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Abstract

This is the supporting documentation that describes in details the tweaked cryptographic hash

function EDON-R that we denote in this document as EDON-R′. EDON-R was submitted as a

candidate for SHA-3 hash competition organized by National Institute of Standards and Technol-

ogy (NIST), according to the public call [1].

The difference between originally submitted version of EDON-R and version EDON-R′ is in the

added feedback to the original compression functionR. The feedback consist of xoring the output

of the functionRwith the previous double pipe value and the value of the current message block.

Now, EDON-R′ can be seen as a double-pipe PGV7 hash scheme.

The introduced tweak does not invalidates the cryptanalytic efforts to analyze the quasigroup

operations used in EDON-R′, as well as its function R. It also does not affect much the speed of

the function. However, this tweak prevents finding free-start collisions and prevents all attacks

based on free-start collisions.

EDON-R′ is a cryptographic hash function with output size of n bits where n = 224, 256, 384 or 512.

Its conjectured cryptographic security is: O(2
n
2 ) hash computations for finding collisions, O(2n)

hash computations for finding preimages, O(2n−k) hash computations for finding second preim-

ages for messages shorter than 2k bits. Additionally, it is resistant against length-extension attacks,

resistant against multicollision attacks and it is provably resistant against differential cryptanaly-

sis.

EDON-R′ performance has been measured with Microsoft Visual Studio 2005, and with Intel C++

v 11.0.072. EDON-R′ has been designed to be much more efficient than SHA-2 cryptographic hash

functions, while in the same time offering same or better security. The speed of the optimized

32-bit version on defined reference platform with Intel C++ v 11.0.072 is 6.70 cycles/byte for n =

224, 256 and 10.73 cycles/byte for n = 384, 512. The speed of the optimized 64-bit version on

defined reference platform with Intel C++ v 11.0.072 is 4.87 cycles/byte for n = 224, 256 and 2.70

cycles/byte for n = 384, 512.
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CHAPTER 1

Algorithm Specifics

1.1 Bit Strings and Integers

The following terminology related to bit strings, byte strings and integers will be used:

1. A hex digit is an element of the set {0, 1,..., 9, A, ..., F}. A hex digit is the represen-

tation of a 4–bit string. For example, the hex digit "7" represents the 4–bit string "0111", and

the hex digit "A" represents the 4–bit string "1010".

2. The "little-endian" convention is used when expressing string of bytes stored in memory.

That means that beginning from some address "H" if the content of the memory is repre-

sented as a 1-byte address increment, then 32–bit and 64–bit integers are expressed as in the

example given in Table 1.1. The prefix "0x" is used to annotate that the integer is expressed

in hex digit notation.

3. The "big-endian" convention is used when expressing the "internal bit endianness" for both

32–bit and 64–bit words as integers. That means that within each word, the most signif-

icant bit is stored in the left-most bit position. More concretely, a word is a w–bit string

that may be represented as a sequence of hex digits. To convert a word to hex digits, each

4–bit string is converted to its hex digit equivalent. For example, the 32–bit string "1010

0001 0000 0011 1111 1110 0010 0011" has a hexadecimal representation "0xA103FE23" and its

value as unsigned long integer is 2701393443. The 64–bit string "1010 0001 0000 0011 1111

1110 0010 0011 0011 0010 1110 1111 0011 0000 0001 1010" has a hexadecimal representation

"0xA103FE2332EF301A" and its value as unsigned long long integer is 11602396492168376346.

4. For EDON-R′ hash algorithm, the size of m bits of the message block, depends on the variant

of the algorithm (EDON-R′224, EDON-R′256, EDON-R′384 or EDON-R′512).
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CHAPTER 1: ALGORITHM SPECIFICS

Address in memory Byte value

H 23

H+1 FE

H+2 03

H+3 A1

32–bit integer value: "0xA103FE23"

Address in memory Byte value

H 1A

H+1 30

H+2 EF

H+3 32

H+4 23

H+5 FE

H+6 03

H+7 A1

64–bit integer value: "0xA103FE2332EF301A"

Table 1.1: Default design of the EDON-R′ is "Little-endian"

(a) For EDON-R′224 and EDON-R′256, each message block has 512 bits, which are repre-

sented as a sequence of sixteen 32–bit words.
(b) For EDON-R′384 and EDON-R′512, each message block has 1024 bits, which are repre-

sented as a sequence of sixteen 64–bit words.

1.2 Parameters, variables and constants

The following parameters and variables are used in the specification of EDON-R′:

n = 224, 256, 384, 512 The size of the hash digest.

EDON-R′n Hash algorithm that maps messages into hash values of size n bits.

w = 32 or w = 64
w is the size of binary words that are used in EDON-R′. In EDON-

R′224/256, w = 32 and in EDON-R′384/512, w = 64.

M A message of arbitrary length less than 264 bits.

l Length of a message.

k Number of zeroes appended to a message during the padding step.

M′
Padded message with length equal to a multiple of m.

M′ = (M(1), . . . , M(N))

2



CHAPTER 1: ALGORITHM SPECIFICS

N Number of blocks in the padded message.

m = 512 or m = 1024 Number of bits in the message block M(i).

M(i)

i-th message block. Every message block M(i) is represented as a 16

dimensional vector of w-bit words M(i) = (M(i)
0 , . . . , M(i)

15 ) i.e. as a

pair of two vectors of length 8, M(i) ≡ (M(i)
0 , M(i)

1 ).

M(i)
i-th message block with swapped order of the two sub-blocks M(i)

0 ,

M(i)
1 i.e. M(i) ≡ (M(i)

1 , M(i)
0 ).

M(i)
j The j-th word of the i-th message block M(i) = (M(i)

0 , . . . , M(i)
15 ).

P(i)

The i-th double pipe value. P(0) is the initial double pipe value. P(N)

is the final double pipe value and is used to determine the message

digest of n bits. Every double pipe P(i) is represented as a 16 dimen-

sional vector of w-bit words i.e. as P(i) = (P(i)
0 , . . . , P(i)

15 ) or corre-

spondingly as a pair of two vectors of length 8, P(i) ≡ (P(i)
0 , P(i)

1 ).

(Q, ∗) A quasigroup with binary operation ∗.

q = 256 or q = 512 The exponent q determines the order of the quasigroup, i.e. |Q| = 2q.

Q256, Q512
Quasigroups isotopic to

((
Z2w

)8, +8

)
where +8, is the operation of

componentwise addition of two 8–dimensional vectors in
(
Z2w

)8.

R Quasigroup reverse string transformation.

Zw
2 The set of binary words of length w ∈ {32, 64}.

π1, π2, π3 Permutations of the sets {0, 1}256, {0, 1}512.

⊕w Addition in Zw
2 (bitwise XOR of two w–bit words).

X Elements of Q256, Q512.

H(M) Hash of message M.

3



CHAPTER 1: ALGORITHM SPECIFICS

Algorithm

abbreviation

Message size

l (in bits)

Block size

m (in bits)

Word size

w (in bits)
Endianess

Digest size

n (in bits)

Support of

"one-pass"

streaming

mode

EDON-R′224 < 264 512 32 Little-endian 224 Yes

EDON-R′256 < 264 512 32 Little-endian 256 Yes

EDON-R′384 < 264 1024 64 Little-endian 384 Yes

EDON-R′512 < 264 1024 64 Little-endian 512 Yes

Table 1.2: Basic properties of all four variants of the EDON-R′

1.3 General design properties of EDON-R′

EDON-R′ follows the general design pattern that is common for most of the known hash functions.

It means that it has two stages (and several sub-stages within every stage):

1. Preprocessing

(a) padding a message,

(b) parsing the padded message into m–bit blocks, and

(c) setting initialization values to be used in the hash computation.

2. Hash computation

(a) using a conjectured one-way operation with huge quasigroups iteratively generates

series of double pipe values,

(b) The n Least Significant Bits (LSB) of the final double pipe value generated by the hash

computation are used to determine the message digest.

Depending on the context we will sometimes refer to the hash function as EDON-R′ and some-

times as EDON-R′224, EDON-R′256, EDON-R′384 or EDON-R′512.

In Table 1.2, we give the basic properties of all four variants of the EDON-R′ hash algorithms.

The following operations are applied in EDON-R′:

1. Bitwise logic word operations ⊕ – XOR.

2. Addition + modulo 232 or modulo 264.

3. Rotate left (circular left shift) operation, ROTLr(x), where x is a 32–bit or 64–bit word and r

is an integer with 0 ≤ r < 32 (resp. 0 ≤ r < 64).

4
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1.4 Preprocessing

Preprocessing consists of three steps:

1. padding the message M,

2. parsing the padded message into message blocks, and

3. setting the initial double pipe value, P(0).

1.4.1 Padding the message

The message M, shall be padded before hash computation begins. The purpose of this padding is

to ensure that the padded message is a multiple of 512 or 1024 bits, depending on the size of the

message digest n.

EDON-R′224 and EDON-R′256

Suppose that the length of the message M is l bits. Append the bit "1" to the end of the message,

followed by k zero bits, where k is the smallest, non-negative solution to the equation l + 1 +

k ≡ 448 mod 512. Then append the 64–bit block that is equal to the number l expressed using a

binary representation. For example, the (8–bit ASCII) message "abc" has length 8× 3 = 24, so the

message is padded with the bit "1", then 448− (24 + 1) = 423 zero bits, and then the 64–bit binary

representation of the number 24, to become the 512–bit padded message.

01100001︸ ︷︷ ︸
”a”

01100010︸ ︷︷ ︸
”b”

01100011︸ ︷︷ ︸
”c”

1
423︷ ︸︸ ︷

00 . . . 00
64︷ ︸︸ ︷

00 . . . 011000︸ ︷︷ ︸
l=24

EDON-R′384 and EDON-R′512

Suppose that the length of the message M is l bits. Append the bit "1" to the end of the message,

followed by k zero bits, where k is the smallest, non-negative solution to the equation l + 1 + k ≡
960 mod 1024. Then append the 64–bit block that is equal to the number l expressed using a

binary representation. For example, the (8–bit ASCII) message "abc" has length 8× 3 = 24, so the

message is padded with the bit "1", then 960− (24 + 1) = 935 zero bits, and then the 64–bit binary

5
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representation of the number 24, to become the 1024–bit padded message.

01100001︸ ︷︷ ︸
”a”

01100010︸ ︷︷ ︸
”b”

01100011︸ ︷︷ ︸
”c”

1
935︷ ︸︸ ︷

00 . . . 00
64︷ ︸︸ ︷

00 . . . 011000︸ ︷︷ ︸
l=24

1.4.2 Parsing the message

After a message has been padded, it must be parsed into N m–bit blocks before the hash compu-

tation can begin.

EDON-R′224 and EDON-R′256

For EDON-R′224 and EDON-R′256, the padded message is parsed into N 512–bit blocks, M(1),

M(2), . . ., M(N). Since the 512 bits of the input block may be expressed as sixteen 32–bit words, the

first 32 bits of message block i are denoted M(i)
0 , the next 32 bits are M(i)

1 , and so on up to M(i)
15 .

EDON-R′384 and EDON-R′512

For EDON-R′384 and EDON-R′512, the padded message is parsed into N 1024–bit blocks, M(1),

M(2), . . ., M(N). Since the 1024 bits of the input block may be expressed as sixteen 64–bit words,

the first 64 bits of message block i are denoted M(i)
0 , the next 64 bits are M(i)

1 , and so on up to M(i)
15 .

