5(x) = SHR2(x)⊕ x

r1(x) = ROTL3(x) r1(x) = ROTL5(x)

r2(x) = ROTL7(x) r2(x) = ROTL11(x)

r3(x) = ROTL13(x) r3(x) = ROTL27(x)

r4(x) = ROTL16(x) r4(x) = ROTL32(x)

r5(x) = ROTL19(x) r5(x) = ROTL37(x)

r6(x) = ROTL23(x) r6(x) = ROTL43(x)

r7(x) = ROTL27(x) r7(x) = ROTL53(x)

expand1(j) = s1(Q
(i)
j−16) + s2(Q

(i)
j−15) + s3(Q

(i)
j−14) + s0(Q

(i)
j−13)

+ s1(Q
(i)
j−12) + s2(Q

(i)
j−11) + s3(Q

(i)
j−10) + s0(Q

(i)
j−9)

+ s1(Q
(i)
j−8

) + s2(Q
(i)
j−7

) + s3(Q
(i)
j−6

) + s0(Q
(i)
j−5

)

+ s1(Q
(i)
j−4) + s2(Q

(i)
j−3) + s3(Q

(i)
j−2) + s0(Q

(i)
j−1)

+ M
(i)
(j−16) mod 16

+ M
(i)
(j−13) mod 16

− M
(i)
(j−6) mod 16

+ Kj

expand1(j) = s1(Q
(i)
j−16) + s2(Q

(i)
j−15) + s3(Q

(i)
j−14) + s0(Q

(i)
j−13)

+ s1(Q
(i)
j−12) + s2(Q

(i)
j−11) + s3(Q

(i)
j−10) + s0(Q

(i)
j−9)

+ s1(Q
(i)
j−8

) + s2(Q
(i)
j−7

) + s3(Q
(i)
j−6

) + s0(Q
(i)
j−5

)

+ s1(Q
(i)
j−4) + s2(Q

(i)
j−3) + s3(Q

(i)
j−2) + s0(Q

(i)
j−1)

+ M
(i)
(j−16) mod 16

+ M
(i)
(j−13) mod 16

− M
(i)
(j−6) mod 16

+ Kj

expand2(j) = Q
(i)
j−16 + r1(Q

(i)
j−15) + Q

(i)
j−14 + r2(Q

(i)
j−13)

+ Q
(i)
j−12

+ r3(Q
(i)
j−11

) + Q
(i)
j−10

+ r4(Q
(i)
j−9

)

+ Q
(i)
j−8 + r5(Q

(i)
j−7) + Q

(i)
j−6 + r6(Q

(i)
j−5)

+ Q
(i)
j−4 + r7(Q

(i)
j−3) + s5(Q

(i)
j−2) + s4(Q

(i)
j−1)

+ M
(i)
(j−16) mod 16

+ M
(i)
(j−13) mod 16

− M
(i)
(j−6) mod 16

+ Kj

expand2(j) = Q
(i)
j−16 + r1(Q

(i)
j−15) + Q

(i)
j−14 + r2(Q

(i)
j−13)

+ Q
(i)
j−12

+ r3(Q
(i)
j−11

) + Q
(i)
j−10

+ r4(Q
(i)
j−9

)

+ Q
(i)
j−8 + r5(Q

(i)
j−7) + Q

(i)
j−6 + r6(Q

(i)
j−5)

+ Q
(i)
j−4 + r7(Q

(i)
j−3) + s5(Q

(i)
j−2) + s4(Q

(i)
j−1)

+ M
(i)
(j−16) mod 16

+ M
(i)
(j−13) mod 16

− M
(i)
(j−6) mod 16

+ Kj

Table 1.3: Logic functions used in BLUE MIDNIGHT WISH

1.5.1 Padding the message

The message M, shall be padded before hash computation begins. The purpose of this padding is

to ensure that the padded message is a multiple of 512 or 1024 bits, depending on the size of the

message digest n.

BWM224 and BMW256

Suppose that the length of the message M is l bits. Append the bit "1" to the end of the message,

followed by k zero bits, where k is the smallest, non-negative solution to the equation l + 1 + k ≡

448 mod 512. Then append the 64–bit block that is equal to the number l expressed using a binary

representation. For example, the message "abc" encoded in 8–bit ASCII has length 8 × 3 = 24, so

the message is padded with the bit "1", then 448 − (24 + 1) = 423 zero bits, and then the 64–bit

8

CHAPTER 1: ALGORITHM SPECIFICS

binary representation of the number 24, to become the 512–bit padded message.

01100001
︸ ︷︷ ︸

”a”

01100010
︸ ︷︷ ︸

”b”

01100011
︸ ︷︷ ︸

”c”

1

423
︷ ︸︸ ︷

00 . . . 00

64
︷ ︸︸ ︷

00 . . . 011000
︸ ︷︷ ︸

l=24

BWM384 and BMW512

Suppose that the length of the message M is l bits. Append the bit "1" to the end of the message,

followed by k zero bits, where k is the smallest, non-negative solution to the equation l + 1 + k ≡

960 mod 1024. Then append the 64–bit block that is equal to the number l expressed using a

binary representation. For example, the (8–bit ASCII) message "abc" has length 8 × 3 = 24, so the

message is padded with the bit "1", then 960 − (24 + 1) = 935 zero bits, and then the 64–bit binary

representation of the number 24, to become the 1024–bit padded message.

01100001
︸ ︷︷ ︸

”a”

01100010
︸ ︷︷ ︸

”b”

01100011
︸ ︷︷ ︸

”c”

1

935
︷ ︸︸ ︷

00 . . . 00

64
︷ ︸︸ ︷

00 . . . 011000
︸ ︷︷ ︸

l=24

1.5.2 Parsing the message

After a message has been padded, it must be parsed into N m–bit blocks before the hash compu-

tation can begin.

BWM224 and BMW256

For BMW224 and BMW256, the padded message is parsed into N 512–bit blocks, M(1), M(2), . . .,

M(N). Since the 512 bits of the input block may be expressed as sixteen 32–bit words, the first 32

bits of message block i are denoted M
(i)
0 , the next 32 bits are M

(i)
1 , and so on up to M

(i)
15 .

BWM384 and BMW512

For BMW384 and BMW512, the padded message is parsed into N 1024–bit blocks, M(1), M(2), . . .,

M(N). Since the 1024 bits of the input block may be expressed as sixteen 64–bit words, the first 64

bits of message block i are denoted M
(i)
0 , the next 64 bits are M

(i)
1 , and so on up to M

(i)
15 .

9

CHAPTER 1: ALGORITHM SPECIFICS

1.5.3 Setting the initial double pipe value H(0)

Before hash computation begins for each of the hash algorithms, the initial double pipe value

H(0) must be set. The size and the value of words in H(0) depends on the message digest size n.

As it is shown in the following subsections, the constants consist of concatenation of consecutive

natural numbers. Since BMW224 is the same as BMW256 except for the final truncation, they

have to have different initial values. Thus, the initial double pipe of BMW224 starts from the byte

value 0x00 and takes all 64 successive byte values up to the value 0x3F. Then, the initial double

pipe of BMW256 starts from the byte value 0x40 and takes all 64 successive byte values up to the

value 0x7F. The situation is the same with BMW384 and BMW512, but since now the variables are

64-bit long, the initial double pipe of BMW384 starts from the byte value 0x00 and takes all 128

successive byte values up to the value 0x7F and the initial double pipe of BMW512 starts from

the byte value 0x80 and takes all 128 successive byte values up to the value 0xFF. These constants

enable efficient implementation.

BWM224

For BMW224, the initial double pipe value H(0) shall consist of the sixteen 32–bit words given in

Table 1.4.

H
(0)
0 = 0x00010203 H

(0)
1 = 0x04050607

H
(0)
2 = 0x08090A0B H

(0)
3 = 0x0C0D0E0F

H
(0)
4 = 0x10111213 H

(0)
5 = 0x14151617

H
(0)
6 = 0x18191A1B H

(0)
7 = 0x1C1D1E1F

H
(0)
8 = 0x20212223 H

(0)
9 = 0x24252627

H
(0)
10 = 0x28292A2B H

(0)
11 = 0x2C2D2E2F

H
(0)
12 = 0x30313233 H

(0)
13 = 0x24353637

H
(0)
14 = 0x38393A3B H

(0)
15 = 0x3C3D3E3F

Table 1.4: Initial double pipe H(0) for BMW224

10

CHAPTER 1: ALGORITHM SPECIFICS

BWM256

For BMW256, the initial double pipe value H(0) shall consist of the sixteen 32–bit words given in

Table 1.5.

H
(0)
0 = 0x40414243 H

(0)
1 = 0x44454647

H
(0)
2 = 0x48494A4B H

(0)
3 = 0x4C4D4E4F

H
(0)
4 = 0x50515253 H

(0)
5 = 0x54555657

H
(0)
6 = 0x58595A5B H

(0)
7 = 0x5C5D5E5F

H
(0)
8 = 0x60616263 H

(0)
9 = 0x64656667

H
(0)
10 = 0x68696A6B H

(0)
11 = 0x6C6D6E6F

H
(0)
12 = 0x70717273 H

(0)
13 = 0x74757677

H
(0)
14 = 0x78797A7B H

(0)
15 = 0x7C7D7E7F

Table 1.5: Initial double pipe H(0) for BMW256

BWM384

For BMW384, the initial double pipe value H(0) shall consist of the sixteen 64–bit words given in

Table 1.6.

H
(0)
0 = 0x0001020304050607 H

(0)
1 = 0x08090A0B0C0D0E0F

H
(0)
2 = 0x1011121314151617 H

(0)
3 = 0x18191A1B1C1D1E1F

H
(0)
4 = 0x2021222324252627 H

(0)
5 = 0x28292A2B2C2D2E2F

H
(0)
6 = 0x3031323324353637 H

(0)
7 = 0x38393A3B3C3D3E3F

H
(0)
8 = 0x4041424344454647 H

(0)
9 = 0x48494A4B4C4D4E4F

H
(0)
10 = 0x5051525354555657 H

(0)
11 = 0x58595A5B5C5D5E5F

H
(0)
12 = 0x6061626364656667 H

(0)
13 = 0x68696A6B6C6D6E6F

H
(0)
14 = 0x7071727374757677 H

(0)
15 = 0x78797A7B7C7D7E7F

Table 1.6: Initial double pipe H(0) for BMW384

11

CHAPTER 1: ALGORITHM SPECIFICS

BWM512

For BMW512, the initial double pipe value H(0) shall consist of the sixteen 64–bit words given in

Table 1.7.

H
(0)
0 = 0x8081828384858687 H

(0)
1 = 0x88898A8B8C8D8E8F

H
(0)
2 = 0x9091929394959697 H

(0)
3 = 0x98999A9B9C9D9E9F

H
(0)
4 = 0xA0A1A2A3A4A5A6A7 H

(0)
5 = 0xA8A9AAABACADAEAF

H
(0)
6 = 0xB0B1B2B3B4B5B6B7 H

(0)
7 = 0xB8B9BABBBCBDBEBF

H
(0)
8 = 0xC0C1C2C3C4C5C6C7 H

(0)
9 = 0xC8C9CACBCCCDCECF

H
(0)
10 = 0xD0D1D2D3D4D5D6D7 H

(0)
11 = 0xD8D9DADBDCDDDEDF

H
(0)
12 = 0xE0E1E2E3E4E5E6E7 H

(0)
13 = 0xE8E9EAEBECEDEEEF

H
(0)
14 = 0xF0F1F2F3F4F5F6F7 H

(0)
15 = 0xF8F9FAFBFCFDFEFF

Table 1.7: Initial double pipe H(0) for BMW512

12

CHAPTER 2

Description of the Hash Algorithm Blue

Midnight Wish

2.1 Generic description for all variants of the BLUE MIDNIGHT WISH

First we are giving a generic description for all variants of the BLUE MIDNIGHT WISH hash al-

gorithm. Then, in the following subsections we will give a detailed functional description for

the specific variants of the BLUE MIDNIGHT WISH hash algorithm for the four different message

digest sizes: n = 224, n = 256, n = 384 and n = 512 bits.

In the generic description we are using three functions:

1. The first function is f0 : {0, 1}2m → {0, 1}m. It takes two arguments M(i) and H(i−1) each

of m bits and bijectively transforms M(i) ⊕ H(i−1). Here, M(i) is the i-th message block

and H(i−1) is the current value of the double pipe. The result Q
(i)
a = f0(M(i), H(i−1)) =

A2(A1(M(i) ⊕ H(i−1)), is the first part of the extended (quadrupled) pipe. The concrete def-

inition of the bijections A1, A2 : {0, 1}m → {0, 1}m will be given later. We denote Q
(i)
a =

(Q
(i)
0 , . . . , Q

(i)
15). Note: There is a small inconsistency in the notation of f0 as a function of 2m

bits f0(M(i), H(i−1)) and as a function of m bits - f0(M(i) ⊕ H(i−1)). In the following text we

treat f0(M(i), H(i−1)) as an extended notation of the expression f0(M(i) ⊕ H(i−1)). We will

use both expressions in different contexts.

2. The second function f1 also takes two arguments: a message block M(i) of m bits and the

value of Q
(i)
a of m bits, to produce the second part Q

(i)
b = (Q

(i)
16 , . . . , Q

(i)
31) of the extended

(quadrupled) pipe Q(i). The function can be briefly described as f1 : {0, 1}2m → {0, 1}m , and

Q
(i)
b = f1(M(i), Q

(i)
a).

13

CHAPTER 2: DESCRIPTION OF THE HASH ALGORITHM BLUE MIDNIGHT WISH

Algorithm: BLUE MIDNIGHT WISH

Input: Message M of length l bits, and the message digest size n.

Output: A message digest Hash, that is n bits long.

1. Preprocessing

(a) Pad the message M.

(b) Parse the padded message into N, m-bit message

blocks, M(1), M(2), . . . , M(N).

(c) Set the initial value of the double pipe H(0).

2. Hash computation

For i = 1 to N

{

Q
(i)
a = f0(M(i), H(i−1));

Q
(i)
b = f1(M(i), Q

(i)
a);

H(i) = f2(M(i), Q
(i)
a , Q

(i)
b);

}

3. Hash =Take_n_Least_Significant_Bits(H(N)).

Table 2.1: A generic description of the BLUE MIDNIGHT WISH hash algorithm

3. For the third function f2 we are using the term folding to describe its mapping property to

map 3m bits to m bits. It takes two arguments: a message block M(i) of m bits and the current

value of the extended pipe Q(i) = (Q
(i)
a , Q

(i)
b) which has 2m bits, to produce a new double

pipe H(i) of m bits. So, f2 : {0, 1}3m → {0, 1}m and H(i) = f2(M(i), Q(i)) ≡ f2(M(i), Q
(i)
a , Q

(i)
b).

The generic description of the BLUE MIDNIGHT WISH hash algorithm is given in Table 2.1. A

graphic representation of the Blue Midnight Wish hash algorithm is given in the Figure 2.1 and its

compression function is given in the Figure 2.2.

The function f0 : {0, 1}2m → {0, 1}m is defined in the Table 2.2.

The function f1 : {0, 1}2m → {0, 1}m is defined in the Table 2.3.

The function f2 : {0, 1}3m → {0, 1}m is defined in the Table 2.4.

14

CHAPTER 2: DESCRIPTION OF THE HASH ALGORITHM BLUE MIDNIGHT WISH

Figure 2.1: A graphic representation of the BLUE MIDNIGHT WISH hash algorithm.