1.4.3 Setting the initial double pipe value P(0)

Before the hash computation begins for each of the hash algorithms, the initial double pipe value

P(0) must be set. The size and the value of words in P(0) depend on the message digest size n. As

it is shown in the following subsections the constants consist of a concatenation of the consecutive

8-bit natural numbers. Since EdonR224 is the same as EdonR256 except for the final truncation,

they have to have different initial values. Thus, the initial double pipe of EdonR224 starts from

the byte value 0x00 and takes all 64 successive byte values up to the value 0x3F. Then, the initial

double pipe of EdonR256 starts from the byte value 0x40 and takes all 64 successive byte values

up to the value 0x7F. The situation is the same with EdonR384 and EdonR512, but since now the

variables are 64-bit long, the initial double pipe of EdonR384 starts from the byte value 0x00 and

takes all 128 successive byte values up to the value 0x7F and the initial double pipe of EdonR512

starts from the byte value 0x80 and takes all 128 successive byte values up to the value 0xFF.

6
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P(0)
0 = 0x00010203 P(0)

1 = 0x04050607

P(0)
2 = 0x08090A0B P(0)

3 = 0x0C0D0E0F

P(0)
4 = 0x10111213 P(0)

5 = 0x14151617

P(0)
6 = 0x18191A1B P(0)

7 = 0x1C1D1E1F

P(0)
8 = 0x20212223 P(0)

9 = 0x24252627

P(0)
10 = 0x28292A2B P(0)

11 = 0x2C2D2E2F

P(0)
12 = 0x30313233 P(0)

13 = 0x34353637

P(0)
14 = 0x38393A3B P(0)

15 = 0x3C3D3E3F

Table 1.3: Initial double pipe P(0) for EDON-R′224

P(0)
0 = 0x40414243 P(0)

1 = 0x44454647

P(0)
2 = 0x48494A4B P(0)

3 = 0x4C4D4E4F

P(0)
4 = 0x50515253 P(0)

5 = 0x54555657

P(0)
6 = 0x58595A5B P(0)

7 = 0x5C5D5E5F

P(0)
8 = 0x60616263 P(0)

9 = 0x64656667

P(0)
10 = 0x68696A6B P(0)

11 = 0x6C6D6E6F

P(0)
12 = 0x70717273 P(0)

13 = 0x74757677

P(0)
14 = 0x78797A7B P(0)

15 = 0x7C7D7E7F

Table 1.4: Initial double pipe P(0) for EDON-R′256

EDON-R′224

For EDON-R′224, the initial double pipe value P(0) shall consist of sixteen 32–bit words given in

Table 1.3.

EDON-R′256

For EDON-R′256, the initial double pipe value P(0) shall consist of sixteen 32–bit words given in

Table 1.4.

EDON-R′384

For EDON-R′384, the initial double pipe value P(0) shall consist of sixteen 64–bit words given in

Table 1.5.
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P(0)
0 = 0x0001020304050607 P(0)

1 = 0x08090A0B0C0D0E0F

P(0)
2 = 0x1011121314151617 P(0)

3 = 0x18191A1B1C1D1E1F

P(0)
4 = 0x2021222324252627 P(0)

5 = 0x28292A2B2C2D2E2F

P(0)
6 = 0x3031323334353637 P(0)

7 = 0x38393A3B3C3D3E3F

P(0)
8 = 0x4041424344454647 P(0)

9 = 0x48494A4B4C4D4E4F

P(0)
10 = 0x5051525354555657 P(0)

11 = 0x58595A5B5C5D5E5F

P(0)
12 = 0x6061626364656667 P(0)

13 = 0x68696A6B6C6D6E6F

P(0)
14 = 0x7071727374757677 P(0)

15 = 0x78797A7B7C7D7E7F

Table 1.5: Initial double pipe P(0) for EDON-R′384

P(0)
0 = 0x8081828384858687 P(0)

1 = 0x88898A8B8C8D8E8F

P(0)
2 = 0x9091929394959697 P(0)

3 = 0x98999A9B9C9D9E9F

P(0)
4 = 0xA0A1A2A3A4A5A6A7 P(0)

5 = 0xA8A9AAABACADAEAF

P(0)
6 = 0xB0B1B2B3B4B5B6B7 P(0)

7 = 0xB8B9BABBBCBDBEBF

P(0)
8 = 0xC0C1C2C3C4C5C6C7 P(0)

9 = 0xC8C9CACBCCCDCECF

P(0)
10 = 0xD0D1D2D3D4D5D6D7 P(0)

11 = 0xD8D9DADBDCDDDEDF

P(0)
12 = 0xE0E1E2E3E4E5E6E7 P(0)

13 = 0xE8E9EAEBECEDEEEF

P(0)
14 = 0xF0F1F2F3F4F5F6F7 P(0)

15 = 0xF8F9FAFBFCFDFEFF

Table 1.6: Initial double pipe P(0) for EDON-R′512

EDON-R′512

For EDON-R′512, the initial double pipe value P(0) shall consist of sixteen 64–bit words given in

Table 1.4.3.
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CHAPTER 2

Description of the Hash Algorithm

EDON-R′

2.1 Mathematical preliminaries and notation

In this section we need to repeat some parts of the definition of the class of one-way candidate

functions recently defined in [2, 3]. For that purpose we need also several brief definitions for

quasigroups and quasigroup string transformations.

Definition 1. A quasigroup (Q, ∗) is an algebraic structure consisting of a nonempty set Q and a

binary operation ∗ : Q2 → Q with the property that each of the equations

a ∗ x = b

y ∗ a = b
(2.1.1)

has unique solutions x and y in Q.

Closely related combinatorial structures to finite quasigroups are Latin squares, since the main

body of the multiplication table of a quasigroup is just a Latin square.

Definition 2. A Latin square is an n× n table filled with n different symbols in such a way that

each symbol occurs exactly once in each row and exactly once in each column.

Definition 3. A pair of Latin squares is said to be orthogonal if the n2 pairs formed by juxtaposing

the two squares are all distinct.

More detailed information about theory of quasigroups, quasigroup string processing, Latin squares

and hash functions can be found in [4–8].
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Quasigroup operation of order 2256

Input: X = (X0, X1, . . . , X7) and Y = (Y0, Y1, . . . , Y7)

where Xi and Yi are 32–bit variables.

Output: Z = (Z0, Z1, . . . , Z7) where Zi are 32–bit variables.

Temporary 32–bit variables: T0, . . . , T15.

1.

T0 ← ROTL0(0xAAAAAAAA + X0 + X1 + X2 + X4 + X7);
T1 ← ROTL4( X0 + X1 + X3 + X4 + X7);
T2 ← ROTL8( X0 + X1 + X4 + X6 + X7);
T3 ← ROTL13( X2 + X3 + X5 + X6 + X7);
T4 ← ROTL17( X1 + X2 + X3 + X5 + X6);
T5 ← ROTL22( X0 + X2 + X3 + X4 + X5);
T6 ← ROTL24( X0 + X1 + X5 + X6 + X7);
T7 ← ROTL29( X2 + X3 + X4 + X5 + X6);

2.

T8 ← T3 ⊕ T5 ⊕ T6;
T9 ← T2 ⊕ T5 ⊕ T6;
T10 ← T2 ⊕ T3 ⊕ T5;
T11 ← T0 ⊕ T1 ⊕ T4;
T12 ← T0 ⊕ T4 ⊕ T7;
T13 ← T1 ⊕ T6 ⊕ T7;
T14 ← T2 ⊕ T3 ⊕ T4;
T15 ← T0 ⊕ T1 ⊕ T7;

3.

T0 ← ROTL0(0x55555555 + Y0 + Y1 + Y2 + Y5 + Y7);
T1 ← ROTL5( Y0 + Y1 + Y3 + Y4 + Y6);
T2 ← ROTL9( Y0 + Y1 + Y2 + Y3 + Y5);
T3 ← ROTL11( Y2 + Y3 + Y4 + Y6 + Y7);
T4 ← ROTL15( Y0 + Y1 + Y3 + Y4 + Y5);
T5 ← ROTL20( Y2 + Y4 + Y5 + Y6 + Y7);
T6 ← ROTL25( Y1 + Y2 + Y5 + Y6 + Y7);
T7 ← ROTL27( Y0 + Y3 + Y4 + Y6 + Y7);

4.

Z5 ← T8 + (T3 ⊕ T4 ⊕ T6);
Z6 ← T9 + (T2 ⊕ T5 ⊕ T7);
Z7 ← T10 + (T4 ⊕ T6 ⊕ T7);
Z0 ← T11 + (T0 ⊕ T1 ⊕ T5);
Z1 ← T12 + (T2 ⊕ T6 ⊕ T7);
Z2 ← T13 + (T0 ⊕ T1 ⊕ T3);
Z3 ← T14 + (T0 ⊕ T3 ⊕ T4);
Z4 ← T15 + (T1 ⊕ T2 ⊕ T5);

Table 2.1: An algorithmic description of a quasigroup of order 2256.

2.1.1 Algorithmic definition of quasigroups of orders 2256 and 2512

First we give an algorithmic description of an operation that takes two eight-component vectors

X = (X0, X1, . . . , X7) and Y = (Y0, Y1, . . . , Y7) where Xi and Yi are either 32–bit or 64–bit variables,

and computes a new eight-component vector Z = (Z0, Z1, . . . , Z7). Operation "+" denotes addition

modulo 232 or modulo 264, the operation ⊕ is the logical operation of bitwise exclusive or and the

operation ROTLr(Xi) is the operation of bit rotation of the 32–bit or 64–bit variable Xi, to the left

for r positions.
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Quasigroup operation of order 2512

Input: X = (X0, X1, . . . , X7) and Y = (Y0, Y1, . . . , Y7)

where Xi and Yi are 64–bit variables.

Output: Z = (Z0, Z1, . . . , Z7) where Zi are 64–bit variables.

Temporary 64–bit variables: T0, . . . , T15.

1.

T0 ← ROTL0(0xAAAAAAAAAAAAAAAA + X0 + X1 + X2 + X4 + X7);
T1 ← ROTL5( X0 + X1 + X3 + X4 + X7);
T2 ← ROTL15( X0 + X1 + X4 + X6 + X7);
T3 ← ROTL22( X2 + X3 + X5 + X6 + X7);
T4 ← ROTL31( X1 + X2 + X3 + X5 + X6);
T5 ← ROTL40( X0 + X2 + X3 + X4 + X5);
T6 ← ROTL50( X0 + X1 + X5 + X6 + X7);
T7 ← ROTL59( X2 + X3 + X4 + X5 + X6);

2.

T8 ← T3 ⊕ T5 ⊕ T6;
T9 ← T2 ⊕ T5 ⊕ T6;
T10 ← T2 ⊕ T3 ⊕ T5;
T11 ← T0 ⊕ T1 ⊕ T4;
T12 ← T0 ⊕ T4 ⊕ T7;
T13 ← T1 ⊕ T6 ⊕ T7;
T14 ← T2 ⊕ T3 ⊕ T4;
T15 ← T0 ⊕ T1 ⊕ T7;

3.

T0 ← ROTL0(0x5555555555555555 + Y0 + Y1 + Y2 + Y5 + Y7);
T1 ← ROTL10( Y0 + Y1 + Y3 + Y4 + Y6);
T2 ← ROTL19( Y0 + Y1 + Y2 + Y3 + Y5);
T3 ← ROTL29( Y2 + Y3 + Y4 + Y6 + Y7);
T4 ← ROTL36( Y0 + Y1 + Y3 + Y4 + Y5);
T5 ← ROTL44( Y2 + Y4 + Y5 + Y6 + Y7);
T6 ← ROTL48( Y1 + Y2 + Y5 + Y6 + Y7);
T7 ← ROTL55( Y0 + Y3 + Y4 + Y6 + Y7);

4.

Z5 ← T8 + (T3 ⊕ T4 ⊕ T6);
Z6 ← T9 + (T2 ⊕ T5 ⊕ T7);
Z7 ← T10 + (T4 ⊕ T6 ⊕ T7);
Z0 ← T11 + (T0 ⊕ T1 ⊕ T5);
Z1 ← T12 + (T2 ⊕ T6 ⊕ T7);
Z2 ← T13 + (T0 ⊕ T1 ⊕ T3);
Z3 ← T14 + (T0 ⊕ T3 ⊕ T4);
Z4 ← T15 + (T1 ⊕ T2 ⊕ T5);

Table 2.2: An algorithmic description of a quasigroup of order 2512.
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2.1.2 Algebraic definition of quasigroups of orders 2256 and 2512

In this subsection we will present the same quasigroups that have been described in the previous

subsection in an algebraic way.

For that purpose we use the following notation: we identify Q as a set of cardinality 2q, q =

256, 512, and elements x ∈ Q are represented in their bitwise form as q-bit words

X ≡ (x̃0, x̃1, . . . , x̃q−2, x̃q−1) ≡ x̃0 · 2q−1 + x̃1 · 2q−2 + . . . + x̃q−2 · 2 + x̃q−1

where x̃i ∈ {0, 1}, but also as the set
(

Z2w

)8
, w = 32, 64.

Actually, we shall be constructing quasigroups (Q, ∗) as isotopes of
((

Z2w
)8, +8

)
, w = 32, 64

where +8, is the operation of componentwise addition of two 8–dimensional vectors in
(
Z2w

)8.

We shall thus define three permutations πi : Z
q
2 → Z

q
2, 1 ≤ i ≤ 3 so that

X ∗ Y ≡ π1(π2(X) +8 π3(Y))

for all X, Y ∈
(

Z2w

)8
.

Let us denote by Q256 = {0, 1}256 and Q512 = {0, 1}512 the corresponding sets of 256–bit and 512–

bit words. Our intention is to define EDON-R′ by the following bitwise operations on w–bit values

(where w = 32 or w = 64):

1. Addition between w–bit words modulo 2w,

2. Rotation of w–bits to the left for r positions,

3. Bitwise XOR operations ⊕ on w–bit words.

Further, we introduce the following convention:

• Elements X ∈ Q256 are represented as X = (X0, X1, . . . , X7), where Xi are 32–bit words,

• Elements X ∈ Q512 are represented as X = (X0, X1, . . . , X7) where Xi are 64–bit words.

The left rotation of a w–bit word Y by r positions will be denoted by ROTLr(Y). Note that this

operation can be expressed as a linear matrix–vector multiplication over the ring (Z2, +,×) i.e.

ROTLr(Y) = Er ·Y where Er ∈ Zw
2 ×Zw

2 is a matrix obtained from the identity matrix by rotating

its columns by r positions in the direction top to bottom. Further on, if we have a vector X ∈ Qq

where q = 256, 512 represented as X = (X0, X1, . . . , X7) and we want to rotate all Xi by ri (0 ≤

12



CHAPTER 2: DESCRIPTION OF THE HASH ALGORITHM EDON-R′

i ≤ 7) positions to the left, then we denote that operation by ROTLr(X), where r = (r0, . . . , r7) ∈
{0, 1, . . . , w − 1}7 is called the rotation vector. The operation ROTLr(X) can also be represented

as a linear matrix–vector multiplication over the ring (Z2, +,×) i.e. ROTLr(X) = Dr · X where

Dr ∈ Z
q
2 ×Z

q
2,

Dr =



Er0 0 0 0 0 0 0 0

0 Er1 0 0 0 0 0 0

0 0 Er2 0 0 0 0 0

0 0 0 Er3 0 0 0 0

0 0 0 0 Er4 0 0 0

0 0 0 0 0 Er5 0 0

0 0 0 0 0 0 Er6 0

0 0 0 0 0 0 0 Er7


,

submatrices Eri ∈ Zw
2 × Zw

2 , 0 ≤ i ≤ 7 are obtained from the identity matrix by rotating its

columns by ri positions in the direction top to bottom, and the submatrices 0 ∈ Zw
2 ×Zw

2 are the

zero matrix.

Further on, we use the following notation:

• Â1, Â3 :
(

Z2w

)8
→

(
Z2w

)8
are two bijective transformations in

(
Z2w

)8
over the ring

(Z2w , +,×) where w = 32 or w = 64. The mappings Âi, i = 1, 3 can be described as:

Âi(X) = Ci + Ai · X,

where Ci ∈
(

Z2w

)8
, i = 1, 2 are two constant vectors and A1 and A3 are two 8× 8 invert-

ible matrices over the ring (Z2w , +,×). Since they look like affine transformations in vector

fields, sometimes we will call these two transformations also "affine bijective transformations"

although strictly speaking we are not working in any vector field. All elements in those two

matrices are either 0 or 1, since we want to avoid the operations of multiplication (as more

costly microprocessor operations) in the ring (Z2w , +,×), and stay only with operations of

addition.

• A2, A4 :
(

Z2w

)8
→
(

Z2w

)8
are two linear bijective transformations of Qq that are described

by two invertible matrices (we use the same notation: A2, A4) of order q× q over the ring

(Z2, +,×) (q = 256 or q = 512). Since we want to apply XOR operations on w–bit registers,

13
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q r1,q r2,q

256 ( 0, 4, 8, 13, 17, 22, 24, 29) ( 0, 5, 9, 11, 15, 20, 25, 27)

512 ( 0, 5, 15, 22, 31, 40, 50, 59) ( 0, 10, 19, 29, 36, 44, 48, 55)

Table 2.3: Rotation vectors for definition of π2 and π3.

the matrices A2 and A4 will be of the form
B1,1 B1,2 . . . B1,8

B2,1 B2,2 . . . B2,8
...

...
. . .

...

B8,1 B8,2 . . . B8,8

 ,

where Bi,j ∈ Zw
2 ×Zw

2 , 1 ≤ i, j ≤ 8 are either the identity matrix or the zero matrix i.e.

Bi,j ∈ {0, 1}.

Now we give the formal definitions for the permutations: π1, π2 and π3.

Definition 4. Transformations π1 : Qq → Qq (q = 256, 512) are defined as:

π1(X0, X1, X2, X3, X4, X5, X6, X7) = (X5, X6, X7, X0, X1, X2, X3, X4)

Lemma 1. Transformations π1 are permutations.

Definition 5. Transformations π2 : Qq → Qq and π3 : Qq → Qq are defined as:

π2 ≡ Â1 ◦ ROTLr1,q ◦A2

π3 ≡ Â3 ◦ ROTLr2,q ◦A4

where the rotation vectors ri,q, i = 1, 2, q = 256, 512 are given in Table 2.3, and the information

about Â1, A2, Â3 and A4 is given in Table 2.4. There, the symbols 1, 0 ∈ Zw
2 ×Zw

2 are the identity

matrix and the zero matrix, and the constants consti,q, i = 1, 2, q = 256, 512 have the follow-

ing values (given in hexadecimal notation): const1,256 = 0xAAAAAAAA, const2,256 = 0x55555555,

const1,512 = 0xAAAAAAAAAAAAAAAA and const2,512 = 0x5555555555555555. The rationale for choos-

ing these constants is in Section 3.12.

Lemma 2. Transformations π2 and π3 are permutations on Qq, q = 256, 512.
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Â1 A2 Â3 A4
const1,q

0
0
0
0
0
0
0

 ,


1 1 1 0 1 0 0 1
1 1 0 1 1 0 0 1
1 1 0 0 1 0 1 1
0 0 1 1 0 1 1 1
0 1 1 1 0 1 1 0
1 0 1 1 1 1 0 0
1 1 0 0 0 1 1 1
0 0 1 1 1 1 1 0




0 0 0 1 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 1 0 1 0 0
1 1 0 0 1 0 0 0
1 0 0 0 1 0 0 1
0 1 0 0 0 0 1 1
0 0 1 1 1 0 0 0
1 1 0 0 0 0 0 1




const2,q

0
0
0
0
0
0
0

 ,


1 1 1 0 0 1 0 1
1 1 0 1 1 0 1 0
1 1 1 1 0 1 0 0
0 0 1 1 1 0 1 1
1 1 0 1 1 1 0 0
0 0 1 0 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 1 1 0 1 1




0 0 0 1 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 0 1 0 1 1
1 1 0 0 0 1 0 0
0 0 1 0 0 0 1 1
1 1 0 1 0 0 0 0
1 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0


Table 2.4: Matrices Â1, A2, Â3 and A4.

Proof. The proof follows immediately from the fact that all transformations Ai, i = 1, 2, 3, 4 and

ROTLri,q , i = 1, 2, q = 256, 512 are expressed by invertible matrices over the rings (Z2w , +,×), w =

32, 64 or over the ring (Z2, +,×).

Theorem 1. Operations ∗q : Q2
q → Qq defined as:

X ∗q Y = π1(π2(X) +8 π3(Y))

are non-commutative quasigroup operations that are not loops.

Proof. We give a proof for q = 256 and the other case for q = 512 is similar.

To show that ∗256 is not a loop we have to show that there is no unit element E ∈ Q256 such that for

every A ∈ Q256, A ∗256 E = A = E ∗256 A. Let us suppose that there is a neutral element E ∈ Q256.

Let us first put

π2(E)−8 π3(E) = ConstE

where ConstE ∈ Q256 is a constant element and the operation −8 is the componentwise subtrac-

tion modulo 232.

From the concrete definition of the quasigroup operation ∗256 for the neutral element E we get:

π1(π2(E) +8 π3(A)) = π1(π2(A) +8 π3(E))

Since π1 is a permutation we can remove it from the last equation and we get:

π2(E) +8 π3(A) = π2(A) +8 π3(E)

and if we rearrange the last equation we get:

π2(A)−8 π3(A) = π2(E)−8 π3(E) = ConstE

The last equation states that for every A ∈ Q256 the expression π2(A)−8 π3(A) is a constant. This

is not true. For example π2(1) −8 π3(1) 6= π2(2) −8 π3(2). Thus we conclude that ∗256 is not a

loop.
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Note that the quasigroups cannot be associative since every associative quasigroup is a group and

every group possesses a unit element.

Having defined two quasigroup operations ∗256 and ∗512 we define two functions R256 and R512

as follows:

Definition 6.

1. R256 : Q4
256 → Q2

256 ≡ RwhereR is defined as in Definition 8 over Q256 with the quasigroup

operation ∗256.

2. R512 : Q4
512 → Q2

512 ≡ RwhereR is defined as in Definition 8 over Q512 with the quasigroup

operation ∗512.

2.1.3 The functionR: A reverse quasigroup string transformation

The reverse quasigroup string transformation as a candidate one-way function has been intro-

duced in [9], and a generic hash function with reverse quasigroup string transformation has been

described in [2, 3]. A concrete hash function with similar name: Edon-R(n) for n = 256, 384, 512

has been described in [10]. Many properties from that function are present in the design of EDON-

R′, but we can say that without loosing security properties of the hash function, the design of

EDON-R′ is now simplified and performance is much better compared to the older Edon-R(n).