Figure 2.2: Graphical representation of the compression function in BLUE MIDNIGHT WISH

2.1.1 BMW224 and BMW256

BMW224 and BMW256 may be used to hash a message M, having a length of l bits, where 0 ≤

l < 264. The algorithms use

1. sixteen 32–bit working variables that are part of the double pipe, and

15

CHAPTER 2: DESCRIPTION OF THE HASH ALGORITHM BLUE MIDNIGHT WISH

f0 : {0, 1}2m → {0, 1}m

Input: Message block M(i) = (M
(i)
0 , M

(i)
1 , . . . , M

(i)
15), and the previous double pipe H(i−1) = (H

(i−1)
0 , H

(i−1)
1 , . . . , H

(i−1)
15).

Output: First part of the quadruple pipe Q
(i)
a = (Q

(i)
0 , Q

(i)
1 , . . . , Q

(i)
15).

1. Bijective transform of M(i) ⊕ H(i−1):

W
(i)
0 = (M

(i)
5 ⊕ H

(i−1)
5) − (M

(i)
7 ⊕ H

(i−1)
7) + (M

(i)
10 ⊕ H

(i−1)
10) + (M

(i)
13 ⊕ H

(i−1)
13) + (M

(i)
14 ⊕ H

(i−1)
14)

W
(i)
1 = (M

(i)
6 ⊕ H

(i−1)
6) − (M

(i)
8 ⊕ H

(i−1)
8) + (M

(i)
11 ⊕ H

(i−1)
11) + (M

(i)
14 ⊕ H

(i−1)
14) − (M

(i)
15 ⊕ H

(i−1)
15)

W
(i)
2 = (M

(i)
0 ⊕ H

(i−1)
0) + (M

(i)
7 ⊕ H

(i−1)
7) + (M

(i)
9 ⊕ H

(i−1)
9) − (M

(i)
12 ⊕ H

(i−1)
12) + (M

(i)
15 ⊕ H

(i−1)
15)

W
(i)
3 = (M

(i)
0 ⊕ H

(i−1)
0) − (M

(i)
1 ⊕ H

(i−1)
1) + (M

(i)
8 ⊕ H

(i−1)
8) − (M

(i)
10 ⊕ H

(i−1)
10) + (M

(i)
13 ⊕ H

(i−1)
13)

W
(i)
4 = (M

(i)
1 ⊕ H

(i−1)
1) + (M

(i)
2 ⊕ H

(i−1)
2) + (M

(i)
9 ⊕ H

(i−1)
9) − (M

(i)
11 ⊕ H

(i−1)
11) − (M

(i)
14 ⊕ H

(i−1)
14)

W
(i)
5 = (M

(i)
3 ⊕ H

(i−1)
3) − (M

(i)
2 ⊕ H

(i−1)
2) + (M

(i)
10 ⊕ H

(i−1)
10) − (M

(i)
12 ⊕ H

(i−1)
12) + (M

(i)
15 ⊕ H

(i−1)
15)

W
(i)
6 = (M

(i)
4 ⊕ H

(i−1)
4) − (M

(i)
0 ⊕ H

(i−1)
0) − (M

(i)
3 ⊕ H

(i−1)
3) − (M

(i)
11 ⊕ H

(i−1)
11) + (M

(i)
13 ⊕ H

(i−1)
13)

W
(i)
7 = (M

(i)
1 ⊕ H

(i−1)
1) − (M

(i)
4 ⊕ H

(i−1)
4) − (M

(i)
5 ⊕ H

(i−1)
5) − (M

(i)
12 ⊕ H

(i−1)
12) − (M

(i)
14 ⊕ H

(i−1)
14)

W
(i)
8 = (M

(i)
2 ⊕ H

(i−1)
2) − (M

(i)
5 ⊕ H

(i−1)
5) − (M

(i)
6 ⊕ H

(i−1)
6) + (M

(i)
13 ⊕ H

(i−1)
13) − (M

(i)
15 ⊕ H

(i−1)
15)

W
(i)
9 = (M

(i)
0 ⊕ H

(i−1)
0) − (M

(i)
3 ⊕ H

(i−1)
3) + (M

(i)
6 ⊕ H

(i−1)
6) − (M

(i)
7 ⊕ H

(i−1)
7) + (M

(i)
14 ⊕ H

(i−1)
14)

W
(i)
10 = (M

(i)
8 ⊕ H

(i−1)
8) − (M

(i)
1 ⊕ H

(i−1)
1) − (M

(i)
4 ⊕ H

(i−1)
4) − (M

(i)
7 ⊕ H

(i−1)
7) + (M

(i)
15 ⊕ H

(i−1)
15)

W
(i)
11 = (M

(i)
8 ⊕ H

(i−1)
8) − (M

(i)
0 ⊕ H

(i−1)
0) − (M

(i)
2 ⊕ H

(i−1)
2) − (M

(i)
5 ⊕ H

(i−1)
5) + (M

(i)
9 ⊕ H

(i−1)
9)

W
(i)
12 = (M

(i)
1 ⊕ H

(i−1)
1) + (M

(i)
3 ⊕ H

(i−1)
3) − (M

(i)
6 ⊕ H

(i−1)
6) − (M

(i)
9 ⊕ H

(i−1)
9) + (M

(i)
10 ⊕ H

(i−1)
10)

W
(i)
13 = (M

(i)
2 ⊕ H

(i−1)
2) + (M

(i)
4 ⊕ H

(i−1)
4) + (M

(i)
7 ⊕ H

(i−1)
7) + (M

(i)
10 ⊕ H

(i−1)
10) + (M

(i)
11 ⊕ H

(i−1)
11)

W
(i)
14 = (M

(i)
3 ⊕ H

(i−1)
3) − (M

(i)
5 ⊕ H

(i−1)
5) + (M

(i)
8 ⊕ H

(i−1)
8) − (M

(i)
11 ⊕ H

(i−1)
11) − (M

(i)
12 ⊕ H

(i−1)
12)

W
(i)
15 = (M

(i)
12 ⊕ H

(i−1)
12) − (M

(i)
4 ⊕ H

(i−1)
4) − (M

(i)
6 ⊕ H

(i−1)
6) − (M

(i)
9 ⊕ H

(i−1)
9) + (M

(i)
13 ⊕ H

(i−1)
13)

2. Further bijective transform of W
(i)
j , j = 0, . . . , 15:

Q
(i)
0 = s0(W

(i)
0); Q

(i)
1 = s1(W

(i)
1); Q

(i)
2 = s2(W

(i)
2); Q

(i)
3 = s3(W

(i)
3);

Q
(i)
4 = s4(W

(i)
4); Q

(i)
5 = s0(W

(i)
5); Q

(i)
6 = s1(W

(i)
6); Q

(i)
7 = s2(W

(i)
7);

Q
(i)
8 = s3(W

(i)
8); Q

(i)
9 = s4(W

(i)
9); Q

(i)
10 = s0(W

(i)
10); Q

(i)
11 = s1(W

(i)
11);

Q
(i)
12 = s2(W

(i)
12); Q

(i)
13 = s3(W

(i)
13); Q

(i)
14 = s4(W

(i)
14); Q

(i)
15 = s0(W

(i)
15);

Table 2.2: Definition of the function f0 of BLUE MIDNIGHT WISH

f1 : {0, 1}2m → {0, 1}m

Input: Message block M(i) = (M
(i)
0 , M

(i)
1 , . . . , M

(i)
15), and the first part of the quadruple pipe Q

(i)
a = (Q

(i)
0 , Q

(i)
1 , . . . , Q

(i)
15).

Output: Second part of the quadruple pipe Q
(i)
b = (Q

(i)
16 , Q

(i)
17 , . . . , Q

(i)
31).

1. Double pipe expansion according to the tunable parameters ExpandRounds1 and ExpandRounds2.

1.1 For ii = 0 to ExpandRounds1 − 1

Q
(i)
ii+16 = expand1(ii + 16)

1.2 For ii = ExpandRounds1 to ExpandRounds1 + ExpandRounds2 − 1

Q
(i)
ii+16 = expand2(ii + 16)

Table 2.3: Definition of the function f1 of BLUE MIDNIGHT WISH

2. additional sixteen 32–bit working variables that together with the variables of the double

pipe, make the extended (quadruple) pipe.

The words of the quadruple pipe are labeled Q
(i)
0 , Q

(i)
1 , . . . , Q

(i)
31 . The words of the initial double

pipe are labeled H
(i−1)
0 , H

(i−1)
1 , . . . , H

(i−1)
15 , which will hold the initial double pipe value H(0), re-

16

CHAPTER 2: DESCRIPTION OF THE HASH ALGORITHM BLUE MIDNIGHT WISH

Folding f2 : {0, 1}3m → {0, 1}m

Input: Message block M(i) = (M
(i)
0 , M

(i)
1 , . . . , M

(i)
15),

quadruple pipe Q(i) = (Q
(i)
0 , Q

(i)
1 , . . . , Q

(i)
15 , Q

(i)
16 , . . . , Q

(i)
31).

Output: New double pipe H(i) = (H
(i)
0 , H

(i)
1 , . . . , H

(i)
15).

1. Compute the cumulative temporary variables XL and XH.

XL = Q
(i)
16 ⊕ Q

(i)
17 ⊕ . . . ⊕ Q

(i)
23

XH = XL ⊕ Q
(i)
24 ⊕ Q

(i)
25 ⊕ . . . ⊕ Q

(i)
31

2. Compute the new double pipe H(i):

H
(i)
0 =

(

SHL5(XH) ⊕ SHR5(Q
(i)
16) ⊕ M

(i)
0

)

+
(

XL ⊕ Q
(i)
24 ⊕ Q

(i)
0

)

H
(i)
1 =

(

SHR7(XH) ⊕ SHL8(Q
(i)
17) ⊕ M

(i)
1

)

+
(

XL ⊕ Q
(i)
25 ⊕ Q

(i)
1

)

H
(i)
2 =

(

SHR5(XH) ⊕ SHL5(Q
(i)
18) ⊕ M

(i)
2

)

+
(

XL ⊕ Q
(i)
26 ⊕ Q

(i)
2

)

H
(i)
3 =

(

SHR1(XH) ⊕ SHL5(Q
(i)
19) ⊕ M

(i)
3

)

+
(

XL ⊕ Q
(i)
27 ⊕ Q

(i)
3

)

H
(i)
4 =

(

SHR3(XH) ⊕ Q
(i)
20 ⊕ M

(i)
4

)

+
(

XL ⊕ Q
(i)
28 ⊕ Q

(i)
4

)

H
(i)
5 =

(

SHL6(XH) ⊕ SHR6(Q
(i)
21) ⊕ M

(i)
5

)

+
(

XL ⊕ Q
(i)
29 ⊕ Q

(i)
5

)

H
(i)
6 =

(

SHR4(XH) ⊕ SHL6(Q
(i)
22) ⊕ M

(i)
6

)

+
(

XL ⊕ Q
(i)
30 ⊕ Q

(i)
6

)

H
(i)
7 =

(

SHR11(XH) ⊕ SHL2(Q
(i)
23) ⊕ M

(i)
7

)

+
(

XL ⊕ Q
(i)
31 ⊕ Q

(i)
7

)

H
(i)
8 = ROTL9(H

(i)
4) +

(

XH ⊕ Q
(i)
24 ⊕ M

(i)
8

)

+
(

SHL8(XL) ⊕ Q
(i)
23 ⊕ Q

(i)
8

)

H
(i)
9 =ROTL10(H

(i)
5) +

(

XH ⊕ Q
(i)
25 ⊕ M

(i)
9

)

+
(

SHR6(XL) ⊕ Q
(i)
16 ⊕ Q

(i)
9

)

H
(i)
10 =ROTL11(H

(i)
6) +

(

XH ⊕ Q
(i)
26 ⊕ M

(i)
10

)

+
(

SHL6(XL) ⊕ Q
(i)
17 ⊕ Q

(i)
10

)

H
(i)
11 =ROTL12(H

(i)
7) +

(

XH ⊕ Q
(i)
27 ⊕ M

(i)
11

)

+
(

SHL4(XL) ⊕ Q
(i)
18 ⊕ Q

(i)
11

)

H
(i)
12 =ROTL13(H

(i)
0) +

(

XH ⊕ Q
(i)
28 ⊕ M

(i)
12

)

+
(

SHR3(XL) ⊕ Q
(i)
19 ⊕ Q

(i)
12

)

H
(i)
13 =ROTL14(H

(i)
1) +

(

XH ⊕ Q
(i)
29 ⊕ M

(i)
13

)

+
(

SHR4(XL) ⊕ Q
(i)
20 ⊕ Q

(i)
13

)

H
(i)
14 =ROTL15(H

(i)
2) +

(

XH ⊕ Q
(i)
30 ⊕ M

(i)
14

)

+
(

SHR7(XL) ⊕ Q
(i)
21 ⊕ Q

(i)
14

)

H
(i)
15 =ROTL16(H

(i)
3) +

(

XH ⊕ Q
(i)
31 ⊕ M

(i)
15

)

+
(

SHR2(XL) ⊕ Q
(i)
22 ⊕ Q

(i)
15

)

Table 2.4: Definition of the folding function f2 of BLUE MIDNIGHT WISH

placed by each successive intermediate double pipe value (after each message block is processed),

H(i), and ending with the final double pipe value H(N). BMW224 and BMW256 also use two tem-

porary 32–bit words XL and XH. The final result of BMW224 is a 224–bit message digest that are

the least significant 224 bits from the final double pipe i.e., (H
(N)
9 , . . . , H

(N)
15), and the final result

of BMW256 is a 256–bit message digest that are the least significant 256 bits from the final double

pipe i.e., (H
(N)
8 , . . . , H

(N)
15).

17

CHAPTER 2: DESCRIPTION OF THE HASH ALGORITHM BLUE MIDNIGHT WISH

BMW224 and BMW256 preprocessing

1. Pad the message M.

2. Parse the padded message into N 512–bit blocks, M(1), M(2),. . . , M(N).

3. Set the initial double pipe value H(0) as defined in Table 1.4 for BWM224, or as defined in

Table 1.5 for BWM256.

2.1.2 BMW384 and BMW512

BMW384 and BMW512 may be used to hash a message M, having a length of l bits, where 0 ≤

l < 264. The algorithms use

1. sixteen 64–bit working variables that are part of the double pipe, and

2. additional sixteen 64–bit working variables that together with the variables of the double

pipe, make the extended (quadrupled) pipe.

The words of the quadruple pipe are labeled Q
(i)
0 , Q

(i)
1 , . . . , Q

(i)
31 . The words of the initial double

pipe are labeled H
(i)
0 , H

(i)
1 , . . . , H

(i)
15 , which will hold the initial double pipe value H(0), replaced by

each successive intermediate double pipe value (after each message block is processed), H(i), and

ending with the final double pipe value H(N). BMW384 and BMW512 also use two temporary

64–bit words XL and XH. The final result of BMW384 is a 384–bit message digest that are the

least significant 384 bits from the final double pipe i.e., (H
(N)
10 , . . . , H

(N)
15), and the final result of

BMW512 is a 512–bit message digest that are the least significant 512 bits from the final double

pipe i.e., (H
(N)
8 , . . . , H

(N)
15).

BMW384 and BMW512 preprocessing

1. Pad the message M.

2. Parse the padded message into N 1024–bit blocks, M(1), M(2),. . . , M(N).

3. Set the initial double pipe value H(0) as defined in Table 1.6 for BWM384, or as defined in

Table 1.7 for BWM512.

18

CHAPTER 3

Design Rationale

3.1 Reasons for default little-endian design

Some of the earlier versions of BLUE MIDNIGHT WISH were designed to be big-endian by default.

However, as the designing phase was coming to its end, and we started the optimization phase, we

changed the default design to be little-endian since an overwhelming majority of CPU platforms

in the world are little-endian.

3.2 Reasons for using double pipe iterative structure

In the design of BLUE MIDNIGHT WISH we have decided to incorporate the suggestions of Lucks

[2, 3] and Coron et al. [4] by setting the size of the chaining pipe to be twice the hash digest size.

This design avoids the weaknesses against the generic attacks of Joux [5] and Kelsy and Schneier

[6], thereby guaranteeing resistance against a generic multicollision attack and length extension

attacks.

Additionally, as we will see later, using the double pipe concept in combination with the used

nonlinear bijections is an effective precaution against differential attacks, because the attacker will

have to use twice the number of variables in the differential paths than in a single pipe.

19

CHAPTER 3: DESIGN RATIONALE

3.3 Rationale for constants used in BLUE MIDNIGHT WISH

3.3.1 Constants in logical functions

The logical functions s0, s1, s2 and s3 are chosen in such a way that they satisfy the following

criteria:

• They are bijections in {0, 1}32 → {0, 1}32 (resp. in {0, 1}64 → {0, 1}64).

• They have different pairs of 1-bit, 2-bits or 3-bits shifts to the left and to the right.

• They have different pairs of rotations to the left, in such a way that one rotation is less than

w/2, w = 32, 64, and the other rotation is bigger than w/2.

• The values of the rotations that are less than w/2 are in the interval of ±2 (resp. ±4) around

numbers {2, 6, 10, 14} (resp. {4, 12, 20, 28}).

• The values of the rotations that are bigger than w/2 are in the interval of ±2 (resp. ±4)

around numbers {18, 22, 26, 30} (resp. {36, 42, 50, 58}).

By computer search we have found hundreds of such bijections and from them we have chosen

the four particular functions s0, s1, s2 and s3. The role of these logical functions is to diffuse a

one-bit difference into 3 or 4 bits differences.

The logical functions s4 and s5 are bijections in {0, 1}32 → {0, 1}32 (resp. in {0, 1}64 → {0, 1}64).

They have only one shift to the right for just one or two bits. Their role is to spread a one-bit

differences mostly into two bits (if the difference bit is the right-most or the bit next to the right-

most bit, then these functions keep a one-bit difference as a one-bit difference).

Logical functions r1, . . . , r7 are rotations with the values that were chosen uniformly at random in

the interval [1, w − 1].

3.3.2 Constants in the expansion part

In the expansion function f1 we use the constants Kj = j × (0x05555555), j = 16, 17, . . . , 31 for

BMW224 and BMW256, or the constants Kj = j × (0x0555555555555555), j = 16, 17, . . . , 31 for

BMW384 and BMW512.

The primary reason why we use constants is that we want to avoid the situation that the message

M = (0, 0, . . . , 0) ≡ 0 and the double pipe value H = (0, 0, . . . , 0) ≡ 0 are a fixed point. Let

20

CHAPTER 3: DESIGN RATIONALE

us for a moment omit the upper index (i) in our notations. If we have in mind that (Qa, Qb) =

(f0(M, H), f1(M, f0(M, H))), then if f1 does not have constants we will have the situation that

(0, 0) = (f0(0, 0), f1(0, f0(0, 0))).

We have chosen 0x05555555 and 0x0555555555555555 as a basis for obtaining 16 constants in the

expansion function because we find that their binary representation as a sequence of alternating

0s and 1s is good source of variety.

The reason why we choose 0x05555555 instead of 0x55555555 is simply to avoid complaints

(warnings) of some C compilers that are finding that 16 × (0x55555555) is a constant that goes

out of the range of a 32–bit word (the reason is similar for 0x0555555555555555).

3.4 Rationale for the bijective “Step 1” in the function f0

Step 1 in the definition of the function f0 is a bijective one when either H(i−1) or M(i) are kept

constant. The transformation can be expressed as:

Qa = A1 ·
(

M(i) ⊕ H(i−1)
)
,

where we denote Qa = (Q
(i)
0 , Q

(i)
1 , . . . , Q

(i)
15) and the matrix A1 is a 16 × 16 nonsingular matrix in

Z232 and in Z264 . The value of A1 is

A1 =




















0 0 0 0 0 1 0 −1 0 0 1 0 0 1 1 0
0 0 0 0 0 0 1 0 −1 0 0 1 0 0 1 −1
1 0 0 0 0 0 0 1 0 1 0 0 −1 0 0 1
1 −1 0 0 0 0 0 0 1 0 −1 0 0 1 0 0
0 1 1 0 0 0 0 0 0 1 0 −1 0 0 −1 0
0 0 −1 1 0 0 0 0 0 0 1 0 −1 0 0 1

−1 0 0 −1 1 0 0 0 0 0 0 −1 0 1 0 0
0 1 0 0 −1 −1 0 0 0 0 0 0 −1 0 −1 0
0 0 1 0 0 −1 −1 0 0 0 0 0 0 1 0 −1
1 0 0 −1 0 0 1 −1 0 0 0 0 0 0 1 0
0 −1 0 0 −1 0 0 −1 1 0 0 0 0 0 0 1

−1 0 −1 0 0 −1 0 0 1 1 0 0 0 0 0 0
0 1 0 1 0 0 −1 0 0 −1 1 0 0 0 0 0
0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0
0 0 0 1 0 −1 0 0 1 0 0 −1 −1 0 0 0
0 0 0 0 −1 0 −1 0 0 −1 0 0 1 1 0 0




















.

21

CHAPTER 3: DESIGN RATIONALE

The matrix A1 was obtained from the matrix

A′
1 =




















0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0
0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1
1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1
1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0
0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0
0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1
1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0
0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1
1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0
0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1
1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0
0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0
0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 0




















,

by randomly turning some of the values ‘1’ into ‘-1’. Note that the product A′
1 · M(i) can be

expressed as:

A′
1 = ROTR2(M(i)) + ROTR3(M(i)) + ROTR6(M(i)) + ROTR9(M(i)) + ROTR11(M(i)),

where the operations ROTRj(M(i)) are rotations to the right of the vector M(i) = (M
(i)
0 , M

(i)
1 , . . . , M

(i)
15)

by j words and “+” means componentwise addition in Z232 (resp. in Z264). In other words we have

that:
ROTR2(M(i)) = (M

(i)
14 , M

(i)
15 , M

(i)
0 , . . . , M

(i)
13)

ROTR3(M(i)) = (M
(i)
13 , M

(i)
14 , M

(i)
15 , . . . , M

(i)
12)

ROTR6(M(i)) = (M
(i)
10 , M

(i)
11 , M

(i)
12 , . . . , M

(i)
9)

ROTR9(M(i)) = (M
(i)
7 , M

(i)
8 , M

(i)
9 , . . . , M

(i)
6)

ROTR11(M(i)) = (M
(i)
5 , M

(i)
6 , M

(i)
7 , . . . , M

(i)
4)

,

and

A′
1 · M(i) = (M

(i)
14 + M

(i)
13 + M

(i)
10 + M

(i)
7 + M

(i)
5 , . . . , M

(i)
13 + M

(i)
12 + M

(i)
9 + M

(i)
6 + M

(i)
4).

It is straightforward to prove the following

Lemma 1. The transformation A′
1 · M(i) diffuses every one bit difference in the vector M(i) into at least

five bits difference.

The matrix A1 is obtained from the matrix A′
1 by randomly selecting some of the values “1” and

turning them into “-1”. It is straightforward to prove the following

Lemma 2. The transformation A1 · M(i) diffuses every one bit difference in the vector M(i) into at least

five bits difference.

22

CHAPTER 3: DESIGN RATIONALE

The reason why we decided to use the transformation A1 · M(i) instead of the transformation

A′
1 · M(i) is the fact that in any CPU, the computational costs of addition and subtraction are the

same, but the component with mixed usage of additions and subtractions is more complex. It is

reasonable to expect that increased complexity also increases the ability to resist cryptanalysis.

3.5 Rationale for the bijective “Step 2” in the function f0

Step 2 in the definition of the function f0 is also a bijective one, but now the bijective transformation

is achieved for every component of the vector M(i) by applying transformations s0, s1, s2, s3 and

s4 (see the Table 1.3).

It is easy to prove the following

Lemma 3. The transformations si, i = 0, . . . , 5 and ri, i = 1, . . . , 7 defined in the Table 1.3 are bijective

transformations in {0, 1}32 (resp. in {0, 1}64).

For our analysis of the hash function we denote this bijective Step 2 transformation as A2 :

{0, 1}16w → {0, 1}16w . From the composition of Step 1 and Step 2 in the function f0 it is clear

that

f0(Mi, Hi−1) ≡ A2(A1 · (Mi ⊕ Hi−1)).

The differential (diffusion) property for si, i = 0, . . . , 3 transformations is summarized in the fol-

lowing

Lemma 4. The transformations s0, s1, s2 and s3 defined in the Table 1.3 diffuse every one bit difference in

their arguments (32–bit or 64–bit words) into 3 or 4 bits of difference.

The differential (diffusion) property for s4 and s5 transformations is summarized in the following

Lemma 5. The transformations s4 and s5 defined in the Table 1.3 diffuse every one bit difference in their

arguments (32–bit or 64–bit words) into 1 or 2 bits of difference.

The differential (diffusion) property of consecutive application of Step 1 and Step 2 in the function

f0 can be determined by combining Lemma 4 and Lemma 5 and is summarized in the following

Lemma 6. Every one bit difference in the vector M(i) or in the vector H(i−1) after Step 1 and Step 2 of the

function f0 diffuses into 5 words of the the vector Qa, and the differences in those 5 words are minimum 1

or 2 bits difference, or minimum 3 or 4 bits difference.

23

CHAPTER 3: DESIGN RATIONALE

Proof. We have tested all possible one-bit differences with all possible multiple runs of consecutive

bit differences that can be obtained with the operations of addition or subtraction modulo 232 or

modulo 264 after Step 1 of the function f0. Then we have processed those differences further by

s0, . . . , s3, or by s4 and s5. For the cases when those differences are processed by s0, . . . , s3 we have

that the minimum is either 3 or 4 bits, and when we process those differences by s4 and s5 we have

that the minimum is 1 or 2 bits.

3.6 Tunable parameters ExpandRounds1 and ExpandRounds2

The function f1 is designed as a weak block cipher as it is described in Section 2.1. It takes an argu-

ment M(i), and maps the values Qa = (Q
(i)
0 , Q

(i)
1 , . . . , Q

(i)
15) to the values Qb = (Q

(i)
16 , Q

(i)
17 , . . . , Q

(i)
31).

We are achieving that in 16 expansion steps using two types of expansion functions. The first ex-

pansion function expand1() is used in the beginning of the expansion process. In that function, a

difference of a one bit in M(i) or in Qa diffuses much faster than in the second expansion function

expand2(). The number of times we will call the first and the second function are connected with

the following relation:

ExpandRounds1 + ExpandRounds2 = 16.

The function

expand1(j) = s1(Q
(i)
j−16) + s2(Q

(i)
j−15) + s3(Q

(i)
j−14) + s0(Q

(i)
j−13)

+ s1(Q
(i)
j−12) + s2(Q

(i)
j−11) + s3(Q

(i)
j−10) + s0(Q

(i)
j−9)

+ s1(Q
(i)
j−8) + s2(Q

(i)
j−7) + s3(Q

(i)
j−6) + s0(Q

(i)
j−5)

+ s1(Q
(i)
j−4) + s2(Q

(i)
j−3) + s3(Q

(i)
j−2) + s0(Q

(i)
j−1)

+ M
(i)

(j−16) mod 16
+ M

(i)

(j−13) mod 16
− M

(i)

(j−6) mod 16
+ Kj

,

is a more complex and more computationally expensive function in the expansion part. However,

as a sort of security/performance tradeoff for the computation of the expanded values, we are

using the second simplified expand function:

expand2(j) = Q
(i)
j−16 + r1(Q

(i)
j−15) + Q

(i)
j−14 + r2(Q

(i)
j−13)

+ Q
(i)
j−12 + r3(Q

(i)
j−11) + Q

(i)
j−10 + r4(Q

(i)
j−9)

+ Q
(i)
j−8 + r5(Q

(i)
j−7) + Q

(i)
j−6 + r6(Q

(i)
j−5)

+ Q
(i)
j−4 + r7(Q

(i)
j−3) + s5(Q

(i)
j−2) + s4(Q

(i)
j−1)

+ M
(i)

(j−16) mod 16
+ M

(i)

(j−13) mod 16
− M

(i)

(j−6) mod 16
+ Kj

.

Our recommendation for these tunable parameters is: ExpandRounds1 = 2, ExpandRounds2 = 14.

24

CHAPTER 3: DESIGN RATIONALE

3.6.1 Statements, relating to the NIST requirements 2.B.1.

Here we give statements, in relation to the NIST requirements 2.B.1.

I.

The following statements are the same for each digest size n = 224, 256, 384, 512.

II.

Using two consecutive expand1() rounds at the beginning of the weak block cipher f1 means

that the variables Qa = (Q0, . . . , Q15) enter the 16-round block cipher f1 in two different linear

combinations of their bits consecutively (excluding Q0, which enters the cipher f1 directly only

once as s1(Q0) and indirectly in Q17, . . . , Q31). For instance Q1 enters f1 in the first two rounds

directly as s2(Q1) and s1(Q1), Q2 enters f1 in the first two rounds directly as s3(Q2) and s2(Q2),

etc. The more rounds of expand1() are used, the more linear combinations of variables of Qa enter

the cipher f1.

III.

By using more rounds of expand1() we can increase the strength (and the complexity) of the cipher

f1, and thus the security of BLUE MIDNIGHT WISH , but we will decrease the speed.

IV.

By using two different round functions expand1() and expand2() we increase the difficulty of find-

ing overall differential paths, because the differentials for the first function expand1() and for the

second function expand2() are completely different.

V.

We are not aware of any weaknesses even for ExpandRounds1 = 0 and ExpandRounds2 = 16 or

ExpandRounds1 = 16 and ExpandRounds2 = 0 or any other combination for ExpandRounds1 +

ExpandRounds2 = 16, but we propose ExpandRounds1 = 2 as an optimal tradeoff between secu-

rity and efficiency.

25

CHAPTER 3: DESIGN RATIONALE

3.7 Cryptanalysis of BLUE MIDNIGHT WISH

3.7.1 Bijective parts in the compression function of BLUE MIDNIGHT WISH

Here we will write the compression function in such a way that we will emphasize all its functional

entities. Later on, this representation will help us to perform a cryptanalysis of the compression

function.

First let us adopt the following notation for this and the next section:

1. We omit the upper index (i) in our notations.

2. We denote the i-th message block as Mi (instead of M(i)).

3. We denote the (i − 1)-th double pipe as Hi−1 (instead of H(i−1)).

4. We denote the final output from the function f2 as Hi i.e. Hi = f2(Mi, Qa, Qb) (instead of

H(i)).

Having in mind the definition of the function f2 given in Table 2.4 we can rewrite the function f2

as follows.