Additionally, we can say that the concept of reverse quasigroup string transformation is present

also in another cryptographic primitive - the stream cipher Edon80 [11]. Edon80 IV Setup proce-

dure is a conjectured one-way function and so far no cryptographic weaknesses have been found

for the Edon80 IV Setup, although Edon80 have been under the public scrutiny from the crypto-

graphic community for more than 3 years.

Definition 7. For a given X ∈ Qq, q = 256, 512, which can be represented as an eight component

vector X = (X0, X1, . . . , X7) ∈
(

Z2w

)8
, w = 32, 54, the reversed vector X is defined as:

X = (X7, X6, . . . , X0)

Definition 8. For a given quasigroup ∗q, q = 256, 512, (shortly denoted as ∗ i.e. without the index

q) the functionR : Q4
q → Q2

q used in EDON-R′ hash function is defined as:

R(C0, C1, A0, A1) = (B0, B1)
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A0 A1

A1 X(1)
0 X(1)

1

C0 X(2)
0 X(2)

1

C1 X(3)
0 X(3)

1

A0 B0 B1

X0 X1

X1 X(1)
0 X(1)

1

C0 X(2)
0 X(2)

1

C1 X(3)
0 X(3)

1

X0 B0 B1

a. b.

�
��
�
��

? ?

�
��
�
��

? ?

�
�	

�
�	

- -

�
��
�
��

? ?

Table 2.5: a. Schematic representation of the function R, b. It is difficult to solve a system of

two equations where B0, B1, C0 and C1 are given, and A0 = X0 and A1 = X1 are

indeterminate variables.

where

B0 = A0 ∗ ((C0 ∗ (A1 ∗A0)) ∗ C1)

B1 = (A0 ∗ ((C0 ∗ (A1 ∗A0)) ∗ C1)) ∗ ((C0 ∗ (A1 ∗A0)) ∗ ((A1 ∗A0) ∗A1) ∗ (C0 ∗ (A1 ∗A0)) ∗ C1).

The reasons why the expressions for B0 and B1 are as they are given in Definition 8 can be easily

understood by looking at the Table 2.5a. The diagonal arrows can be interpreted as quasigroup

operations between the source and the destination, and the vertical or the horizontal arrows as

equality signs "=".

The conjectured one-wayness of R if we assume that only the values B0, B1, C0 and C1 are given,

can be explained by Table 2.5b. In order to find pre-image values A0 = X0 and A1 = X1 we can

use Definition 8 and obtain the following relations for the elements of Table 2.5b:
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X(1)
0 = A1 ∗A0

X(1)
1 = X(1)

0 ∗A1 = (A1 ∗A0) ∗A1

X(2)
0 = C0 ∗ X(1)

0 = C0 ∗ (A1 ∗A0)

X(2)
1 = X(2)

0 ∗ X(1)
1 = (C0 ∗ (A1 ∗A0)) ∗ ((A1 ∗A0) ∗A1)

X(3)
0 = X(2)

0 ∗ C1 = (C0 ∗ (A1 ∗A0)) ∗ C1

X(3)
1 = X(2)

1 ∗ X(3)
0 = ((C0 ∗ (A1 ∗A0)) ∗ ((A1 ∗A0) ∗A1)) ∗ ((C0 ∗ (A1 ∗A0)) ∗ C1)

B0 = A0 ∗ X(3)
0 = A0 ∗ ((C0 ∗ (A1 ∗A0)) ∗ C1)

B1 = B0 ∗ X(3)
1 =

(A0 ∗ ((C0 ∗ (A1 ∗A0)) ∗ C1)) ∗ (((C0 ∗ (A1 ∗A0)) ∗ ((A1 ∗A0) ∗A1)) ∗ ((C0 ∗ (A1 ∗A0)) ∗ C1))

From them, we can obtain the following system of quasigroup equations with indeterminates

X0, X1:{
B0 = X0 ∗ ((C0 ∗ (X1 ∗ X0)) ∗ C1)

B1 = (X0 ∗ ((C0 ∗ (X1 ∗ X0)) ∗ C1)) ∗ (((C0 ∗ (X1 ∗ X0)) ∗ ((X1 ∗ X0) ∗ X1)) ∗ ((C0 ∗ (X1 ∗ X0)) ∗ C1)).

One can show that for any given A0 = X0 ∈ Q either there are values of A1 = X1 as a solution or

there is no solution. However, if the quasigroup operation is non-commutative, non-associative,

the quasigroup operations are not linear in the underlying algebraic structure, and if the size

of the quasigroup is very big (for example 2256 or 2512) then solving this simple system of just

two quasigroup equations is hard. Actually there is no known efficient method for solving such

systems of quasigroup equations.

Of course, one inefficient method for solving that system would be to try every possible value for

A0 = X0 ∈ Q until obtaining the other indeterminate A1 = X1. That brute force method would

require in average 1
2 |Q| attempts to guess A0 = X0 ∈ Q before solving the system.

2.2 Generic description for all variants of the EDON-R′

First we are giving a generic description for all variants of the EDON-R′ hash algorithm. Then, in

the following subsections we are giving some concrete specifics for four different message digest

sizes: n = 224, n = 256, n = 384 and n = 512. The generic description of EDON-R′ hash algorithm

is given in Table 2.6.
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Algorithm: EDON-R′
Input: Message M of length l bits, and the message digest size n.

Output: A message digest Hash, that is long n bits.

1. Preprocessing

(a) Pad the message M.

(b) Parse the padded message into N, m-bit message

blocks, M(1), M(2), . . . , M(N).

(c) Set the initial value of the double pipe P(0).

2. Hash computation

For i = 1 to N

P(i) = R(P(i−1), M(i))⊕ P(i−1) ⊕M(i);

3. Hash =Take_n_Least_Significant_Bits(P(N)).

Table 2.6: A generic description of the EDON-R′ hash algorithm

In the generic description the words of the initial double pipe P(i−1)
0 , P(i−1)

1 , . . . , P(i−1)
15 are repre-

sented as two vectors of length 8 i.e. (P(i−1)
0 , P(i−1)

1 , . . . , P(i−1)
15 ) ≡ (P(0)

0 , P(0)
1 ) ≡ P(0). Then, by each

iteration, they are replaced by intermediate double pipe value, P(i) = (P(i)
0 , P(i)

1 ), ending with the

final double pipe value P(N) = (P(N)
0 , P(N)

1 ). The final result of EDON-R′ is a n–bit message digest

that are the least significant n bits from the final double pipe.

Similar notation is used for the values of the padded message M′ = (M(1), M(2), . . . , M(N)).

Namely, every message block M(i) is represented as a pair of two vectors of length 8, M(i) ≡
(M(i)

0 , M(i)
1 ) and the notation M(i) denotes the swaped order of M(i)

0 and M(i)
1 i.e. M(i) ≡ (M(i)

1 , M(i)
0 ).

A graphic representation of the EDON-R′ hash algorithm is given in the Figure 2.1.

2.2.1 EDON-R′224 and EDON-R′256

EDON-R′224 and EDON-R′256 may be used to hash a message M, having a length of l bits, where

0 ≤ l < 264. The algorithms use:

1. A double pipe of sixteen 32–bit working variables represented as a pair of two vectors of

length eight, and
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n–bit Hash
Figure 2.1: A graphic representation of the EDON-R′ hash algorithm.

2. in every iteration it needs additional sixteen 32–bit working variables that come from the

message (represented as a pair of two vectors of length eight).

EDON-R′224 and EDON-R′256 preprocessing

1. Pad the message M.

2. Parse the padded message into N 512–bit blocks, M(1), M(2),. . . , M(N).

3. Set the initial double pipe value P(0) as defined in Table 1.3 for EDON-R′224, or as defined

in Table 1.4 for EDON-R′256.

2.2.2 EDON-R′384 and EDON-R′512

EDON-R′384 and EDON-R′512 may be used to hash a message M, having a length of l bits, where

0 ≤ l < 264. The algorithms use
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1. A double pipe of sixteen 64–bit working variables represented as a pair of two vectors of

length eight, and

2. in every iteration it needs additional sixteen 64–bit working variables that come from the

message (represented as a pair of two vectors of length eight).

EDON-R′384 and EDON-R′512 preprocessing

1. Pad the message M.

2. Parse the padded message into N 1024–bit blocks, M(1), M(2),. . . , M(N).

3. Set the initial double pipe value P(0) as defined in Table 1.5 for EDON-R′384, or as defined

in Table 1.4.3 for EDON-R′512.
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CHAPTER 3

Design Rationale

3.1 Choosing 32–bit and 64–bit operations

We have decided to choose just three types of operations: addition modulo 232 or modulo 264,

XOR-ing and left rotations. This is an optimum choice that can be efficiently implemented both

on low-end 8–bit and 16–bit processors, as well as on modern 32–bit and 64–bit CPUs. In the past,

several other cryptographic primitives have been designed following the same rationale such as:

Salsa20 [12], The Tiny Encryption Algorithm [13], IDEA [14], SHA-1 and SHA-2 - to name a few.

3.2 Reasons for default little-endian design

Previous versions of Edon-R(n) as well as the earliest version of EDON-R′ were designed to be

big-endian by default. However, as the designing phase was coming to its end, and we started

the optimization phase, we changed the default design to be little-endian since an overwhelming

majority of CPU platforms in the world are little-endian.

3.3 Choosing permutations π1, π2 and π3

Our goal was to design a structure that is a non-commutative, non-associative, highly nonlinear

quasigroup of order 2256 (or 2512) in order to apply the principles of the hash family Edon–R
first presented on the second NIST cryptographic hash workshop [2]. We have found a way to

construct such structures by applying some basic permutations π1, π2 and π3 on the sets {0, 1}256

and {0, 1}512.
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L1 =



0 7 1 3 2 4 6 5

4 1 7 6 3 0 5 2

7 0 4 2 5 3 1 6

1 4 0 5 6 2 7 3

2 3 6 7 1 5 0 4

5 2 3 1 7 6 4 0

3 6 5 0 4 7 2 1

6 5 2 4 0 1 3 7


=

[
L1,1

L1,2

]
L2 =



0 4 2 3 1 6 5 7

7 6 3 2 5 4 1 0

5 3 1 6 0 2 7 4

1 0 5 4 3 7 2 6

2 1 0 7 4 5 6 3

3 5 7 0 6 1 4 2

4 7 6 1 2 0 3 5

6 2 4 5 7 3 0 1


=

[
L2,1

L2,2

]

Table 3.1: Two mutually orthogonal Latin squares used to define the permutations π2 and π3

The permutation π1 is simple rotation on 256 or 512–bit words. It can be effectively realized just

by appropriate referencing of the 32–bit (resp. 64–bit) variables. The role of the permutation

π1 is to do the componentwise mixing (diffusion) on the whole q–bit word. That diffusion then

have influence on the next application of the quasigroup operation ∗q (since we apply two such

operations in every row). The decision to define π1 as:

π1(X0, X1, X2, X3, X4, X5, X6, X7) = (X5, X6, X7, X0, X1, X2, X3, X4),

i.e., as a rotation to the right for 3 positions was done because 3 is relatively prime to 8.