Let f3 : {0, 1}2m → {0, 1}m be defined as:

f3(Mi, Qb) =



























SHL5(XH) ⊕ SHR5(Q
(i)
16) ⊕ M

(i)
0

SHR7(XH) ⊕ SHL8(Q
(i)
17) ⊕ M

(i)
1

SHR5(XH) ⊕ SHL5(Q
(i)
18) ⊕ M

(i)
2

SHR1(XH) ⊕ SHL5(Q
(i)
19) ⊕ M

(i)
3

SHR3(XH) ⊕ Q
(i)
20 ⊕ M

(i)
4

SHL6(XH) ⊕ SHR6(Q
(i)
21) ⊕ M

(i)
5

SHR4(XH) ⊕ SHL6(Q
(i)
22) ⊕ M

(i)
6

SHR11(XH) ⊕ SHL2(Q
(i)
23) ⊕ M

(i)
7

XH ⊕ Q
(i)
24 ⊕ M

(i)
8

XH ⊕ Q
(i)
25 ⊕ M

(i)
9

XH ⊕ Q
(i)
26 ⊕ M

(i)
10

XH ⊕ Q
(i)
27 ⊕ M

(i)
11

XH ⊕ Q
(i)
28 ⊕ M

(i)
12

XH ⊕ Q
(i)
29 ⊕ M

(i)
13

XH ⊕ Q
(i)
30 ⊕ M

(i)
14

XH ⊕ Q
(i)
31 ⊕ M

(i)
15



























26

CHAPTER 3: DESIGN RATIONALE

Further on, let f4 : {0, 1}2m → {0, 1}m be defined as:

f4(Qa, Qb) =



























XL ⊕ Q
(i)
24 ⊕ Q

(i)
0

XL ⊕ Q
(i)
25 ⊕ Q

(i)
1

XL ⊕ Q
(i)
26 ⊕ Q

(i)
2

XL ⊕ Q
(i)
27 ⊕ Q

(i)
3

XL ⊕ Q
(i)
28 ⊕ Q

(i)
4

XL ⊕ Q
(i)
29 ⊕ Q

(i)
5

XL ⊕ Q
(i)
30 ⊕ Q

(i)
6

XL ⊕ Q
(i)
31 ⊕ Q

(i)
7

SHL8(XL) ⊕ Q
(i)
23 ⊕ Q

(i)
8

SHR6(XL) ⊕ Q
(i)
16 ⊕ Q

(i)
9

SHL6(XL) ⊕ Q
(i)
17 ⊕ Q

(i)
10

SHL4(XL) ⊕ Q
(i)
18 ⊕ Q

(i)
11

SHR3(XL) ⊕ Q
(i)
19 ⊕ Q

(i)
12

SHR4(XL) ⊕ Q
(i)
20 ⊕ Q

(i)
13

SHR7(XL) ⊕ Q
(i)
21 ⊕ Q

(i)
14

SHR2(XL) ⊕ Q
(i)
22 ⊕ Q

(i)
15



























Finally for any X = (X0, X1, . . . , X15) where Xi are w–bit words (w = 32, 64), let us define the

function f5 : {0, 1}16w → {0, 1}16w as:

f5(X) =





















0
0
0
0
0
0
0
0

ROTL9(X4)
ROTL10(X5)
ROTL11(X6)
ROTL12(X7)
ROTL13(X0)
ROTL14(X1)
ROTL15(X2)
ROTL16(X3)





















Now the final output from the f2 function is Hi = (H0, H1, . . . , H15) and can be rewritten as:

Hi = f2(Mi, Qa, Qb) ≡ f3(Mi, Qb) + f4(Qa, Qb) + f5(f3(Mi, Qb) + f4(Qa, Qb)). (3.7.1)

One of the basic security properties of BLUE MIDNIGHT WISH is its nonlinear folding function f2.

We describe here one specially designed part of this function.

27

CHAPTER 3: DESIGN RATIONALE

Let us denote by La the the following function:

La(Qb) =



























SHL5(XH) ⊕ SHR5(Q
(i)
16)

SHR7(XH) ⊕ SHL8(Q
(i)
17)

SHR5(XH) ⊕ SHL5(Q
(i)
18)

SHR1(XH) ⊕ SHL5(Q
(i)
19)

SHR3(XH) ⊕ Q
(i)
20

SHL6(XH) ⊕ SHR6(Q
(i)
21)

SHR4(XH) ⊕ SHL6(Q
(i)
22)

SHR11(XH) ⊕ SHL2(Q
(i)
23)

XH ⊕ Q
(i)
24

XH ⊕ Q
(i)
25

XH ⊕ Q
(i)
26

XH ⊕ Q
(i)
27

XH ⊕ Q
(i)
28

XH ⊕ Q
(i)
29

XH ⊕ Q
(i)
30

XH ⊕ Q
(i)
31



























Further on, let us denote by Lb the function:

Lb(Qb) =



























XL ⊕ Q
(i)
24

XL ⊕ Q
(i)
25

XL ⊕ Q
(i)
26

XL ⊕ Q
(i)
27

XL ⊕ Q
(i)
28

XL ⊕ Q
(i)
29

XL ⊕ Q
(i)
30

XL ⊕ Q
(i)
31

SHL8(XL) ⊕ Q
(i)
23

SHR6(XL) ⊕ Q
(i)
16

SHL6(XL) ⊕ Q
(i)
17

SHL4(XL) ⊕ Q
(i)
18

SHR3(XL) ⊕ Q
(i)
19

SHR4(XL) ⊕ Q
(i)
20

SHR7(XL) ⊕ Q
(i)
21

SHR2(XL) ⊕ Q
(i)
22



























Finally, let us define the transformation L : {0, 1}16w → {0, 1}16w as L ≡ La ⊕ Lb i.e.:

28

CHAPTER 3: DESIGN RATIONALE

L(Qb) =



























SHL5(XH) ⊕ SHR5(Q
(i)
16)

SHR7(XH) ⊕ SHL8(Q
(i)
17)

SHR5(XH) ⊕ SHL5(Q
(i)
18)

SHR1(XH) ⊕ SHL5(Q
(i)
19)

SHR3(XH) ⊕ Q
(i)
20

SHL6(XH) ⊕ SHR6(Q
(i)
21)

SHR4(XH) ⊕ SHL6(Q
(i)
22)

SHR11(XH) ⊕ SHL2(Q
(i)
23)

XH ⊕ Q
(i)
24

XH ⊕ Q
(i)
25

XH ⊕ Q
(i)
26

XH ⊕ Q
(i)
27

XH ⊕ Q
(i)
28

XH ⊕ Q
(i)
29

XH ⊕ Q
(i)
30

XH ⊕ Q
(i)
31



























⊕



























XL ⊕ Q
(i)
24

XL ⊕ Q
(i)
25

XL ⊕ Q
(i)
26

XL ⊕ Q
(i)
27

XL ⊕ Q
(i)
28

XL ⊕ Q
(i)
29

XL ⊕ Q
(i)
30

XL ⊕ Q
(i)
31

SHL8(XL) ⊕ Q
(i)
23

SHR6(XL) ⊕ Q
(i)
16

SHL6(XL) ⊕ Q
(i)
17

SHL4(XL) ⊕ Q
(i)
18

SHR3(XL) ⊕ Q
(i)
19

SHR4(XL) ⊕ Q
(i)
20

SHR7(XL) ⊕ Q
(i)
21

SHR2(XL) ⊕ Q
(i)
22



























Theorem 1. The transformation L : {0, 1}16w → {0, 1}16w is a bijection for both values w = 32 and

w = 64.

Proof. A direct linear algebra check of the determinant of the corresponding matrix for the trans-

formation L for both cases w = 32 and w = 64 shows that the determinant is 1 (in GF(2)).

The constants for shifting left or right used in the transformation L were found by a computer

search, such that L is bijective transformation both for w = 32 and w = 64.

The following theorem is true about the different bijective parts of the compression function of

BLUE MIDNIGHT WISH :

Theorem 2.

1. When Hi−1 is fixed, f0(Mi, Hi−1) is a bijection.

2. When Mi is fixed, f0(Mi, Hi−1) is a bijection.

3. When Qa is fixed, f1(Mi, Qa) is a bijection.

4. When Mi is fixed, f1(Mi, Qa) is a bijection.

5. When Qb and Mi are fixed, f2(Mi, Qa, Qb) is a bijection.

6. When Qb and Qa are fixed, f2(Mi, Qa, Qb) is a bijection.

7. When Qb is fixed, for every distinct value of Qa (resp. Mi), the equation Qb = f1(Mi, Qa) have a

unique solution Mi (resp. Qa).

29

CHAPTER 3: DESIGN RATIONALE

Proof. Item 1. This is a consequence of the non-singularity of the matrix A1 and the Lemma 3.

Item 2. This is also a consequence of the non-singularity of the matrix A1 and the Lemma 3.

Item 3. (sketch) Let us take Qb = f1(Mi, Qa), where the values of Qa are given and fixed. Then,

for every given value of Qb we can obtain the following equation:

B · M = Const

where Const = g(Qa, Qb) is some function obtained from the expanding functions expand1()

and expand2() and where the matrix

B =




















1 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 −1 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 −1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 −1

−1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 −1 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 −1 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 −1 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 −1 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 −1 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 −1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 1




















is a nonsingular matrix in the ring (Z232 , +,×) and in the ring (Z264 , +,×).

Item 4. Let the value of Mi = (M0, . . . , M15) be given and fixed. Then, for every given value

Qb = (Q16, . . . , Q31) we can obtain the following unique values

Q15 = expand
(−1)
2 (31)

Q14 = expand
(−1)
2 (30)

. . .

Q2 = expand
(−1)
2 (18)

Q1 = expand
(−1)
1 (17)

Q0 = expand
(−1)
1 (16)

where

expand
(−1)
2 (j) = Qj − r1(Qj−15) − Qj−14 − r2(Qj−13)

− Qj−12 − r3(Qj−11) − Qj−10 − r4(Qj−9)

− Qj−8 − r5(Qj−7) − Qj−6 − r6(Qj−5)

− Qj−4 − r7(Qj−3) − s5(Qj−2) − s4(Qj−1)

− M
(i)

(j−16) mod 16
− M

(i)

(j−13) mod 16
+ M

(i)

(j−6) mod 16
− Kj

.

30

CHAPTER 3: DESIGN RATIONALE

and

expand
(−1)
1 (j) = s−1

1

(

Qj − s2(Qj−15) − s3(Qj−14) − s0(Qj−13)

− s1(Qj−12) − s2(Qj−11) − s3(Qj−10) − s0(Qj−9)

− s1(Qj−8) − s2(Qj−7) − s3(Qj−6) − s0(Qj−5)

− s1(Qj−4) − s2(Qj−3) − s3(Qj−2) − s0(Qj−1)

− M
(i)

(j−16) mod 16
− M

(i)

(j−13) mod 16
+ M

(i)

(j−6) mod 16
− Kj

)

,

Item 5. (sketch) If Qb and Mi are fixed then Hi = f2(Mi, Qa, Qb) can be rewritten as

Hi = (La(Qb) ⊕ Mi) + (Lb(Qb) ⊕ Qa) = Const1(Qb, Mi) + (Const2(Qb, Mi) ⊕ Qa),

where Const1(Qb, Mi) and Const2(Qb, Mi) are expressions of the constants Qb and Mi. Here

Hi is a bijection of Qa.

Item 6. (sketch) If Qa and Qb are fixed then Hi = f2(Mi, Qa, Qb) can be rewritten as

Hi = (La(Qb) ⊕ Mi) + (Lb(Qb)⊕ Qa) = (Const1(Qa, Qb) ⊕ Mi) + Const2(Qa, Qb),

where Const1(Qa, Qb) and Const2(Qa, Qb) are expressions of the constants Qa and Qb. Here

Hi is a bijection of Mi.

Item 7. (sketch) Let Qb be given. Then for every distinct Qa, from equation Qb = f1(Mi, Qa) we

compute B(Mi), and obtain unique Mi, because B is a bijection. If Qb is given, then for every

distinct Mi we obtain plaintext Qa by deciphering Qb with the key Mi.

Note: Theorem 2 holds for every combination of ExpandRounds1 and ExpandRounds2 such that

ExpandRounds1 + ExpandRounds2 = 16.

3.7.2 Representation as a generalized PGV6 scheme

Preneel, Govaerts, and Vandewalle in [7] have located 12 secure schemes for constructing hash

functions from block ciphers. Black et. al., [8] have proved (in an ideal cipher model) that those

schemes are collision-resistant too.

The basic iterative relation for the scheme number 6 (PGV6) is:

Hi = E(Mi, Mi ⊕ Hi−1) ⊕ Mi ⊕ Hi−1

31

CHAPTER 3: DESIGN RATIONALE

Mi -IE
?

?

?

Hi−1

⊕

⊕
-

-

�

?

Hi

Mi -IE
?

?

?

Hi−1

⊕

f2
-

-

�

?

Hi

a. b.

Figure 3.1: a. The PGV6 one-way compression function, b. Generalized PGV6 one-way compres-

sion function where the feedback information of Mi and Hi−1 is combined with the

ciphertext E(Mi, Mi ⊕ Hi−1) not with simple xor function ⊕ but with some more com-

plex function f2.

where the notation E(K, X) denotes a block cipher operation with a key K and a plaintext X.

The graphical representation of the scheme is given in Figure 3.1a.

The feedback information that is used in PGV6 is the expression Mi ⊕ Hi−1 and the scheme can be

expressed as: Hi = f2(Mi, Hi−1, E(Mi, Hi−1)) where

f2(Mi, Hi−1, E(Mi, Hi−1)) ≡ E(Mi, Hi−1) ⊕ Mi ⊕ Hi−1.

However, we can transform the feedback information with some generalized function f2 and that

generalized PGV6 scheme is shown on Figure 3.1b.

Theorem 3. BLUE MIDNIGHT WISH hash function can be expressed as a generalized PGV6 scheme.

Proof. First, recall that so far we have represented the BLUE MIDNIGHT WISH as: Hi = f2(Mi, Qa, Qb),

where Qa = f0(Mi, Hi−1) = A2(A1 · (Mi ⊕ Hi−1)), and where Qb = f1(Mi, Qa) = f1(Mi, f0(Mi, Hi−1)).

So, in the composition of bijections f0 and f1 we actually have the xoring part of the PGV6 scheme

(the xoring Mi ⊕ Hi−1). In the expression for Qb = f1(Mi, f0(Mi, Hi−1)) we can treat Mi as a key

in the block cipher:

f1(Mi, A2(A1 · (Mi ⊕ Hi−1))) ≡ E(Mi, Mi ⊕ Hi−1).

By all this, we have three components Mi, Hi−1, and E(Mi, Mi ⊕ Hi−1) that are functionally com-

bined by the function f2 i.e., BLUE MIDNIGHT WISH can be represented as

Hi = f2(Mi, Hi−1, E(Mi, Mi ⊕ Hi−1)).

32

CHAPTER 3: DESIGN RATIONALE

Note. The underlying block cipher f1 used in BLUE MIDNIGHT WISH is not ideal. Beside the

property under the Item 7 in the Theorem 2, in the Section 3.7.4 we will show that its first word

(32-bit or 64-bit) is distinguishable from an ideal random function. However, this deficiency of

the block cipher used in BLUE MIDNIGHT WISH is compensated by the more complex feedback

function and by the size of the block cipher output which is twice the size of the output of the hash

function.

3.7.3 Representation as a generalized PGV scheme

The discussion in the previous section can be further generalized, and we will show in this section

that BLUE MIDNIGHT WISH can be seen as a generalized scheme of any of the 12 PGV secure

schemes.

Let us recall the general scheme that authors of PGV paper [7] have considered, i.e., the following

iterative scheme for construction of a hash function:

Hi = F(Hi−1, Mi) ≡ E(a, b) ⊕ c,

where a, b, c ∈ {Hi−1, Mi, Hi−1 ⊕ Mi, const}, and where E(a, b) denotes a block cipher E with a key

a and a plaintext b.

Theorem 4. BLUE MIDNIGHT WISH could be seen as a generalization of any of the secure schemes PGV1,

PGV2, . . . PGV12.

Proof. For the purpose of this proof let us denote the key, plaintext, and ciphertext as K = Mi,

PT = Mi ⊕ Hi−1, CT = Qb = E(Mi, Mi ⊕ Hi−1). Recall that

Hi = f3(Mi, Qb) + f4(Qa, Qb) + f5(f3(Mi, Qb) + f4(Qa, Qb)).

A simplified expression from the last one is the expression without the term with the function f5

i.e.,

Hi = f3(Mi, Qb) + f4(Qa, Qb).

We will represent the last expression as:

Hi = (La(Qb) ⊕ Mi) + (Lb(Qb) ⊕ Qa) = (La(Qb) ⊕ Mi) + (Lb(Qb)⊕ f0(Mi ⊕ Hi−1)).

33

CHAPTER 3: DESIGN RATIONALE

So, from another point of view we have

Hi = (La(CT) ⊕ K) + (Lb(CT)⊕ f0(PT)).

We know that La(X) ⊕ Lb(X) = L(X) is a bijective transformation of X, and f0 is a bijective

function, therefore

1. When we see Hi = (La(CT)⊕ K) + (Lb(CT)⊕ f0(PT)) as a generalization of Hi = CT ⊕K ⊕

PT, we obtain the output of the schemes PGV3, PGV4, PGV7, PGV8, PGV11 and PGV12.

2. When we see Hi = (La(CT)⊕ K) + (Lb(CT)⊕ f0(PT)) as a generalization of Hi = CT ⊕ PT

we obtain the output of the schemes PGV1, PGV2, PGV5, PGV6, PGV9 and PGV10.

The bijective property of L is important part in the resistance of BLUE MIDNIGHT WISH against

attacks for finding preimages and pseudo-collisions.

We will illustrate the last claim with a representation of a sequence of simplified versions of BLUE

MIDNIGHT WISH .

• The original BLUE MIDNIGHT WISH can be represented by the equation (3.7.1) i.e. as

Hi = f3(Mi, Qb) + f4(Qa, Qb) + f5(f3(Mi, Qb) + f4(Qa, Qb)).

• We would get a simpler version of the hash function if we remove the function f5. In that

case the iterative equation would be

Hi = f3(Mi, Qb) + f4(Qa, Qb).

• An even simpler version of the hash function can be obtained if we change the operation "+"

(the additions modulo 232 or modulo 264) with the operation ⊕ (bitwise xoring of 32-bit or

64-bit words). In that case the iterative equation would be

Hi = f3(Mi, Qb)⊕ f4(Qa, Qb).

The last equation can be rewritten as:

Hi = L(Qb)⊕ Mi ⊕ Qa.

34

CHAPTER 3: DESIGN RATIONALE

• We can simplify the last iterative equation even further by replacing the values of Qa =

f0(Mi, Hi−1) with the values of Hi−1. In that case we obtain the following simplified BLUE

MIDNIGHT WISH hash function:

Hi = L(Qb) ⊕ Mi ⊕ Hi−1. (3.7.2)

If we recall that Qb is the "ciphertext" i.e. the result of our block cipher f1, that encrypts the

"plaintext" Mi ⊕ Hi−1, with the key Mi, and Hi−1 being a previous hash value, we actually have

the PGV6 construction, with the exception that instead of direct use of the ciphertext Qb we are

using some bijective transformation of Qb i.e. we are using L(Qb).

A pseudo-collision for the last simplified hash function represented by the equation (3.7.2) is a situ-

ation when we have two pairs (M′
i , H′

i−1) and (M′′
i , H′′

i−1) such that H′
i = H′′

i where H′
i = L(Q′

b)⊕

M′
i ⊕ H′

i−1 and H′′
i = L(Q′′

b) ⊕ M′′
i ⊕ H′′

i−1 and where Q′
b = f1(M′

i , H′
i−1), Q′′

b = f1(M′′
i , H′′

i−1).

Although we can not directly use the provisions from the PGV6 construction since our block cipher

f1 is not acting as an ideal block cipher, having in mind the complex binary transformation of the

"ciphertext" Qb and the size of the blocks and keys in the block cipher f1 that are two times bigger

than the hash digest n, we can still claim that finding pseudo-collisions for the last simplified

version of BLUE MIDNIGHT WISH is infeasible.

3.7.4 Monomial tests on the block ciphers used in BLUE MIDNIGHT WISH

The monomial tests have been introduced several years ago by Filiol [9] to evaluate the statistical

properties of symmetric ciphers. Later, Saarinen [10] proposed an extension of Filiol’s ideas to a

chosen IV statistical attack, called the “d-monomial test”, and used it to find weaknesses in several

proposed stream ciphers. In 2007 Englund, Johansson and Turan [11] generalized Saarinen’s idea

and proposed a framework for chosen IV statistical attacks using a polynomial description. Their

basic idea is to select a subset of IV bits as variables, assuming all other IV values as well as the key

being fixed. Then, by obtaining the algebraic normal form for such a function they were searching

for some statistical deviations from ideal random Boolean function. A similar approach as that of

Englund et al. is also described by O’Neil in [12].

In order to get a statistical measure of the deviation from ideal random Boolean function of the

block cipher that is used in BLUE MIDNIGHT WISH we have defined NANT - A Normalized Aver-

age Number of Terms (monomials). NANT can be seen as a variant of Englund’s monomial tests

and it is defined in what follows.

35

CHAPTER 3: DESIGN RATIONALE

Let n ≥ r ≥ 1 be integers and let F : {0, 1}n → {0, 1}r be a vector valued Boolean func-

tion. The vector valued function F can be represented as an r-tuple of Boolean functions F =

(F(1), F(2), . . . , F(r)), where F(s) : {0, 1}n → {0, 1} (s = 1, 2, . . . , r), and the value of F(s)(x1, . . . , xn)

equals the value of the s-th component of F(x1, . . . , xn). The Boolean functions F(s)(x1, . . . , xn) can

be expressed in the Algebraic Normal Form (ANF) as polynomials with n variables x1, . . . , xn of

kind a0 ⊕ a1x1 ⊕ · · · ⊕ anxn ⊕ a1,2x1x2 ⊕ · · · ⊕ an−1,nxn−1xn ⊕ · · · ⊕ a1,2,...,nx1x2 . . . xn, where aλ ∈

{0, 1}. Each ANF have up to 2n terms (i.e. monomials), depending of the values of the coefficients

aλ. Denote by LF(s) the number of terms in the ANF of the function F(s). Then the number of terms

of the vector valued function F is defined to be the number LF =
r

∑
s=1

LF(s).

Definition 1. Let F : {0, 1}n → {0, 1}r be a vector valued Boolean function. For any k ∈ {1, . . . , n}

and any assembly of S subsets σj = {i1, i2, . . . , ik} ⊂ {0, 1, . . . , n − 1} chosen uniformly at random

(1 ≤ j ≤ S), let Fσj
denote the restriction of F defined by

Fσj
(x1, x2, . . . , xn) = F(0, . . . , 0, xi1 , 0, . . . , 0, xi2 , 0, . . . , 0, xik

, 0, . . . , 0).

We define a random variable LF – the Normalized Average Number of Terms (NANT) as:

LF = LF(r, k) =
1

r
·

1

2k−1
· lim

S→∞

1

S

S

∑
j=1

LFσj
.

Since the subsets σj are chosen uniformly at random, the average values of L
F

(s)
σj

(s = 1, 2, . . . , r)

are 2k−1 and the average value of LFσj
is r2k−1. Also, L

F
(s)
σj

≤ 2k. So, the following theorem is true:

Theorem 5. For any function F : {0, 1}n → {0, 1}r chosen uniformly at random from the set of all such

functions, for any value of r ≥ 1 and for any k ∈ {1, . . . n}, it is true that

0 ≤ LF ≤ 2

and that the expected value is

EX(LF) = 1.

Note that if we want to apply the NANT measure on every bit of some function F : {0, 1}n →

{0, 1}r then instead of averaging on all r coordinates we are taking that r = 1 i.e., we have to

apply the following formula:

LF = LF(k) =
1

2k−1
· lim

S→∞

1

S

S

∑
j=1

LFσj
.

36

CHAPTER 3: DESIGN RATIONALE

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

0.5

1.0

1.5

2.0

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

0.5

1.0

1.5

2.0

a. b.

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

0.5

1.0

1.5

2.0

c.

Figure 3.2: NANT analysis when BMW256 is seen as a generalized PGV6 scheme. a. Values of LF

for every bit (in total 512 bits) in Qb. b. Values of LF for every bit in (XL, XH) (in total

64 bits). c. Values of LF for every bit (in total 512 bits) in Hi.

We have measured NANT for every bit of Qb = (Q16, . . . , Q31), the pair (XL, XH) and the fi-

nal chaining value Hi = (H0, . . . , H15) by considering BLUE MIDNIGHT WISH as a generalized

PGV6 scheme. In that case, the mapping (the block cipher) f1(Mi, Hi−1) = f1(Mi, f0(Mi, Hi−1)) ≡

E(Mi, Mi ⊕ Hi−1) was tested with a fixed Mi in the role of a key.

By performing the NANT tests, we see that the block cipher operation E(Mi, Mi ⊕ Hi−1) used in

BLUE MIDNIGHT WISH is distinguishable from a random permutation. So, when we see BMW256

as a generalized PGV6 scheme, Boolean functions for the bits in Q16 are easily distinguishable

from random Boolean function, while for all other variables in Qb the Boolean functions for every

bit act as a random Boolean function. That is shown in Figure 3.2a. For the two variables (XL, XH)

which consist in total of 64 bits there are no significant deviations from the value 1.0 and that is

shown in Figure 3.2b. For the chaining variable Hi there are also no significant deviations from

37

CHAPTER 3: DESIGN RATIONALE

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

0.5

1.0

1.5

2.0

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

0.5

1.0

1.5

2.0

a. b.

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

0.5

1.0

1.5

2.0

c.

Figure 3.3: NANT analysis when BMW512 is seen as a generalized PGV6 scheme. a. Values of LF

for every bit (in total 1024 bits) in Qb. b. Values of LF for every bit in (XL, XH) (in total

128 bits). c. Values of LF for every bit (in total 1024 bits) in Hi.

the value 1.0 (Figure 3.2c).

For digest sizes of 384 and 512 bits we have applied NANT tests on BMW512. The outcome of

the NANT tests is similar with the case of BMW256. Namely, Boolean functions for the bits in Q16

are easily distinguishable from random Boolean function, while for all other variables in Qb the

Boolean functions for every bit act as a random Boolean function. That is shown in Figure 3.3a.

For the two variables (XL, XH) which consist in total of 128 bits there are no significant deviations

from the value 1.0 and that is shown in Figure 3.3b. For the chaining variable Hi there are also no

significant deviations from the value 1.0 (Figure 3.3c).

So, we can say that although BLUE MIDNIGHT WISH follows the well established and secure

schemes for designing hash functions from block ciphers (PGV), its underlying block cipher is

a weak block cipher. But, does it make the overall design weak? We think that it does not make

38

CHAPTER 3: DESIGN RATIONALE

the overall hash function weak because of the following reasons:

1. The deficiency coming from the distinguishability of the first word (first 4 words) is com-

pensated by the wide block size in BLUE MIDNIGHT WISH which is 512 or 1024 bits long.

2. From the fifth word, all other words in Qb are not distinguishable from random 32-bit (64-bit)

variables.

3. The feedback information is a complex function of the initial inputs to the block cipher and

its output.

4. The property in Item 7 from Theorem 2 is compensated by the more complex and generalized

output folding function f2 instead of the simple xor function.

Additionally to the arguments described above, we want to justify our recommendation for the

value ExpandRounds1 = 2. Namely, from the NANT analysis we have that the variable Q17 which

is obtained by the expand1() function is already reaching the level of a random Boolean function.

So, we can allow the rest of the variables in Qb (the variables Q18, . . . , Q31) to be computed by the

faster and less complex expansion function expand2().

3.7.5 Infeasibility of finding collisions, preimages and second preimages

The design of BLUE MIDNIGHT WISH heavily uses combinations of bitwise operations of XORing,

rotating and shifting (which can be seen as linear operations in GF(232) and in GF(264)) and op-

erations of addition and subtraction in Z232 or in Z264 (which are nonlinear operations in GF(232)

and in GF(264)). This strategy, combined with the mathematical property of f1 to be a permuta-

tion both when the message block is kept constant or when the previous chaining value is kept

constant allows its design to be represented as generalized PGV6 scheme. The PGV6 design is

second-preimage resistant and collision resistant, and that is the reason why we claim that also

BLUE MIDNIGHT WISH is a second-preimage resistant and collision resistant hash function.

Additionally, the diffusion characteristics of Boolean functions si(), i = 0, 1, . . . , 5, the size of the

chaining value being two times wider than the final message digest size, and the nonlinear ex-

pressions used in the function f2, are the cornerstones of the BLUE MIDNIGHT WISH strength.

More specifically, the chaining part of BLUE MIDNIGHT WISH – “The Double Pipe” is created by

the folding function f2 from three inputs: the current message block itself (xored with the old

double pipe), its first bijective transformation Qa and its second bijective transformation Qb. We

39

CHAPTER 3: DESIGN RATIONALE

can treat Qa and Qb as ciphertexts, created by non-linear block ciphers, but in a specific manner

such that they are bijectively tied together. The bijective entanglement, combined with the non-

linearity of the expressions in f2 gives us confidence that it is infeasible to find collisions, preim-

ages or second preimages of BLUE MIDNIGHT WISH . We believe that it is hard to find a way

to change consistently all three inputs (tied by non-linear bijective mappings) in such a way that

these changes in 3-times wider input of the compression function f2 will cancel each other or will

lead to controllable changes.

The BLUE MIDNIGHT WISH entanglement of the message, previous double pipe and the next

double pipe is shown in Figure 2.2 for the compression function.

3.7.6 Approximation of additions and subtractions with XORs

As mentioned in the previous subsection the compression function of BLUE MIDNIGHT WISH

uses bitwise operations of XORing, rotating and shifting (as linear operations in GF(232) and in

GF(264)) and operations of addition and subtraction in Z232 or in Z264 (as nonlinear operations in

GF(232) and in GF(264)).

A natural idea is to try to find values for which additions and subtractions behave as XORs. In

such a case, one would have a completely linear system in the ring (Z
n
2 , +,×) for which collisions,

preimages and second preimages can easily be found. However, getting all the additions to behave

as XORs is hard.

There are several significant works that are related with analysis of differential probabilities of

operations that combine additions modulo 2n, XORs and left rotations. In 1993, Berson has made

a differential cryptanalysis of addition modulo 232 and applied it on MD5 [13]. In 2001, Lipmaa

and Moriai, have constructed efficient algorithms for computing differential properties of addition

modulo 2n [14], and in 2004, Lipmaa, Wallén and Dumas have constructed a linear-time algorithm

for computing the additive differential probability of exclusive-or [15].

All of these works are determining the additive differential probability of exclusive-or:

Pr[((x + α) ⊕ (y + β)) − (x ⊕ y) = γ]

and the exclusive-or differential probability of addition:

Pr[((x ⊕ α) + (y ⊕ β)) ⊕ (x + y) = γ]

where probability is computed for all pairs (x, y) ∈ Z2n × Z2n and for any predetermined triplet

(α, β, γ) ∈ Z2n × Z2n × Z2n .

40

CHAPTER 3: DESIGN RATIONALE

Recently Paul and Preneel [16] have successfully solved the problem of finding solutions in poly-

nomial time of differential equations of addition with two variables x and y of type (x + y)⊕ ((x ⊕

α) + (y ⊕ β)) = γ where α, β and γ are constants. Someone can use their algorithm to try to attack

BLUE MIDNIGHT WISH . The problem is that their algorithm is for equations with two variables,

and their strategy extended to solving systems of differential equations of addition with three or

more variables has exponential complexity i.e. is of the order O(2b×k) where b is the bit length of

the variables, and k is the number of equations.