The permutations π2 and π3 do the work of diffusion and nonlinear mixing separately on the

first and the second argument of the quasigroup operations. That nonlinear mixing is achieved

because we perform operations in two different rings: (Z2w , +,×), w = 32, 64 and (Z2, +,×).

For the choice of the permutations π2 and π3 we had plenty of possibilities. However, since our

design is based on quasigroups, it was natural choice to use Latin squares in the construction of

those permutations. Actually there is a long history of using Latin squares in the randomized

experimental design as well as in cryptography [5, 15–18].

3.4 Criteria for choosing the Latin squares - part one

For permutations π2 and π3 we used two orthogonal Latin squares of order 8 given in Table 3.1.

By splitting L1 and L2 in two (upper and lower) Latin rectangles L1,1, L1,2, L2,1 and L2,2 and tak-

ing columns of those rectangles as sets, we actually constructed four symmetric non-balanced

block designs (for an excellent brief introduction on block designs see for example [19]). The non-

balanced symmetric block designs corresponding to L1,1 and L2,1 are with parameters (v, k, λ) =

(8, 5, λ) where λ ∈ {2, 3, 4}, and those corresponding to L1,2 and L2,2 are with parameters (v, k, λ) =
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(8, 3, λ) where λ ∈ {0, 1, 2}. We used the incidence matrix obtained by L1,1 to bijectively transform

the variables by addition modulo 2w, w = 32, 64 (work in the ring (Z2w , +,×)) and the incidence

matrix obtained by L1,2 to bijectively transform the variables by XORing of w–bit variables (work

in the ring (Z2, +,×)).

As we mentioned in Section 2.1.2, the matrix A1 is an 8× 8 invertible matrix in the ring (Z2w , +,×),

w = 32, 64 and the matrix A2 is a q× q, (q = 256, 512) invertible matrix in the ring (Z2, +,×). Sim-

ilarly, from the Latin rectangles L2,1 and L2,2 we got the invertible incidence matrices A3 and A4.

It is an interesting observation that we split the Latin rectangles in 5:3 ratio, not in 4:4 ratio. It

comes from the fact that the symmetry of the corresponding formulas for calculation of the de-

terminant of the incidence matrices when the splitting is 4:4, always gives the result 0 (singular

value) in the ring (Z2, +,×).

3.5 EDON-R′ is provably resistant against differential cryptanalysis

In this section we will prove the resistance of EDON-R′ against differential cryptanalysis. We will

achieve that by examining the differential characteristics of the permutations π2 and π3. More

specifically we will trace how one bit difference is diffused by π2 and π3. Additionally, this will

explain our rationale for choosing permutations π2 and π3.

Let us first recall the algebraic definition of π2 and π3:

π2 ≡ Â1 ◦ ROTLr1,q ◦A2,

π3 ≡ Â3 ◦ ROTLr2,q ◦A4,

where the rotation vectors ri,q, i = 1, 2, q = 256, 512 are given in Table 2.3, and the information

about Â1, A2, Â3 and A4 is given in Table 2.4.

Although the matrices A2 and A4 are q× q matrices, because of their special form which is com-

posed just from the block matrices 0 and 1 (i.e. the zero matrix and the identity matrix) we are

abusing the notation and in this section we are annotating with A2 and A4 also as 8× 8 matrices.

Additionally, let us recall that the matrices A1 and A2 are obtained from the Latin square L1

defined in Table 3.1 (A1 is obtained as an incident matrix from the upper 5× 8 Latin rectangle L1,1

and A2 is obtained as an incident matrix from the lower 3× 8 Latin rectangle L1,2), and that the

matrices A3 and A4 are obtained from the Latin square L2 defined in Table 3.1 (A3 is obtained

as an incident matrix from the upper 5× 8 Latin rectangle L2,1 and A4 is obtained as an incident

matrix from the lower 3× 8 Latin rectangle L2,2).
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Definition 9. For a given Boolean matrix M8×8 = (mi,j), mi,j ∈ {0, 1} and for every column j ∈
{0, 7} we define the set of non-zero elements of the j-th column as RM,j = {i|mi,j = 1}.

Note that indexing of the columns and rows in the matrix M is from 0 to 7 and that for matrices

A1 and A3 in every column there are exactly 5 ones i.e., |RAi ,j| = 5, i = 1, 3, ∀j ∈ {0, . . . , 7}.

Definition 10. For the Latin rectangles L1,2 = (l(1)
i,j ), L2,2 = (l(2)

i,j ) i = 0, 1, 2, j = 0, 1, . . . 7, we de-

note the sets of elements of their j-th column as L(j)
1,2 = {l(1)

0,j , l(1)
1,j , l(1)

2,j } and as L(j)
2,2 = {l(2)

0,j , l(2)
1,j , l(2)

2,j }.

Definition 11. For the permutation π2 : Qq → Qq, q = 256, 512 defined as: π2 ≡ Â1 ◦ ROTLr1,q ◦
A2 the diffusion matrix Diffπ2 = (di,j) is a square matrix of order 8× 8 where

di,j = |RA1,i ∩ L(j)
1,2|.

For the permutation π3 : Qq → Qq, q = 256, 512 defined as: π3 ≡ Â3 ◦ ROTLr2,q ◦A4 the diffusion

matrix Diffπ3 = (di,j) is a square matrix of order 8× 8 where

di,j = |RA3,i ∩ L(j)
2,2|.

Diffusion matrices for π2 and π3 are given in Table 3.2.

Diffπ2 Diffπ3
2 3 2 2 1 2 1 2
1 2 1 3 2 2 2 2
2 1 2 2 3 1 2 2
2 1 2 2 2 2 2 2
1 2 2 2 2 2 1 3
3 2 2 1 2 2 2 1
2 2 2 1 2 2 3 1
2 2 2 2 1 2 2 2




1 2 2 2 2 2 2 2
2 1 2 2 2 2 2 2
2 2 1 2 2 2 2 2
2 2 2 1 2 2 2 2
2 2 2 2 1 2 2 2
2 2 2 2 2 1 2 2
2 2 2 2 2 2 1 2
2 2 2 2 2 2 2 1


Table 3.2: Diffusion matrices Diffπ2 and Diffπ3 .

Based on the definition of the diffusion matrices for π2 and π3 it is relatively straightforward to

prove the following proposition:

Proposition 1. Diffπ2 =
(

A1 ·A2

)T
and Diffπ3 =

(
A3 ·A4

)T
, where Ai, i = 1, 2, 3, 4 are the

matrices given in Table 2.4 and "T" is a transposition of a matrix.

In Table 3.3 we give the absolute value of the eigenvalues and the corresponding eigenvectors

for both diffusion matrices Diffπ2 and Diffπ3 . Notice the interesting property that both matrices

have: For the biggest eigenvalue λ1 its corresponding eigenvector is s1 = (1, 1, 1, 1, 1, 1, 1, 1). This
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|λ1| |λ2| |λ3| |λ4| |λ5| |λ6| |λ7| |λ8|
Eigenvalues 15.0 1.55603 1.55603 1.0 1.0 1.0 0.642661 0.642661

s1 s2 s3 s4 s5 s6 s7 s8

and eigen-

vectors for

Diffπ2


1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0




−1.50411− 1.22685i
1.74693− 2.46378i

−1.0

1.50411 + 1.22685i
−0.104877− 1.55249i
−1.74693 + 2.46378i
0.104877 + 1.55249i

1.0




−1.50411 + 1.22685i
1.74693 + 2.46378i

−1.0

1.50411− 1.22685i
−0.104877 + 1.55249i
−1.74693− 2.46378i
0.104877− 1.55249i

1.0




5.0

−1.0

−7.0

−1.0

3.0

−3.0

1.0

3.0




2.0

1.0

−4.0

−1.0

−1.0

2.0

0.0

1.0




−1.0

0.0

1.0

0.0

0.0

−1.0

1.0

0.0




0.504108− 0.106312i
0.253069 + 0.213498i

−1.0

−0.504108 + 0.106312i
−0.395123− 0.506844i
−0.253069− 0.213498i
0.395123 + 0.506844i

1.0




0.504108 + 0.106312i
0.253069− 0.213498i

−1.0

−0.504108− 0.106312i
−0.395123 + 0.506844i
−0.253069 + 0.213498i
0.395123− 0.506844i

1.0


|λ1| |λ2| |λ3| |λ4| |λ5| |λ6| |λ7| |λ8|

Eigenvalues 15.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

s1 s2 s3 s4 s5 s6 s7 s8

and eigen-

vectors for

Diffπ3


1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0




−1.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0




−1.0

0.0

0.0

0.0

0.0

0.0

1.0

0.0




−1.0

0.0

0.0

0.0

0.0

1.0

0.0

0.0




−1.0

0.0

0.0

0.0

1.0

0.0

0.0

0.0




−1.0

0.0

0.0

1.0

0.0

0.0

0.0

0.0




−1.0

0.0

1.0

0.0

0.0

0.0

0.0

0.0




−1.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0


Table 3.3: Eigenvalues and the eigenvectors for the diffusion matrices Diffπ2 and Diffπ3 .

property, as we will show in this and in the following sections, is the crucial one for proving that

EDON-R′ hash function is resistant against differential cryptanalysis.

In what follows, when X and Y are two w-bit words, the notation Hamming(X, Y) = δ denotes

that X and Y differs in exactly δ bits.

Theorem 2. Let X, X′ ∈ Qq be represented as X = (X0, . . . , X7) and X′ = (X′0, . . . , X′7), and let

Y = πa(X), Y′ = πa(X′), a = 2, 3. If X and X′ differ in one bit, i.e. the Hamming distance

Hamming(X, X′) = 1, and if that one-bit distance is in the i-th word i.e. Hamming(Xi, X′i) = 1, i =

0, . . . , 7, then

Hamming(Yj, Y′j ) ≥ di,j, j = 0, . . . , 7

where di,j are values in the matrix Diffπa .

Proof. We will prove the theorem for the case a = 2 i.e., for the permutation π2, and the other case

for the permutation π3 is similar.

Let us recall that π2 = Â1 ◦ ROTLr1,q ◦A2 i.e. for X ∈ Qq,

π2(X) = A2(ROTLr1,q(Â1(X))).
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Further let us denote by ∆ the difference vector between X and X′ i.e.

∆ = X⊕ X′.

Moreover, since from the conditions in the theorem we have that one-bit distance is in the i-th

word i.e. Hamming(Xi, X′i) = 1, i = 0, . . . , 7, we can say that

∆ = (0, . . . , 0︸ ︷︷ ︸
i−1

, ∆i, 0, . . . , 0︸ ︷︷ ︸
7−i

),

where 0 ∈ Z2w and ∆i = Xi ⊕ X′i . Now, instead of using two direct transformations π2(X) and

π2(X′) in order to trace the differences we will work with π2(∆).

Having in mind that the operation addition modulo 2w of two variables X, X′ ∈ Z2w , w = 32, 64

that differ in one bit i.e. when Hamming(X, X′) = 1, with any constant C ∈ Z2w , does not decrease

the Hamming distance, i.e.

Hamming(X + C, X′ + C) ≥ 1, ∀C ∈ Z2w ,

we have that

∆1 = Â1(∆) = (δ
(1)
0 , δ

(1)
1 , . . . , δ

(1)
7 )

where

δ
(1)
j =

{
0, i f j 6∈ RA1,i

∆j, i f j ∈ RA1,i.

So, ∆1 has exactly 5 nonzero elements since |RA1,i| = 5, ∀i ∈ {0, 7}. However, the rightmost

position of bit differences in every ∆j, j ∈ RA1,i is the same since the difference actually comes from

the original difference ∆i = Xi ⊕ X′i . The situation changes after applying rotation transformation

ROTLr1,q on ∆1. Let

∆2 = ROTLr1,q(∆1) = (δ
(2)
0 , δ

(2)
1 , . . . , δ

(2)
7 ),

where

δ
(2)
j =

{
0, i f j 6∈ RA1,i

ROTLrj(∆j), i f j ∈ RA1,i.

Now ∆2 has also exactly 5 nonzero elements, but the rightmost position of differences in every

δ
(2)
0 , j ∈ RA1,i is different. And having in mind the definition of the rotation values in Table 2.3

we can conclude that there are no neighbors in the rightmost positions of differences in every

∆j, j ∈ RA1,i.

Finally the transformation A2 is applied on ∆2 and we have

∆3 = A2(∆2) = (δ
(3)
0 , δ

(3)
1 , . . . , δ

(3)
7 ),
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where

δ
(3)
j = δ

(2)
µ1 ⊕ δ

(2)
µ2 ⊕ δ

(2)
µ3 , µ1, µ2, µ3 ∈ L(j)

1,2.

Bearing in mind that Hamming(Yj, Y′j ) = |δ(3)
j |, j = 0, . . . , 7 the conclusion that

Hamming(Yj, Y′j ) ≥ di,j, j = 0, . . . , 7

where di,j are values in the matrix Diffπ2 follows directly.

Lemma 3. Let X and X′ be two w-bit variables with a Hamming distance of two bits. If the two

difference bits of X and X′ are not neighboring bits, then for all w-bit constants C, Hamming(X +

C, X′ + C) ≥ 2 where the operation + denotes addition modulo 2w.

Proof. It is enough to exhaustively search all situations when the length of the word is w = 4. In

that case, when the two difference bits of X and X′ are not neighboring bits, the relation

Hamming(X + C, X′ + C) ≥ 2

always holds for all 4-bit values of C. For the bigger values of w, we can always treat the 4-bit

cases as an included substring.

We will need the conclusions from Lemma 3 for proving the following properties of the differential

characteristics of the quasigroup operation ∗q.

Corollary 1. Let X, X′, Y ∈ Qq be represented as X = (X0, . . . , X7), X′ = (X′0, . . . , X′7), Y =

(Y0, . . . , Y7) and let Z = X ∗q Y, Z′ = X′ ∗q Y. If X and X′ differ in one bit, i.e. the Hamming distance

Hamming(X, X′) = 1, and if that one-bit difference is in the i-th word i.e. Hamming(Xi, X′i) =

1, i = 0, . . . , 7, then

Hamming(Zj, Z′j) ≥ di,j, j = 0, . . . , 7

where di,j are values in the matrix Diffπ2 .

Proof. (sketch) The proof follows from the definition of the quasigroup operation

X ∗q Y = π1(π2(X) +8 π3(Y)),

Theorem 2, the fact that the minimal difference among any two values in the rotation vectors r1,q

and r2,q is bigger than 2 and Lemma 3.
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Corollary 2. Let X, Y, Y′ ∈ Qq be represented as X = (X0, . . . , X7), Y = (Y0, . . . , Y7), Y′ =

(Y′0, . . . , Y′7), and let Z = X ∗q Y, Z′ = X ∗q Y′. If Y and Y′ differ in one bit, i.e. the Hamming dis-

tance Hamming(Y, Y′) = 1, and if that one-bit difference is in the i-th word i.e. Hamming(Yi, Y′i ) =

1, i = 0, . . . , 7, then

Hamming(Zj, Z′j) ≥ di,j, j = 0, . . . , 7

where di,j are values in the matrix Diffπ3 .

Definition 12. Let X, X′, Y, Y′ ∈ Qq and let ∆X = X ⊕ X′ and ∆Y = Y ⊕ Y′ be two difference

vectors. Let Z = X ∗q Y and Z′ = X′ ∗q Y′. The vector D(∆X,∆Y) = (δ0, . . . , δ7) ∈
(
Z
)8 is called

bit flip counter for the quasigroup operation ∗q, if every δi, i = 0, . . . , 7 is a counter of the minimal

number of bit flips that the quasigroup operation ∗q performs to transfer the value Z to the value

Z′.

For the D(∆X,∆Y) we have the following Theorem:

Theorem 3.

D(∆X,∆Y) = Diffπ2 · ∆X + Diffπ3 · ∆Y.

Proof. (Sketch) We just need to represent ∆X and ∆Y as a sum of one-bit difference vectors and

apply Theorem 2, Corollary 1 and Corollary 2.

For given constant values C0 and C1 let us define the intermediate values Di obtained by the

function R(C0, C1, X, Y) (as they are represented in Table 3.4a). If we have two differentials ∆X

and ∆Y in order to trace all differentials for Di instead of the complex notation D(∆X,∆Y) we will

use the notation Di for the corresponding Di and the initial differentials ∆X and ∆Y.

The relations between ∆X, ∆Y and Di, i = 1, . . . , 8 are shown in the Table 3.4 and in Table 3.5.

In Table 3.6 we give an example for the difference vectors: ∆X = (1, 0, 0, 0, 0, 0, 0, 0) and ∆Y =

(0, 0, 0, 0, 0, 0, 0, 0), while in the Table 3.7 we give an example for the difference vectors: ∆X =

(0, 0, 0, 0, 0, 0, 0, 0) and ∆Y = (1, 0, 0, 0, 0, 0, 0, 0).

Notice the small variance between the values of the vectors Di, i = 1, . . . , 8 in Table 3.6 and Table

3.7. That is not by accident. Actually it is a consequence of the basic property of the diffusion ma-

trices Diffπ2 and Diffπ3 and that property is one of the most important properties that guarantee

that EDON-R′ is resistant against differential cryptanalysis attacks. That property is proved in the

following subsection.
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X Y

Y D1 D2

C0 D3 D4

C1 D5 D6

X D7 D8

∆X ∆Y

∆Y D1 = Diffπ2 · ∆Y + Diffπ3 · ∆X D2 = Diffπ2 · D1 + Diffπ3 · ∆Y

0 D3 = Diffπ2 · 0 + Diffπ3 · D1 D4 = Diffπ2 · D3 + Diffπ3 · D2

0 D5 = Diffπ2 · D3 + Diffπ3 · 0 D6 = Diffπ2 · D4 + Diffπ3 · D5

∆X D7 = Diffπ2 · ∆X + Diffπ3 · D5 D8 = Diffπ2 · D7 + Diffπ3 · D6

a. b.

Table 3.4: a. General scheme for computing the function R(C0, C1, X, Y) and the intermediate

values Di, i = 1, . . . , 8. b. Counting the minimal number of bit flips Di, i = 1, . . . , 8

when applying the quasigroup operation ∗q on X and Y that differ by difference vectors

∆X and ∆Y. Corresponding difference vectors for the fixed values C0 and C1 are the

zero vector 0.

D1 = Diffπ2 · ∆Y + Diffπ3 · ∆X

D2 = Diffπ2 ·
(
Diffπ2 · ∆Y + Diffπ3 · ∆X

)
+ Diffπ3 · ∆Y

D3 = Diffπ3 ·
(
Diffπ2 · ∆Y + Diffπ3 · ∆X

)
D4 = Diffπ2 ·

(
Diffπ3 ·

(
Diffπ2 · ∆Y + Diffπ3 · ∆X

))
+ Diffπ3 ·

(
Diffπ2 ·

(
Diffπ2 · ∆Y + Diffπ3 · ∆X

)
+ Diffπ3 · ∆Y

)
D5 = Diffπ2 ·

(
Diffπ3 ·

(
Diffπ2 · ∆Y + Diffπ3 · ∆X

))
D6 = Diffπ2 ·

(
Diffπ2 ·

(
Diffπ3 ·

(
Diffπ2 · ∆Y + Diffπ3 · ∆X

))
+ Diffπ3 ·

(
Diffπ2 ·

(
Diffπ2 · ∆Y + Diffπ3 · ∆X

)
+ Diffπ3 · ∆Y

))
+

Diffπ3 ·
(

Diffπ2 ·
(

Diffπ3 ·
(
Diffπ2 · ∆Y + Diffπ3 · ∆X

)))
D7 = Diffπ2 · ∆X + Diffπ3 ·

(
Diffπ2 ·

(
Diffπ3 ·

(
Diffπ2 · ∆Y + Diffπ3 · ∆X

)))
D8 = Diffπ2 ·

(
Diffπ2 · ∆X + Diffπ3 ·

(
Diffπ2 ·

(
Diffπ3 ·

(
Diffπ2 · ∆Y + Diffπ3 · ∆X

))))
+ Diffπ3 ·

(
Diffπ2 ·

(
Diffπ2 ·

(
Diffπ3 ·(

Diffπ2 · ∆Y + Diffπ3 · ∆X
))

+ Diffπ3 ·
(

Diffπ2 ·
(
Diffπ2 · ∆Y + Diffπ3 · ∆X

)
+ Diffπ3 · ∆Y

))
+ Diffπ3 ·

(
Diffπ2 ·

(
Diffπ3 ·(

Diffπ2 · ∆Y + Diffπ3 · ∆X
))))

Table 3.5: The relations between the vectors of minimal number of bit flips for the function R
when the initial difference vectors are ∆X and ∆Y.
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∆X = (1, 0, 0, 0, 0, 0, 0, 0) ∆Y = (0, 0, 0, 0, 0, 0, 0, 0)

∆Y = (0, 0, 0, 0, 0, 0, 0, 0) (1, 2, 2, 2, 2, 2, 2, 2) (28, 29, 28, 28, 29, 27, 28, 28)

0 (29, 28, 28, 28, 28, 28, 28, 28) (844, 842, 844, 844, 842, 846, 844, 844)

0 (422, 421, 422, 422, 421, 423, 422, 422) (18984, 18985, 18982, 18986, 18985, 18983, 18984, 18986)

∆X = (0, 0, 0, 0, 0, 0, 0, 1) (6330, 6331, 6330, 6330, 6332, 6328, 6329, 6330) (379716, 379715, 379721, 379713, 379716, 379717, 379715, 379712)

Table 3.6: Vectors of minimal number of bit flips for the function R when the initial difference

vectors are ∆X = (1, 0, 0, 0, 0, 0, 0, 0) and ∆Y = (0, 0, 0, 0, 0, 0, 0, 0).

∆X = (0, 0, 0, 0, 0, 0, 0, 0) ∆Y = (1, 0, 0, 0, 0, 0, 0, 0)

∆Y = (0, 0, 0, 0, 0, 0, 0, 1) (2, 2, 2, 2, 3, 1, 1, 2) (29, 30, 32, 30, 31, 30, 29, 29)

0 (28, 28, 28, 28, 27, 29, 29, 28) (873, 872, 868, 872, 870, 872, 874, 874)

0 (422, 422, 420, 422, 421, 422, 423, 423) (19406, 19409, 19406, 19406, 19406, 19405, 19405, 19407)

∆X = (0, 0, 0, 0, 0, 0, 0, 0) (6328, 6328, 6330, 6328, 6329, 6328, 6327, 6327) (386016, 386011, 386017, 386016, 386016, 386018, 386017, 386014)

Table 3.7: Vectors of minimal number of bit flips for the function R when the initial difference

vectors are ∆X = (0, 0, 0, 0, 0, 0, 0, 0) and ∆Y = (1, 0, 0, 0, 0, 0, 0, 0).