So, in the case of BLUE MIDNIGHT WISH instead of a simple combination of two 32–bit (or 64–bit)

variables once by additions then by xoring, we have a complex multivariate system of equations.

In these equations both bitwise operations (XORing, shifting or rotation) and word-oriented oper-

ations (addition or subtraction) are mutually embedded one into the other. At the time of writing,

we do not see how the results in [16] will help in finding solutions for the BLUE MIDNIGHT WISH

equations.

3.7.7 Cryptanalysis of a scaled down BLUE MIDNIGHT WISH

In order to gain knowledge of how robust and sound the design of BLUE MIDNIGHT WISH is, we

analyzed a scaled down version of the algorithm. However, down-scaling of BLUE MIDNIGHT

WISH require a different approach than that which is usually taken when the hash function has

a big number of internal iterative steps which BLUE MIDNIGHT WISH does not have. It has 16

expansion steps but those steps can not be reduced (since it will destroy the essence of the de-

sign - working with a different interconnected bijections). We have decided to down-scale the

BLUE MIDNIGHT WISH by reducing the size of the word to 4 bits (corresponding to BMW224 and

BMW256) and to 8 bits (corresponding to BMW384 and BMW512). In such a case we defined

BMW28 (which has output of 7, 4–bit words i.e. 28 bits), BMW32 (which has output of 8, 4–bit

words i.e. 32 bits), BMW48 (which has output of 6, 8–bit words i.e. 48 bits) and BMW64 (which

has output of 8, 8–bit words i.e. 64 bits). The summary is given in Table 3.1.

Algorithm

abbreviation

Block size

m (in bits)

Word size

w (in bits)

Digest size

n (in bits)

BMW28 64 4 28

BMW32 64 4 32

BMW48 128 8 48

BMW64 128 8 64

Table 3.1: Basic properties of scaled-down variants of the BLUE MIDNIGHT WISH

41

CHAPTER 3: DESIGN RATIONALE

In order for this down-scaling to be correct, we had to change (adapt) the logical functions used. In

Table 3.2 we are listing the logical functions that we have used in the down-scaled version of BLUE

MIDNIGHT WISH . Note that we use the notation ROTL0(x) ≡ x in order to show the consistency

of the shape of logical functions in the scale-down function with the original construction of BLUE

MIDNIGHT WISH . All logical functions in the scaled-down hash function, similarly as in the

original construction, are bijections in GF(2w) where w = 4, 8, 32, 64, is the size of the word on

which these functions operate. The initial double-pipe value H for this scaled-down functions has

the value of the w least significant bits of the double-pipe H in the original design.

BMW28/BMW32 BMW48/BMW64

s0(x) = SHR1(x)⊕ SHL1(x)⊕ ROTL0(x) ⊕ ROTL3(x) s0(x) = SHR1(x)⊕ SHL1(x)⊕ ROTL3(x)⊕ ROTL4(x)

s1(x) = SHR1(x)⊕ SHL2(x)⊕ ROTL1(x)⊕ ROTL3(x) s1(x) = SHR1(x)⊕ SHL2(x)⊕ ROTL1(x)⊕ ROTL6(x)

s2(x) = SHR2(x)⊕ SHL1(x)⊕ ROTL3(x)⊕ ROTL0(x) s2(x) = SHR2(x)⊕ SHL5(x)⊕ ROTL19(x)⊕ ROTL7(x)

s3(x) = SHR2(x)⊕ SHL2(x)⊕ ROTL3(x)⊕ ROTL0(x) s3(x) = SHR2(x)⊕ SHL1(x)⊕ ROTL28(x)⊕ ROTL4(x)

s4(x) = SHR1(x)⊕ x s4(x) = SHR1(x)⊕ x

s5(x) = SHR2(x)⊕ x s5(x) = SHR2(x)⊕ x

r1(x) = ROTL1(x) r1(x) = ROTL1(x)

r2(x) = ROTL2(x) r2(x) = ROTL2(x)

r3(x) = ROTL3(x) r3(x) = ROTL3(x)

r4(x) = ROTL0(x) r4(x) = ROTL4(x)

r5(x) = ROTL1(x) r5(x) = ROTL5(x)

r6(x) = ROTL2(x) r6(x) = ROTL6(x)

r7(x) = ROTL3(x) r7(x) = ROTL7(x)

Table 3.2: Logic functions used in scaled-down BLUE MIDNIGHT WISH

Having such a small hash outputs, it is easy to analyze and to find collisions for the compression

functions of BMW28, BMW32 and BMW48 (but not so easy for BMW64 on our PC with 4GB RAM

memory). The average number of calls to the compression functions before finding a collision in a

hash of n bits is given in the Table 3.3. Note that in the second column we give the average number

An of calls to the compression function before finding a collision, and in the third column we give

the theoretically expected number Tn of calls to the compression function for finding a collision.

n An Tn

28 20,108 20,480

32 84,511 81,920

48 21,469,868 20,971,520

64 / 5,368,709,120

Table 3.3: Finding collisions on scaled-down BLUE MIDNIGHT WISH

42

CHAPTER 3: DESIGN RATIONALE

Besides the attempts of finding collisions we have checked how good the randomness produced

by the compression functions of these heavily scaled-down hash functions is. For doing that, for all

four variants: BMW28, BMW32, BMW48 and BMW64, we have produced a 500 MBbytes file and

examined its randomness by the "TestU01" - a C library for empirical testing of random number

generators [17]. The methodology of producing those 500 MBbytes files was the following: We

have represented the input message M as a 64–bits (resp. 128 bits) counter with a starting value 1

increasing in steps of 1. Then the counter M was represented as 16, 4–bit (resp. 8–bit) variables and

we computed h = Take_n_LS_bits(f2(M, f1(M, H))). The values h were concatenated in order to

build a 500 MBbytes file.

Report of TestU01 (applying two test batteries - Rabbit and the NIST FIPS-140-2) for BMW28 is

given in Table 3.4 and for BMW32 in Table 3.5. From the reports it is clear that there are certain

statistical tests that can distinguish the output of the compression function of BMW28 and BMW32

from an ideal source of randomness. Although the collision analysis for BMW28 and BMW32

are very close to those that are theoretically expected, intuitively it is expected that such heavily

scaled-down instances of the original BLUE MIDNIGHT WISH will be distinguishable from an ideal

source of uniformly distributed random bits.

========= Summary results of Rabbit =========

Version: TestU01 1.2.1

File: BMW4Bits28Hash500MB.bin

Number of bits: 2139095040

Number of statistics: 40

Total CPU time: 00:10:54.17

The following tests gave p-values outside [0.001, 0.9990]:

(eps means a value < 1.0e-300):

(eps1 means a value < 1.0e-015):

Test p-value

--

1 MultinomialBitsOver 2.8e-05

8 Fourier3 3.3e-28

10 PeriodsInStrings 3.0e-04

12 HammingCorr, L = 32 1.2e-08

13 HammingCorr, L = 64 8.0e-07

14 HammingCorr, L = 128 4.1e-09

17 HammingIndep, L = 64 7.2e-04

20 Run of bits 4.4e-04

24 RandomWalk1 H 4.8e-05

25 RandomWalk1 M (L = 1024) 5.2e-04

--

All other tests were passed

============== Summary results of FIPS-140-2 ==============

File: BMW4Bits28Hash500MB.bin

Number of bits: 20000

Test s-value p-value FIPS Decision

--

Monobit 9961 0.71 Pass

Poker 6.75 0.96 Pass

0 Runs, length 1: 2501 Pass

0 Runs, length 2: 1213 Pass

0 Runs, length 3: 603 Pass

0 Runs, length 4: 344 Pass

0 Runs, length 5: 156 Pass

0 Runs, length 6+: 160 Pass

1 Runs, length 1: 2467 Pass

1 Runs, length 2: 1259 Pass

1 Runs, length 3: 614 Pass

1 Runs, length 4: 332 Pass

1 Runs, length 5: 159 Pass

1 Runs, length 6+: 146 Pass

Longest run of 0: 14 0.46 Pass

Longest run of 1: 13 0.50 Pass

--

All values are within the required intervals of FIPS-140-2

Table 3.4: Summary of the TestU01 report for BMW28 (running the Rabbit and FIPS-140-2 battery)

However, if we consider that scaling down from 64–bit words to 8–bit words is a significant down-

43

CHAPTER 3: DESIGN RATIONALE

========= Summary results of Rabbit =========

Version: TestU01 1.2.1

File: BMW4Bits32Hash500MB.bin

Number of bits: 2139095040

Number of statistics: 40

Total CPU time: 00:11:07.34

The following tests gave p-values outside [0.001, 0.9990]:

(eps means a value < 1.0e-300):

(eps1 means a value < 1.0e-015):

Test p-value

--

8 Fourier3 3.6e-30

12 HammingCorr, L = 32 1.7e-14

13 HammingCorr, L = 64 eps

14 HammingCorr, L = 128 7.5e-08

24 RandomWalk1 H 6.6e-05

24 RandomWalk1 J 7.5e-04

25 RandomWalk1 H (L = 1024) 5.5e-04

--

All other tests were passed

============== Summary results of FIPS-140-2 ==============

File: BMW4Bits32Hash500MB.bin

Number of bits: 20000

Test s-value p-value FIPS Decision

--

Monobit 10017 0.41 Pass

Poker 9.50 0.85 Pass

0 Runs, length 1: 2533 Pass

0 Runs, length 2: 1239 Pass

0 Runs, length 3: 605 Pass

0 Runs, length 4: 328 Pass

0 Runs, length 5: 139 Pass

0 Runs, length 6+: 161 Pass

1 Runs, length 1: 2479 Pass

1 Runs, length 2: 1257 Pass

1 Runs, length 3: 650 Pass

1 Runs, length 4: 315 Pass

1 Runs, length 5: 152 Pass

1 Runs, length 6+: 152 Pass

Longest run of 0: 13 0.50 Pass

Longest run of 1: 14 0.46 Pass

--

All values are within the required intervals of FIPS-140-2

Table 3.5: Summary of the TestU01 report for BMW32 (running the Rabbit and FIPS-140-2 battery)

scaling, we were surprised to see that BMW48 and BMW64 actually pass all statistical tests from

Rabbit and FIPS-140-2 batteries. This clearly demonstrates the robustness of BLUE MIDNIGHT

WISH design. TestU01 reports (applying again the test batteries - Rabbit and the NIST FIPS-140-2)

are given in Table 3.6 and in Table 3.7. BMW48 and BMW64 pass all of these statistical tests.

44

CHAPTER 3: DESIGN RATIONALE

========= Summary results of Rabbit =========

Version: TestU01 1.2.1

File: BMW8Bits48Hash500MB.bin

Number of bits: 2139095040

Number of statistics: 40

Total CPU time: 00:11:05.42

All tests were passed

============== Summary results of FIPS-140-2 ==============

File: BMW8Bits48Hash500MB.bin

Number of bits: 20000

Test s-value p-value FIPS Decision

--

Monobit 10111 0.06 Pass

Poker 6.69 0.97 Pass

0 Runs, length 1: 2493 Pass

0 Runs, length 2: 1247 Pass

0 Runs, length 3: 655 Pass

0 Runs, length 4: 309 Pass

0 Runs, length 5: 142 Pass

0 Runs, length 6+: 145 Pass

1 Runs, length 1: 2464 Pass

1 Runs, length 2: 1272 Pass

1 Runs, length 3: 602 Pass

1 Runs, length 4: 329 Pass

1 Runs, length 5: 149 Pass

1 Runs, length 6+: 175 Pass

Longest run of 0: 11 0.91 Pass

Longest run of 1: 14 0.46 Pass

--

All values are within the required intervals of FIPS-140-2

Table 3.6: Summary of the TestU01 report for BMW48 (running the Rabbit and FIPS-140-2 battery)

========= Summary results of Rabbit =========

Version: TestU01 1.2.1

File: BMW8Bits64Hash500MB.bin

Number of bits: 2139095040

Number of statistics: 40

Total CPU time: 00:12:32.89

All tests were passed

============== Summary results of FIPS-140-2 ==============

File: BMW8Bits64Hash500MB.bin

Number of bits: 20000

Test s-value p-value FIPS Decision

--

Monobit 10030 0.34 Pass

Poker 13.89 0.53 Pass

0 Runs, length 1: 2541 Pass

0 Runs, length 2: 1250 Pass

0 Runs, length 3: 614 Pass

0 Runs, length 4: 304 Pass

0 Runs, length 5: 147 Pass

0 Runs, length 6+: 161 Pass

1 Runs, length 1: 2463 Pass

1 Runs, length 2: 1296 Pass

1 Runs, length 3: 643 Pass

1 Runs, length 4: 297 Pass

1 Runs, length 5: 176 Pass

1 Runs, length 6+: 142 Pass

Longest run of 0: 15 0.26 Pass

Longest run of 1: 11 0.91 Pass

--

All values are within the required intervals of FIPS-140-2

Table 3.7: Summary of the TestU01 report for BMW64 (running the Rabbit and FIPS-140-2 battery)

45

CHAPTER 3: DESIGN RATIONALE

3.8 Statements about security, support for applications, HMACs and

randomized hashing

3.8.1 Security statement relating to the NIST requirement 4.A.

Security provided by BLUE MIDNIGHT WISH variants (BMW224, BMW256, BMW384, BMW512)

in all applications (standards) is expected to be the same or better than appropriate SHA-2 variants

(SHA-224, SHA-256, SHA-384, SHA-512).

3.8.2 Statements relating to the NIST requirement 4.A.iii.

According to the analysis in previous sections we give a statement of the cryptographic strength

of BLUE MIDNIGHT WISH against attacks for finding collisions, preimages, second preimages and

resistance to length-extension attacks and multicollision attacks which is summarized in Table 3.8.

BLUE MIDNIGHT WISH of message digest size n (n = 224, 256, 384, 512) meet the following secu-

rity requirements:

• Collision resistance of approximately n
2 bits,

• Preimage resistance of approximately n bits,

• Second-preimage resistance of approximately n− k bits for any message shorter than 2k bits,

• Resistance to length-extension attacks,

• Resistance to multicollision attacks, and

• Any m-bit hash function specified by taking a fixed subset of the BLUE MIDNIGHT WISH ’s

output bits meets the above requirements with m replacing n.

3.8.3 Statement about the support of applications

All BLUE MIDNIGHT WISH variants (BMW224, BMW256, BMW384, BMW512) support wide vari-

ety of cryptographic applications, including digital signatures (FIPS 186-2), key derivation (NIST

Special Publication 800-56A), hash-based message authentication codes (FIPS 198), deterministic

random bit generators (SP 800-90) in the same way as the corresponding SHA-2 variants (SHA-

224, SHA-256, SHA-384, SHA-512).

46

CHAPTER 3: DESIGN RATIONALE

Algorithm

abbreviation

Digest size

n (in bits)

Work factor for

finding collision

Work factor for

finding a preimage

Work factor for finding

a second preimage of a

message shorter than 2k

bits

Resistance to

length-

extension

attacks

Resistance to

multicollision

attacks

BMW224 224 ≈ 2112 ≈ 2224 ≈ 2224−k Yes Yes

BMW256 256 ≈ 2128 ≈ 2256 ≈ 2256−k Yes Yes

BMW384 384 ≈ 2192 ≈ 2384 ≈ 2384−k Yes Yes

BMW512 512 ≈ 2256 ≈ 2512 ≈ 2512−k Yes Yes

Table 3.8: Cryptographic strength of the BLUE MIDNIGHT WISH

3.8.4 Statement about the special requirements

There are no special requirements when hash function BLUE MIDNIGHT WISH is used to sup-

port HMAC, PRF and randomized hashing constructions. All BLUE MIDNIGHT WISH variants

(BMW224, BMW256, BMW384, BMW512) are used in these constructions (and in all appropriate

standards) in the same way as the corresponding SHA-2 variants (SHA-224, SHA-256, SHA-384,

SHA-512).