3.5.1 The variance of the elements of Di

Let λ1, λ2, . . . , λn be the eigenvalues of some matrix M, arranged such that |λ1| ≥ |λ2| ≥ . . . ≥
|λn|, where |x + iy| =

√
x2 + y2. The eigenvector corresponding to the eigenvalue λi is denoted

by si = [s1i, s2i, . . . , sni]T. Let S be the matrix formed by letting the i-th column of S be equal to the

i-th eigenvector of M, i.e. S = [s1, s2, . . . , sn]. Let the i-th vector-row of the matrix S−1 be denoted

by s′i = [s′1i, s′2i, . . . , s′ni]
T, such that (S−1)T = [s′1, s′2, . . . , s′n]. Let Λn be defined as a diagonal matrix

with Λii = λi. We know from linear algebra that the matrix M can be written as M = SΛS−1. This

gives us the following,

Mn = SΛnS−1 = S
n

∑
i=1

(Λ(i))nS−1 =
n

∑
i=1

λn
i


s1is′i
s2is′i

...

snis′i

 , (3.5.1)

where Λ(i) is a square matrix with all elements equal to 0, except Λ
(i)
ii which is equal to λi, i.e.

Λ
(i)
jk =

{
λi, i = j = k

0, other

Proposition 2. Let |λ1| ≥ |λ2| ≥ . . . ≥ |λn| be the eigenvalues of M. If the vector 1 = (1, 1, . . . , 1)
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is the eigenvector for the greatest eigenvalue, λ1. Then for each vector a

lim
n→∞

(Mna)i

λn
1

= (s′1)
Ta, ∀i = 1, . . . , n, (3.5.2)

Proof. From (3.5.1) we have,

Mna =
n

∑
i=1

λn
i


s1is′i
s2is′i

...

sniv′i

 a = λn
1


s′1
s′1
...

s′1

 a +
n

∑
i=2

λn
i


s1is′i
s2is′i

...

snis′i

 a = λn
1


s′1a

s′1a

...

s′1a

+
n

∑
i=2

λn
i


s1is′ia

s2is′ia

...

snis′ia

 .

Directly from this holds (3.5.2).

Proposition 3. Let |λ1| ≥ |λ2| ≥ . . . ≥ |λn| be the eigenvalues of M. If the vector 1 is the

eigenvector for the greatest eigenvalue, λ1 and |λ1| > |(λ2)2|. Then for each vector a

lim
n→∞

Var(Mna)
min

i
(Mna)i

= 0. (3.5.3)

Proof. Let b(n)
j = (Mna)j. Then from (3.5.1) we have that

b(n)
j = λn

1 s′1a +
n

∑
i=2

λn
i sjis′ia,

and

Avr(b(n)) =
1
n

n

∑
j=1

b(n)
j = λn

1 s′1a +
1
n

n

∑
j=1

n

∑
i=2

λn
i sjis′ia = λn

1 s′1a +
n

∑
i=2

λn
i

(
1
n ∑

j=1
sji

)
s′ia

= λn
1 s′1a +

n

∑
i=2

λn
i Avr(si)s′ia.

Now,

b(n)
j − Avr(b(n)) =

n

∑
i=2

λn
i sjis′ia−

n

∑
i=2

λn
i Avr(si)s′ia =

n

∑
i=2

λn
i (sji − Avr(si))s′ia.

From this and the Proposition2 we have that

lim
n→∞

Var(Mna)
min

i
(Mna)i

= lim
n→∞

Var(Mna)
λn

1
mini(Mna)i

λn
1

= lim
n→∞

∑n
j=1
(
∑n

i=2 λn
i (sji − Avr(si))s′ia

)2

λn
1

mini(Mna)i

λn
1

=
1

s′1a
lim
n→∞

∑n
j=1
(
∑n

i=2 λn
i (sji − Avr(si))s′ia

)2

λn
1

=
1

s′1a
· 0 = 0.
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Proposition 4. Let |λ1| ≥ |λ2| ≥ . . . ≥ |λn| be the eigenvectors either for Diffπ2 or for Diffπ3 .

Then the vector 1 is the eigenvector for the greatest eigenvalue, λ1 and moreover |λ1| > |λ2
2|.

Proof. The absolute values of the eigenvalues with their corresponding eigenvectors are given in

Table 3.3.

Finally, from all previous claims in this subsection the following theorem follows:

Theorem 4. The variance of the elements of the Di, i = 1, . . . , 8 decreases (relative to the minimal

element in the vectors Di, i = 1, . . . , 8), with every row of quasigroup string transformations in

the functionR.

3.5.2 Differential characteristics of the functionR

As the values δ
(i)
j , j = 0, . . . , 7 in every vector of minimal number of bit flipsDi = (δ

(i)
0 , δ

(i)
1 , . . . , δ

(i)
7 ),

i = 1, . . . , 8 tend to have very small variance, we have reasons to assume that the number of bit

flips for every single bit is also equally distributed i.e. with very small variance. Having this

assumption, we can prove the following theorem:

Theorem 5. Let Di = (δ
(i)
0 , δ

(i)
1 , . . . , δ

(i)
7 ), i = 1, . . . , 8 be a vector of minimal number of bit flips for

the functionRwhere the size of the word is w bits (w = 32, 64), and let ∆Di = (∆(i)
D0

, ∆(i)
D1

, . . . , ∆(i)
D7

) =

(∆(i)
0 , . . . , ∆(i)

w−1, ∆(i)
w , . . . , ∆(i)

2w−1, ∆(i)
2w, . . . , . . . , ∆(i)

7w−1, ∆(i)
7w, . . . , ∆(i)

8w−1), i = 1, . . . , 8 (where ∆(i)
j ∈ {0, 1},

j = 0, . . . , 8w− 1) are the corresponding differentials in the intermediate variables ∆Di for some

initially chosen differentials ∆X and ∆Y (where at least one of them is a non-zero differential). If

the number of bit flips for every single bit is equally distributed then the probabilities that every

difference bit ∆(i)
j is 0 or 1 are given as:

Pr
(
∆(i)

j = 0|∆X, ∆Y
)

= 0.5 + ε
δ
(i)
µ

,

Pr
(
∆(i)

j = 1|∆X, ∆Y
)

= 0.5− ε
δ
(i)
µ

,

where µ =
⌊

j
w

⌋
and ε

δ
(i)
µ
≤ 0.5

(w−2
w

)δ
(i)
µ .

Proof. From the conditions of the Theorem we have that the minimal number of bit flips for the

∆(i)
Dµ

is δ
(i)
µ where µ = 0, . . . , 7. Note that ∆(i)

Dµ
is a w-bit word. The probability that the value of any

difference bit ∆(i)
j is equal to 0 is the probability that the number of bit flips for that particular bit

is even. Taking into the consideration the assumption that the number of bit flips for every bit in

34



CHAPTER 3: DESIGN RATIONALE

∆(i)
Dµ

is equally distributed, we can conclude that in one experiment the probability that the bit is

flipped is 1
w and the probability that it is not flipped is

(
1− 1

w

)
. Then if we have δ

(i)
µ experiments,

the probability that the number of bit flips for that particular bit is even can be computed as:

Pr
(
∆(i)

j = 0
)

=
δ
(i)
µ

∑
r=0

r is even

(
δ
(i)
µ

r

)(
1
w

)r (
1− 1

w

)δ
(i)
µ −r

.

Similarly we can compute the probability:

Pr
(
∆(i)

j = 1
)

=
δ
(i)
µ

∑
r=1

r is odd

(
δ
(i)
µ

r

)(
1
w

)r (
1− 1

w

)δ
(i)
µ −r

.

Now if take into account that

Pr
(
∆(i)

j = 0
)
+ Pr

(
∆(i)

j = 1
)

= 1

and

lim
δ
(i)
µ →∞

|Pr
(
∆(i)

j = 0
)
− Pr

(
∆(i)

j = 1
)
| = 0

then we can rewrite the last limit as:

Pr
(
∆(i)

j = 0|∆X, ∆Y
)

= 0.5 + ε
0,δ(i)

µ
,

Pr
(
∆(i)

j = 1|∆X, ∆Y
)

= 0.5− ε
1,δ(i)

µ

.

Finding explicit expressions for ε
0,δ(i)

µ
and ε

1,δ(i)
µ

is hard, but having concrete numerical values δ
(i)
µ

we can compute them as:

ε
0,δ(i)

µ
=

δ
(i)
µ

∑
r=0

r is even

(
δ
(i)
µ

r

)(
1
w

)r (
1− 1

w

)δ
(i)
µ −r

− 0.5,

ε
1,δ(i)

µ
= 0.5−

δ
(i)
µ

∑
r=1

r is odd

(
δ
(i)
µ

r

)(
1
w

)r (
1− 1

w

)δ
(i)
µ −r

.

or we can consider them as approximately the same value that is upper bounded by:

ε
δ
(i)
µ
≈ ε

0,δ(i)
µ
≈ ε

1,δ(i)
µ
≤ 0.5

(
w− 2

w

)δ
(i)
µ

.
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∆X = (1, 0, 0, 0, 0, 0, 0, 0) ∆Y = (0, 0, 0, 0, 0, 0, 0, 0)

w = 32 w = 64 w = 32 w = 64

ε ≤ 2−1.09 ε ≤ 2−1.05 ε ≤ 2−3.51 ε ≤ 2−2.24

ε ≤ 2−3.61 ε ≤ 2−2.28 ε ≤ 2−79.40 ε ≤ 2−39.57

ε ≤ 2−40.20 ε ≤ 2−20.28 ε ≤ 2−1768.4 ε ≤ 2−870.45

ε ≤ 2−590.20 ε ≤ 2−290.85 ε ≤ 2−35356 ε ≤ 2−17393

Table 3.8: Upper bounds for the deviations ε. The probability that a bit will have a differential

∆ = 1 is 0.5− ε, and the probability that a bit will have a differential ∆ = 0 is 0.5 + ε.

The initial difference vectors are ∆X = (1, 0, 0, 0, 0, 0, 0, 0) and ∆Y = (0, 0, 0, 0, 0, 0, 0, 0).

For one of the smallest differentials (∆X, ∆Y) =
(
(1, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0)

)
the values

for the corresponding ε
δ
(i)
µ

both for w = 32 and w = 64 are given in Table 3.8. The values for

the other one-bit differences are similar, and the values of ε
δ
(i)
µ

for the differentials with initial

difference in more then one bit are even smaller.

We consider that Theorem 5 is the proof of the EDON-R′’s resistance against differential crypt-

analysis.

3.6 Criteria for choosing the Latin squares - part two

Having described in detail the differential characteristics of the defined quasigroup operations ∗q,

we can describe the reasons and the criteria by which we have chosen the Latin squares L1 and L2

by which we are defining the quasigroup operation ∗q. The criteria are descibed in Table 3.9.

For complying with the first criterion we took all 2165 main classes of orthogonal Latin squares

of order 8 that are listed on Brendan McKay’s web page [20]. For every one of them, first by

permuting their rows and then their columns we produced (8!)2 ≈ 230.6 orthogonal isotopes.