3.8.5 Support of HMAC

BLUE MIDNIGHT WISH is an iterative cryptographic hash function. Thus, in combination with a

shared secret key it can be used in the HMAC standard as it is defined in [18–20].

As the cryptographic strength of HMAC depends on the properties of the underlying hash func-

tion, and the conjectured cryptographic strength of BLUE MIDNIGHT WISH is claimed in the Sec-

tion 3.8.2, we can formally state that BLUE MIDNIGHT WISH can be securely used with the HMAC.

In what follows we are giving 4 examples for every digest size of 224, 256, 384 and 512 bits.

47

CHAPTER 3: DESIGN RATIONALE

BMW224-MAC Test Examples

Key:

00010203 04050607 08090A0B 0C0D0E0F 10111213 14151617 18191A1B 1C1D1E1F

20212223 24252627 28292A2B 2C2D2E2F 30313233 34353637 38393A3B 3C3D3E3F

Key_length: 64

Data:

’Sample #1’

Data_length: 9

HMAC:

F5C15AF4 CF5A4F34 B9A02A72 4AC699D8 B2792FD3 972DDB69 C82C4406

Key:

30313233 34353637 38393A3B 3C3D3E3F 40414243

Key_length: 20

Data:

’Sample #2’

Data_length: 9

HMAC:

6499E1FC E61601E7 B18BEBF1 7650FDF6 E6F33748 31AC0408 7A6C347F

Key:

50515253 54555657 58595A5B 5C5D5E5F 60616263 64656667 68696A6B 6C6D6E6F

70717273 74757677 78797A7B 7C7D7E7F 80818283 84858687 88898A8B 8C8D8E8F

90919293 94959697 98999A9B 9C9D9E9F A0A1A2A3 A4A5A6A7 A8A9AAAB ACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic.’

Data_length: 110

HMAC:

BD4FC7DC 864A7401 23CA0554 2EF22AA1 302886D0 5B41C5EA 41FBCB0E

Key:

50515253 54555657 58595A5B 5C5D5E5F 60616263 64656667 68696A6B 6C6D6E6F

70717273 74757677 78797A7B 7C7D7E7F 80818283 84858687 88898A8B 8C8D8E8F

90919293 94959697 98999A9B 9C9D9E9F A0A1A2A3 A4A5A6A7 A8A9AAAB ACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic: there is a chance that

a source with no knowledge of the key can present a purported MAC.’

Data_length: 200

HMAC:

586CE320 B23E5201 FD0479FF 5C0AB1D3 05A69E2B F725F4F6 A755567F

48

CHAPTER 3: DESIGN RATIONALE

BMW256-MAC Test Examples

Key:

00010203 04050607 08090A0B 0C0D0E0F 10111213 14151617 18191A1B 1C1D1E1F

20212223 24252627 28292A2B 2C2D2E2F 30313233 34353637 38393A3B 3C3D3E3F

Key_length: 64

Data:

’Sample #1’

Data_length: 9

HMAC:

86BED33F 407EC145 DF2B924E A2C566E0 838968E3 B3111AF8 968CA6FE 3CAE6D52

Key:

30313233 34353637 38393A3B 3C3D3E3F 40414243

Key_length: 20

Data:

’Sample #2’

Data_length: 9

HMAC:

B610AD79 9BA9EB6D 3E2E5B18 D4033E86 BAB63997 4F57A5ED 05AB44D0 7C753358

Key:

50515253 54555657 58595A5B 5C5D5E5F 60616263 64656667 68696A6B 6C6D6E6F

70717273 74757677 78797A7B 7C7D7E7F 80818283 84858687 88898A8B 8C8D8E8F

90919293 94959697 98999A9B 9C9D9E9F A0A1A2A3 A4A5A6A7 A8A9AAAB ACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic.’

Data_length: 110

HMAC:

EE83BA53 6E997D1E CF599C61 A4BFE420 18186B0A C98A0D6A B0BF8821 EC61A377

Key:

50515253 54555657 58595A5B 5C5D5E5F 60616263 64656667 68696A6B 6C6D6E6F

70717273 74757677 78797A7B 7C7D7E7F 80818283 84858687 88898A8B 8C8D8E8F

90919293 94959697 98999A9B 9C9D9E9F A0A1A2A3 A4A5A6A7 A8A9AAAB ACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic: there is a chance that

a source with no knowledge of the key can present a purported MAC.’

Data_length: 200

HMAC:

10F7CBB2 67BDC452 F4E5145A E11D04F7 CD11F708 1A4D0803 E50EDC8F 2CB4BD7E

49

CHAPTER 3: DESIGN RATIONALE

BMW384-MAC Test Examples

Key:

0001020304050607 08090A0B0C0D0E0F 1011121314151617 18191A1B1C1D1E1F

2021222324252627 28292A2B2C2D2E2F 3031323334353637 38393A3B3C3D3E3F

Key_length: 64

Data:

’Sample #1’

Data_length: 9

HMAC:

2DF6C37BBDDCD2C6 0907C13B5CF9E6AA D53305C86C018B86 53A0F3426905618D

7D1B6B03639C1B03 84D3127D82318748

Key:

3031323334353637 38393A3B3C3D3E3F 40414243

Key_length: 20

Data:

’Sample #2’

Data_length: 9

HMAC:

9E18146385707F75 0331DAE13F8B955F 9ABDC262363E383C 6AEF3BD6556A5167

785C290C276328FE 85A6B59472E7C44C

Key:

5051525354555657 58595A5B5C5D5E5F 6061626364656667 68696A6B6C6D6E6F

7071727374757677 78797A7B7C7D7E7F 8081828384858687 88898A8B8C8D8E8F

9091929394959697 98999A9B9C9D9E9F A0A1A2A3A4A5A6A7 A8A9AAABACADAEAF

B0B1B2B350515253 5455565758595A5B 5C5D5E5F60616263 6465666768696A6B

6C6D6E6F70717273 7475767778797A7B 7C7D7E7F80818283 8485868788898A8B

8C8D8E8F90919293 9495969798999A9B 9C9D9E9FA0A1A2A3 A4A5A6A7A8A9AAAB

ACADAEAFB0B1B2B3

Key_length: 200

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic.’

Data_length: 110

HMAC:

68CFB1741A85A994 A19F9807844D3A72 E7410B57768A5017 4A734F284F16BE13

82F5FCF40F8EFCBB 731EC6DE2BC24A41

Key:

5051525354555657 58595A5B5C5D5E5F 6061626364656667 68696A6B6C6D6E6F

7071727374757677 78797A7B7C7D7E7F 8081828384858687 88898A8B8C8D8E8F

9091929394959697 98999A9B9C9D9E9F A0A1A2A3A4A5A6A7 A8A9AAABACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic: there is a chance that

a source with no knowledge of the key can present a purported MAC.’

Data_length: 200

HMAC:

BDF42A085C24579D D06796FD7575037E 409651099B277924 A66A2948C336A385

67B003E72E8C7934 FC1B2CEE58B96510

50

CHAPTER 3: DESIGN RATIONALE

BMW512-MAC Test Examples

Key:

0001020304050607 08090A0B0C0D0E0F 1011121314151617 18191A1B1C1D1E1F

2021222324252627 28292A2B2C2D2E2F 3031323334353637 38393A3B3C3D3E3F

Key_length: 64

Data:

’Sample #1’

Data_length: 9

HMAC:

59A0467FD2A9C18A 4ED956440887BE62 0F4F1BB9738725BC 7B2F2E6331931CDD

E84C52A66556B985 72DF6665AFC3B7F4 BC68626C4022AE91 B3B11A964701228B

Key:

3031323334353637 38393A3B3C3D3E3F 40414243

Key_length: 20

Data:

’Sample #2’

Data_length: 9

HMAC:

25EAD55997824F72 A52EB6B0BA5D0EE8 DAD4C8BC5E0ADBB5 FF677DCE7A027072

31C3081667588C0F 740C15BC5B06EB32 827CFEF094FEF66F 1226C6F0005DF3ED

Key:

5051525354555657 58595A5B5C5D5E5F 6061626364656667 68696A6B6C6D6E6F

7071727374757677 78797A7B7C7D7E7F 8081828384858687 88898A8B8C8D8E8F

9091929394959697 98999A9B9C9D9E9F A0A1A2A3A4A5A6A7 A8A9AAABACADAEAF

B0B1B2B350515253 5455565758595A5B 5C5D5E5F60616263 6465666768696A6B

6C6D6E6F70717273 7475767778797A7B 7C7D7E7F80818283 8485868788898A8B

8C8D8E8F90919293 9495969798999A9B 9C9D9E9FA0A1A2A3 A4A5A6A7A8A9AAAB

ACADAEAFB0B1B2B3

Key_length: 200

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic.’

Data_length: 110

HMAC:

9D1DDB41A3FF4793 2A589B6B1B0A1087 ADEA92F793832E45 1ABFAB000E13CEA3

2DCE4CDEDF9DB5F7 31914E7B88532E9B C1B8F14EEA55E17C 7EBDB882DEADDA1B

Key:

5051525354555657 58595A5B5C5D5E5F 6061626364656667 68696A6B6C6D6E6F

7071727374757677 78797A7B7C7D7E7F 8081828384858687 88898A8B8C8D8E8F

9091929394959697 98999A9B9C9D9E9F A0A1A2A3A4A5A6A7 A8A9AAABACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic: there is a chance that

a source with no knowledge of the key can present a purported MAC.’

Data_length: 200

HMAC:

C798EA36EB7BFD5F 29E065CDADED99E2 9180B7438AB0AAE5 725E60866461F086

4F687647FBBA0B60 E61CCE3FE7C292CA 23F0B8366162B358 B800F83D28ECFDB3

3.8.6 BLUE MIDNIGHT WISH support of randomized hashing

BLUE MIDNIGHT WISH can be used in the randomizing scheme proposed in [21, 22].

3.8.7 Resistance to SHA-2 attacks

BLUE MIDNIGHT WISH is designed to have a security strength that is at least as good as the

hash algorithms currently specified in FIPS 180-3 [23], and this security strength is achieved with

significantly improved efficiency. Also, BLUE MIDNIGHT WISH is designed so that a possibly

successful attack on the SHA-2 hash functions is unlikely to be applicable to BLUE MIDNIGHT

WISH .

Is it possible to use any idea from the attacks on SHA-2 (or any other hash function) also to BLUE

MIDNIGHT WISH ? Most ideas hardly use the concrete structure and operations of SHA-2. These

concrete combinations of sums of variables, concrete operations, shifts, additions, xors, etc. are

very important in any concrete attack. Any change, sometimes only a tiny change in the de-

51

CHAPTER 3: DESIGN RATIONALE

sign (the shift, xor instead of add, adding another variable) may require a massively changed

attack to be mounted. The change in internal structure from SHA-2 to BLUE MIDNIGHT WISH is

huge. Different operations and combinations are used. All local collisions, neutral bits and so on,

used in known attacks on SHA-2 (SHA-1) are thus ineffective and non-applicable, against BLUE

MIDNIGHT WISH . No general method is known from the attacks on SHA-2, which would be

applicable to BLUE MIDNIGHT WISH .

The most important changes which have very strong effect in BMW vs. SHA-2:

a. The use of bijections - it guarantees that any change on the input will give a change of the

output. There are a lot of bijections in BLUE MIDNIGHT WISH and we found that it is difficult

to cancel their influence.

b. The core of the bijections are non-linear transformations.

c. The use of bijections with good propagation characteristics - all linear and arithmetical bijec-

tions, used in BLUE MIDNIGHT WISH are designed to have precise (and good) propagation

properties.

d. 16 summands (operands) are used in most operations. Unlike many other hash functions

where in the compression functions they use basic mixing operation on 4, 5 or 8 operands,

BLUE MIDNIGHT WISH in its core uses 16 operands (see the definition of the function f1). It

is very difficult to control many differences in operands of the consecutive operations. To-

gether with the bijective property of the transformations, we have a property that a single

differential propagates very fast in the consecutive (iterative) core operations. From this, it

follows that to break BLUE MIDNIGHT WISH it is necessary to develop new local collisions,

new "rectangular relations", new neutral bits and even new strategies, rather than the old

ones used in the analysis and the attacks on SHA-2 or on any other known hash function

family.

52

CHAPTER 4

Estimated Computational Efficiency and

Memory Requirements

4.1 Speed of BLUE MIDNIGHT WISH on NIST SHA-3 Reference Plat-

form

We have developed and measured the performances of BLUE MIDNIGHT WISH on a platform with

the following characteristics:

CPU: Intel Core 2 Duo,

Clock speed: 2.4 GHz,

Memory: 4GB RAM,

Operating system: Windows Vista Enterprise 64-bit (x64) Edition with Service Pack 1,

Compiler: ANSI C compiler in the Microsoft Visual Studio 2005 Professional Edition.

For measuring the speed of the hash function expressed as cycles/byte we have used the rdtsc()

function and a modified version of a source code that was given to us by Dr. Brian Gladman from

his optimized realization of SHA-2 hash function [24].

4.1.1 Speed of the Optimized 32–bit version of BLUE MIDNIGHT WISH

In the Table 4.1 we are giving the speed of all four instances of BLUE MIDNIGHT WISH for the

optimized 32–bit version.

53

CHAPTER 4: ESTIMATED COMPUTATIONAL EFFICIENCY AND MEMORY REQUIREMENTS

Speed in cycles/byte for different lengths

(in bytes) of the digested message.

MD Size 1 10 100 1000 10,000 100,000

224 2305.00 230.50 42.01 29.28 8.66 8.63

256 781.00 78.10 14.05 9.01 8.69 8.63

384 1945.00 180.10 18.37 13.06 12.72 13.34

512 1789.00 181.30 18.13 13.14 12.72 13.37

Table 4.1: The performance of optimized 32–bit version of BLUE MIDNIGHT WISH in machine

cycles per data byte on Intel Core 2 Duo for different hash data lengths

Speed in cycles/byte for different lengths

(in bytes) of the digested message.

MD Size 1 10 100 1000 10,000 100,000

224 1969.00 201.70 36.01 26.28 25.48 7.85

256 613.00 67.30 11.29 8.10 7.83 7.85

384 649.00 70.90 6.85 4.29 4.09 4.06

512 661.00 72.10 7.33 4.27 4.08 4.06

Table 4.2: The performance of optimized 64–bit version of BLUE MIDNIGHT WISH in machine

cycles per data byte on Intel Core 2 Duo for different hash data lengths

4.1.2 Speed of the Optimized 64–bit version of BLUE MIDNIGHT WISH

In the Table 4.2 we are giving the speed of all four instances of BLUE MIDNIGHT WISH for the

optimized 64–bit version.

4.2 Memory requirements of BLUE MIDNIGHT WISH on NIST SHA-3

Reference Platform

When processing the message block M(i) = (M
(i)
0 , M

(i)
1 , . . . , M

(i)
15), we need only the current value

of the double pipe H(i−1) = (H
(i−1)
0 , H

(i−1)
1 , . . . , H

(i−1)
15), two auxiliary words XL and XH, and

value of the quadruple pipe Q(i) = (Q
(i)
0 , Q

(i)
1 , . . . , Q

(i)
31).

The need of memory is thus:

• 16 words of M(i),

• 16 words of H(i),

54

CHAPTER 4: ESTIMATED COMPUTATIONAL EFFICIENCY AND MEMORY REQUIREMENTS

• 2 words XL, XH,

• 32 words of Q(i).

which is in total 66 words. That means that BMW224 and BMW256 use 264 bytes and BMW384

and BMW512 use 528 bytes.

4.3 Estimates for efficiency and memory requirements on 8-bit proces-

sors

We have used 8-bit Atmel processors ATmega16 and ATmega64 to test the implementation and

performance of the compression function of the two main representatives of the BLUE MIDNIGHT

WISH hash function: BMW256 and BMW512. We have used WinAVR – an open source software

development tools for the Atmel AVR series of RISC microprocessors and for simulation we have

used the AVR Studio v 4.14. In Table 4.3 we are giving the length of the produced executable code

and the speed in number of cycles per byte.

Name
Code size

(.text + .data + .bootloader)

in bytes

Speed

(cycles/byte)
8–bit MCU

BMW224/256 10414 1369 ATmega16

BMW384/512 55810 2793 ATmega64

Table 4.3: The size and the speed of code for the compression functions for BMW224/256 and

BMW384/512

From the analysis of the produced executable code we can project that by direct assembler pro-

gramming BLUE MIDNIGHT WISH can be implemented in less than 8 Kbytes (BMW256) and in

less than 32 KBytes (BMW512) but this claim will have to be confirmed in the forthcoming period

during the NIST competition.

4.4 Estimates for a Compact Hardware Implementation

Our initial (non-optimized) VHDL implementation of BLUE MIDNIGHT WISH was done on Xilinx

v3200efg1156-8 FPGA. In Table 4.4 we are giving obtained equivalent gate count and also esti-

mates for the compact hardware implementation of the compression function of BLUE MIDNIGHT

WISH . These estimates are based on the minimal memory requirements described in Section 4.2.

55

CHAPTER 4: ESTIMATED COMPUTATIONAL EFFICIENCY AND MEMORY REQUIREMENTS

Name
Obtained equivalent gate

count for Xilinx

v3200efg1156-8

Estimated gate count for the

needed memory

Estimated gate

count for the

optimized

algorithm logic

Estimated minimal

total gate count

BMW224/256 44,983 12,672 ≈4,000 ≈16,672

BMW384/512 84,515 25,344 ≈6,000 ≈31,344

Table 4.4: Obtained non-optimized gate count for the Xilinx v3200efg1156-8 FPGA, and estimated

number of gate count for realization of the compression functions for BMW224/256 and

BMW384/512

4.5 Internal Parallelizability of BLUE MIDNIGHT WISH

The design of BLUE MIDNIGHT WISH allows very high level of parallelization in computation of

its compression function. This parallelism can be achieved by using specifically designed hard-

ware, and indeed with the advent of multicore CPUs, those parts can be computed in different

cores in parallel. From the specification given below, we claim that BLUE MIDNIGHT WISH can

be computed after 20 "parallel" steps. Of course those 20 "parallel" steps have different hardware

specification and different implementation specifics, but can serve as a general measure of the par-

allelizability of BLUE MIDNIGHT WISH . The high level parallel specification of BLUE MIDNIGHT

WISH is as follows:

Computing f0

Step 1: Computation of all 16 parts of W
(i)
0 , W

(i)
1 , . . . , W

(i)
15 can be done in parallel.

Step 2: Computing the values of all 16 parts of Qa can be done in parallel.

Computing f1

Step 1: It has 16 expansion steps and each step depends from the previous one. But every

expansion step have an internal structure that can be parallelized, and a pipelined setup

can compute parts from the next expansion steps that do not depend on the previous

expansion value.

Computing f2

Step 1: This step can be computed together with the computation of Step 1 of the function

f1.

Step 2 (First half): Computation of the first 8 words H
(i)
0 , H

(i)
1 , . . . , H

(i)
7 can be done in par-

allel.

56

CHAPTER 4: ESTIMATED COMPUTATIONAL EFFICIENCY AND MEMORY REQUIREMENTS

Step 2 (Second half): Computation of the last 8 words H
(i)
8 , H

(i)
9 , . . . , H

(i)
15 can be done in

parallel.

57

CHAPTER 4: ESTIMATED COMPUTATIONAL EFFICIENCY AND MEMORY REQUIREMENTS

58

CHAPTER 5

Statements

5.1 Statement by the Submitter

I, Svein Johan Knapskog, do hereby declare that, to the best of my knowledge, the practice of the al-

gorithm, reference implementation, and optimized implementations that I have submitted, known

as BLUE MIDNIGHT WISH may be covered by the following U.S. and/or foreign patents: NONE.

I do hereby declare that I am aware of no patent applications that may cover the practice of my

submitted algorithm, reference implementation or optimized implementations.

I do hereby understand that my submitted algorithm may not be selected for inclusion in the

Secure Hash Standard. I also understand and agree that after the close of the submission period,

my submission may not be withdrawn from public consideration for SHA-3. I further understand

that I will not receive financial compensation from the U.S. Government for my submission. I

certify that, to the best of my knowledge, I have fully disclosed all patents and patent applications

relating to my algorithm. I also understand that the U.S. Government may, during the course of the

lifetime of the SHS or during the FIPS public review process, modify the algorithm’s specifications

(e.g., to protect against a newly discovered vulnerability). Should my submission be selected for

SHA-3, I hereby agree not to place any restrictions on the use of the algorithm, intending it to be

available on a worldwide, non-exclusive, royalty-free basis.

I do hereby agree to provide the statements required by Sections 5.2 and 5.3, below, for any patent

or patent application identified to cover the practice of my algorithm, reference implementation

or optimized implementations and the right to use such implementations for the purposes of the

SHA-3 evaluation process.

I understand that NIST will announce the selected algorithm(s) and proceed to publish the draft

59

CHAPTER 5: STATEMENTS

FIPS for public comment. If my algorithm (or the derived algorithm) is not selected for SHA-3

(including those that are not selected for the second round of public evaluation), I understand

that all rights, including use rights of the reference and optimized implementations, revert back

to the submitter (and other owner[s, as appropriate). Additionally, should the U.S. Government

not select my algorithm for SHA-3 at the time NIST ends the competition, all rights revert to the

submitter (and other owners as appropriate).

Signed: Svein Johan Knapskog

Title:Prof.

Dated: 27 October 2008

Place: Trondheim, Norway

60

CHAPTER 5: STATEMENTS

5.2 Statement by Patent (and Patent Application) Owner(s)

N/A

61

CHAPTER 5: STATEMENTS

5.3 Statement by Reference/Optimized Implementations’ Owner(s)

We, Danilo Gligoroski and Vlastimil Klima, are the owners of the submitted reference implementa-

tion and optimized implementations and hereby grant the U.S. Government and any interested

party the right to use such implementations for the purposes of the SHA-3 evaluation process,

notwithstanding that the implementations may be copyrighted.

Signed: Danilo Gligoroski Signed: Vlastimil Klima

Title: Prof. Title: Mr.

Dated: 27 October 2008 Dated: 27 October 2008

Place: Trondheim, Norway Place: Prague, Czech Republic

62

References

[1] Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algo-

rithm (SHA-3) Family, 2007. NIST. http://csrc.nist.gov/groups/ST/hash/index.html.

[2] S. Lucks. Design principles for iterated hash functions. Cryptology ePrint Archive, Report

2004/253, 2004. http://eprint.iacr.org/.

[3] S. Lucks. A failure-friendly design principle for hash functions. In Proceeding of ASIACRYPT

2005, volume 3788 of LNCS, pages 474–494, 2005.

[4] C. Malinaud J.-S. Coron, Y. Dodis and P. Puniya. Merkle–Damgård revisited: How to con-

struct a hash function. In Proceeding of CRYPTO 2005, volume 3621 of LNCS, pages 430–440,

2005.

[5] A. Joux. Multicollisions in iterated hash functions. application to cascaded constructions. In

Proceeding of CRYPTO 2004, volume 3152 of LNCS, pages 430–440, 2004.

[6] J. Kelsey and B. Schneier. Second preimages on n-bit hash functions for much less than 2n

work. In Proceeding of EUROCRYPT 2005, volume 3494 of LNCS, pages 474–490, 2005.

[7] R. Govaerts B. Preneel and J. Vandewalle. Hash functions based on block ciphers: A synthetic

approach. In Proceedings of CRYPTO 1993, volume 773 of LNCS, pages 368–378, 1994.

[8] P. Rogaway J. Black and T. Shrimpton. Black-box analysis of the block-cipher-based hash

function constructions from pgv. In Proceedings of CRYPTO 2002, volume 2442 of LNCS, pages

320–335, 2002.

[9] E. Filiol. A new statistical testing for symmetric ciphers and hash functions. In Proceedings,

ICICS 2002, volume 2513 of LNCS, pages 342–353, 2002.

[10] M.-J. O. Saarinen. Chosen-iv statistical attacks on estream ciphers. In Proceeding of SECRYPT

2006, pages 260–266, 2006.

63

http://csrc.nist.gov/groups/ST/hash/index.html
http://eprint.iacr.org/

REFERENCES

[11] T. Johansson H. Englund and M. S. Turan. A framework for chosen iv statistical analysis of

stream ciphers. pages 268–281, 2007.

[12] S. O’neil. Algebraic structure defectoscopy, 2007. http://eprint.iacr.org/2007/378.

[13] T. A. Berson. Differential cryptanalysis mod 232 with applications to md5. In Proceedings of

EUROCRYPT 1992, volume 658 of LNCS, pages 71–80, 1993.

[14] H. Lipmaa and S. Moriai. Efficient algorithms for computing differential properties of addi-

tion. In Proceedings of FSE 2001, volume 2355 of LNCS, pages 336–350, 2002.

[15] H. Lipmaa, J. Wallén, and P. Dumas. On the Additive Differential Probability of Exclusive-Or.

In Proceedings of FSE 2004, volume 3017 of LNCS, pages 317–331, 2004.

[16] S. Paul and B. Preneel. Solving systems of differential equations of addition. In Proceedings of

ACISP 2005, volume 3574 of LNCS, pages 75–88, 2005.

[17] P. L’Ecuyer and R. Simard. Testu01: A c library for empirical testing of random number

generators. ACM Trans. Math. Softw., 33(4):22, 2007.

[18] M. Bellare H. Krawczyk and R. Canetti. RFC2104 - HMAC: Keyed-Hashing for Message Authen-

tication. Internet Engineering Task Force, 1997. http://www.faqs.org/rfcs/rfc2104.html.

[19] American Bankers Association. Keyed Hash Message Authentication Code. ANSI X9.71, Wash-

ington, D.C., 2000.

[20] National Institute of Standards and Technology. The Keyed-Hash Message Authentication Code

(HMAC), FIPS PUB 198-1. Federal Information Processing Standards Publication, July, 2008.

http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf.

[21] S. Halevi and H. Krawczyk. Strengthening digital signatures via randomized hashing. In

Proceedings of CRYPTO 2006, volume 4117 of LNCS, pages 41–59, 2006.

[22] National Institute of Standards and Technology. Randomized Hash-

ing for Digital Signatures - Draft NIST Special Publication 800-106. Fed-

eral Information Processing Standards Publication, August, 2008.

http://csrc.nist.gov/publications/drafts/800-106/2nd-Draft_SP800-106_July2008.pdf.

[23] National Institute of Standards and Technology. Secure Hash Standard (SHS), FIPS

PUB 180-3. Federal Information Processing Standards Publication, October 2008.

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf.

64

http://eprint.iacr.org/2007/378
http://www.faqs.org/rfcs/rfc2104.html
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/drafts/800-106/2nd-Draft_SP800-106_July2008.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

REFERENCES

[24] B. Gladman. Sha1, sha2, hmac and key derivation in c.

http://fp.gladman.plus.com/cryptography_technology/sha/index.htm.

65

http://fp.gladman.plus.com/cryptography_technology/sha/index.htm

	Titlepage
	Abstract
	Cover Page
	Cover page
	1 Algorithm Specifics
	Algorithm Specifics
	1.1 Bit Strings and Integers
	1.2 Parameters, variables and constants
	1.3 General design properties of Blue Midnight Wish
	1.4 Blue Midnight Wish logic functions
	1.5 Preprocessing
	1.5.1 Padding the message
	 BWM224 and BMW256
	 BWM384 and BMW512
	1.5.2 Parsing the message
	 BWM224 and BMW256
	 BWM384 and BMW512
	1.5.3 Setting the initial double pipe value H(0)
	 BWM224
	 BWM256
	 BWM384
	 BWM512

	2 Description of the Hash Algorithm Blue Midnight Wish
	Description of the Hash Algorithm Blue Midnight Wish
	2.1 Generic description for all variants of the Blue Midnight Wish
	2.1.1 BMW224 and BMW256
	 BMW224 and BMW256 preprocessing
	2.1.2 BMW384 and BMW512
	 BMW384 and BMW512 preprocessing

	3 Design Rationale
	Design Rationales
	3.1 Reasons for default little-endian design
	3.2 Reasons for using double pipe iterative structure
	3.3 Rationale for constants used in Blue Midnight Wish
	3.3.1 Constants in logical functions
	3.3.2 Constants in the expansion part

	3.4 Rationale for the bijective ``Step 1'' in the function f0
	3.5 Rationale for the bijective ``Step 2'' in the function f0
	3.6 Tunable parameters ExpandRounds1 and ExpandRounds2
	3.6.1 Statements, relating to the NIST requirements 2.B.1.

	3.7 Cryptanalysis of Blue Midnight Wish
	3.7.1 Bijective parts in the compression function of Blue Midnight Wish
	3.7.2 Representation as a generalized PGV6 scheme
	3.7.3 Representation as a generalized PGV scheme
	3.7.4 Monomial tests on the block ciphers used in Blue Midnight Wish
	3.7.5 Infeasibility of finding collisions, preimages and second preimages
	3.7.6 Approximation of additions and subtractions with XORs
	3.7.7 Cryptanalysis of a scaled down Blue Midnight Wish

	3.8 Statements about security, support for applications, HMACs and randomized hashing
	3.8.1 Security statement relating to the NIST requirement 4.A.
	3.8.2 Statements relating to the NIST requirement 4.A.iii.
	3.8.3 Statement about the support of applications
	3.8.4 Statement about the special requirements
	3.8.5 Support of HMAC
	3.8.6 Blue Midnight Wish support of randomized hashing
	3.8.7 Resistance to SHA-2 attacks

	4 Estimated Computational Efficiency and Memory Requirements
	Estimated Computational Efficiency and Memory Requirements
	4.1 Speed of Blue Midnight Wish on NIST SHA-3 Reference Platform
	4.1.1 Speed of the Optimized 32--bit version of Blue Midnight Wish
	4.1.2 Speed of the Optimized 64--bit version of Blue Midnight Wish

	4.2 Memory requirements of Blue Midnight Wish on NIST SHA-3 Reference Platform
	4.3 Estimates for efficiency and memory requirements on 8-bit processors
	4.4 Estimates for a Compact Hardware Implementation
	4.5 Internal Parallelizability of Blue Midnight Wish

	5 Statements
	Statements
	5.1 Statement by the Submitter
	5.2 Statement by Patent (and Patent Application) Owner(s)

	Statement by Patent (and Patent Application) Owner(s)
	5.3 Statement by Reference/Optimized Implementations' Owner(s)

	Statement by Reference/Optimized Implementations' Owner(s)
	References