Permutations were ordered by the lexicographic ordering. Next, we filtered that number of or-

thogonal Latin squares by the Criterion 2: Latin squares that give diffusion matrices Diffπ2 and

Diffπ3 that do not have zeroes. We further filtered the number of Latin squares by selecting those

Latin squares that have a maximum variance computed on all 64 elements of the matrix Diffπ2

and minimum variance computed on all 64 elements of the matrix Diffπ2 (Criterion 3).

By exhaustive search we found that Latin squares that comply with all 4 criteria give matrices

Diffπ2 with maximum variance of 19
63 and matrices Diffπ3 with minimum variance of 1

9 . The first

such pair of Latin squares was chosen for EDON-R′.
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3.7 On some properties of the matrices Ai

As a part of our cryptanalysis of the EDON-R′ hash function we present here several interesting

mathematical properties for the matrices Ai defined in Section 2.1.2 and in the Table 2.4, when

those matrices are considered as matrices with elements in Z2. We want to stress here that we are

not aware that any of these properties can be used for launching some concrete attack on the hash

function EDON-R′.

From the definition of matrices Ai, it is obvious that

A1 + A2 = 1 (3.7.1)

and

A3 + A4 = 1 (3.7.2)

where 1 is a square 8× 8 matrix with all elements equal to 1. We also find that it is an interesting

fact that similar properties hold for their inverse matrices:

A−1
1 + A−1

2 = 1 (3.7.3)

Criteria Reasons

1. L1 and L2 are orthogonal Latin

squares.

8 w-bit variables belonging to X are to be mixed with 8

w-bit variables belonging to Y in such a way that all pairs

are combined by some operation (addition, or XORing).

2. Diffπ2 and Diffπ3 do not have

zeroes.

The situation where X ∗q Y = Z and some difference either

in X or in Y will not affect some of the eight words of Z are

to be avoided.

3. Elements of the matrix Diffπ2

have the biggest possible variance.

This is an analogy to the "confusion" principle in

cryptology. Choosing Diffπ2 with the biggest possible

variance improves the resistance against cryptanalysis

because there is no regular pattern how the computations

are performed.

4. Elements of the matrix Diffπ3

have the smallest possible

variance.

This is an analogy to the "diffusion" principle in

cryptology. Choosing Diffπ3 with the smallest possible

variance increases the diffusion of the bit differences in the

greatest possible way, with the smallest possible variances

in the pattern of the computations that are performed.
Table 3.9: Criteria for choosing the Latin squares
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

5 8 3 4 2 7 1 6

3 5 2 1 7 4 6 8

2 4 8 6 1 5 7 3

6 3 5 2 4 1 8 7

7 2 1 3 8 6 5 4

4 1 7 8 6 3 2 5

1 7 6 5 3 8 4 2

8 6 4 7 5 2 3 1





0 1 1 0 1 1 1 0

0 1 1 1 1 0 0 1

1 1 1 0 1 0 0 1

1 1 1 1 0 1 0 0

1 1 0 1 0 0 1 1

1 0 0 1 1 1 1 0

1 0 0 0 1 1 1 1

0 0 1 1 0 1 1 1


L A1

Figure 3.1: Example of how the map works. We see that the 3rd element of row 4 of A1 is 1 because

the number 3 is above the line in column 4 of L. Note that we denote the elements from

1 to 8 instead from 0 to 7.

and

A−1
3 + A−1

4 = 1. (3.7.4)

In what follows, we prove that this complementary property is true for every pair of Boolean

matrices obtained from Latin squares if certain preconditions are fulfilled.

Let us define a map from the set of Latin squares to the set of boolean matrices by the following

definition:

Definition 13. Let Ln be the set of Latin squares of size n, and let M(Z2) be the set of Boolean

matrices. We define the map

Fn
k : Ln → M(Z2)×M(Z2)

L 7→ (A1, A2)

where

(A1)ij =

1 if j ∈ {L1i, . . . , Lki}

0 else
and (A2)ij =

1 if j ∈ {Lki, . . . , Lni}

0 else

To easier see how the map works imagine drawing a line between row k and k + 1 of the Latin

square as shown in Figure 3.1. Then the j-th element of row i of A1 equals 1 if the number j is

above the drawn line in the i-th column of the Latin square. From the definition of Latin squares

we see that the weight of every row and column of A1 is k, and that A2 = A1 + 1, where 1 is the

all 1 matrix of appropriate size. Notice that for each pair (L, k) such that Fn
k (L) = (A1, A2), there
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exists a Latin square, L′, such that Fn
n−k(L′) = (A2, A1)1. This fact will be used to prove some of

the results in the next section.

In this section we show that if both n and n− k is odd, the map from the previous section defines

an interesting class of boolean matrices where both A2 = A1 + 1 and, if the matrices are non-

singular, A−1
2 = A−1

1 + 1 as well. To do this we first need to prove the following two Lemmas.

Lemma 4. Let L be a Latin square, let n− k be odd, and let Fn
k (L) = (A1, A2). Then det(A1) = 1

mod 2 if and only if det(A2) = 1 mod 2.

Proof. Let det(A1) = 1 mod 2. This means that the vector columns v1, . . . , vn of A1 are linearly

independent. Let ṽ1, . . . , ṽ2 be the corresponding vector columns of A2, i.e. ṽi = vi + 1. Assume

det(A2) = 0 mod 2. This means that there exists some ṽl and b1, . . . bn ∈ {0, 1} such that

1 + vl = ṽl = ∑
i 6=l

biṽi = ∑
i 6=l

bi(1 + vi) =

1 + ∑i 6=l bivi if ∑ bi = 1

∑i 6=l bivi if ∑ bi = 0

The first case implies that 1 + vl = 1 + ∑i 6=l bivi ⇒ vl = ∑i 6=l bivi, which is not possible since

the vectors v1, . . . , vn of A1 are linearly independent. The second case, 1 + vl = ∑i 6=l bivi, is not

possible either, since the vector on right side of the equation has even weight, and a sum of an even

number of vectors with the same weight must have even weight. The left side of the equation must

have odd weight since n− k is odd. Since neither of the above cases is possible, the assumption

that det(A2) = 0 mod 2 is wrong.

This means det(A1) = 1 mod 2 ⇒ det(A2) = 1 mod 2. To prove det(A2) = 1 mod 2 ⇒
det(A1) = 1 mod 2 notice that for every pair (L, k) such that Fn

k (L) = (A1, A2) there exists a pair

(L′, k′) such that Fn
k′(L′) = (A2, A1). �

Lemma 5. Let L be a Latin square, let k and n − k be odd and let Fn
k (L) = (A1, A2). If A1 is

non-singular then the weight of any row or column of A−1
1 or A−1

2 is odd.

Proof. Let the li,1, . . . li,k be the k indexes where row i of A1 is different from zero. Assume A1

(and therefore also A2 by Lemma 4) is non-singular and let bij be the elements of A−1
1 . Since

1The Latin square L′ is just the square L where the top k-rows and the bottom n− k-rows has exhanged place
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A1A−1
1 = I we have the following equations for any column j of A−1

1

bl1,1 j + · · ·+ bl1k j = 0
...

blj−1,1 j + · · ·+ blj−1,k j = 0

blj,1 j + · · ·+ blj,k j = 1

blj+1,1 j + · · ·+ blj+1,k j = 0
...

bln,1 j + · · ·+ bln,k j = 0

By the property of the Latin square, we know that for each i the index bij must appear in the

above equations exactly k times. Using this fact and summing the above equation together we get

k(b1j + · · ·+ bnj) = 1. Since k is odd this means that the weight of every column of A−1
1 must be

1. The proof for the rows of A−1
1 is similar, starting with the equation A−1

1 A1 = I.

The proof for any row or column of A2 follows by the fact that for every pair (L, k) such that

Fn
k (L) = (A1, A2) there exists a pair (L′, k′) such that Fn

k′(L′) = (A2, A1). �

We are now ready to prove the main result in this section.

Theorem 6. Let L be a Latin square, let Fn
k = (A1, A2), where k and n− k is odd. If det(A1) = 1

mod 2, then

A−1
2 = A−1

1 + 1

Proof. First we know that A2 is non-singular by Lemma 4. We then use this fact in the following

equations.

A1 = 1 + A2 (3.7.5)

A1A−1
1 = 1A−1

1 + A2A−1
1 (3.7.6)

I = 1A−1
1 + A2A−1

1 (3.7.7)

A−1
2 = A−1

2 1A−1
1 + A−1

1 (3.7.8)

A−1
2 = 1 + A−1

1 (3.7.9)

Where equality 3.7.5 follows from the definition of Latin squares, and the step from equality 3.7.8

to equality 3.7.9 follows from Lemma 5. �
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3.8 EDON-R′ has a structure of a double-pipe PGV7 cryptographic hash

scheme

Preneel, Govaerts, and Vandewalle in [21] have located 12 secure schemes for constructing hash

functions from block ciphers. Black et. al., [22] have proved (in an ideal cipher model) that those

schemes are collision-resistant too.

The basic iterative relation for the scheme number 7 (PGV7) is:

Hi = E(Mi, Hi−1)⊕Mi ⊕ Hi−1

where the notation E(K, X) denotes a block cipher operation with a key K and a plaintext X.

It is relatively easy to prove the following theorem:

Theorem 7. The functionR(C0, C1, A0, A1) = (B0, B1) as it is defined in Definition 8, is a bijection

if the values A0 and A1 are kept fixed.

From there it follows directly that the compression function in EDON-R′ has a structure as a

double-pipe PGV7 scheme, where the function R(·) has the role of the block cipher, the double-

pipe has the role of the plaintext and the message block has the role of the key. In the light of

the latest attacks with multi-collisions, the double-pipe has a special security role. Namely, in the

design of EDON-R′ we have decided to incorporate the suggestions of Lucks [23, 24] and Coron et

al. [25] by setting the size of the internal memory of the iterated compression function to be twice

as large as the output length required. This design avoids the weaknesses against the generic at-

tacks of Joux [26] and Kelsy and Schneier [27], thereby guaranteeing resistance against a generic

multicollision attack and length extension attacks.

Doubling of the internal memory in our design is a result of the fact that in every iterative step of

the compression function, the strings of length 4n bits (2n bits from the double pipe and 2n bits

from the message) are mapped to strings of length 2n bits which are becoming the actual value of

the double pipe for the next iterative step.

3.9 Natural resistance of EDON-R′ against generic length extension at-

tacks

Generic length extension attacks on iterated hash function based upon Merkle-Damgård iterative

design principles [28, 29] works as follows:
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Let M = M1||M2|| . . . ||MN be a message consisting of exactly N blocks that will be iteratively di-

gested by some compression function C(A, B) according to the Merkle-Damgård iterative design

principles, and where A and B are messages (input parameters for the compression function) that

have the same length as the final message digest. Let PM be the padding block of M obtained ac-

cording to the Merkle-Damgård strengthening. Then, the digest H of the message M, is computed

as

H(M) = C(. . . C(C(IV, M1), M2) . . . , PM),

where IV is the initial fixed value for the hash function.

Now suppose that the attacker does not know the message M, but knows (or can easily guess)

the length of the message M. The attacker knows the padding block PM. Now, the attacker can

construct a new message M′ = PM||M′1 such that he knows the hash digest of the message M||M′,
i.e.,

H(M||M′) = C(C(H(M), M′1), PM′),

where PM′ is the padding (Merkle-Damgård strengthening) of the message M||M′.

EDON-R′ has a natural resistance against this generic attack due to the fact that it is iterated with

the chaining variables that has a length that is two times greater than the final digest value (see

also the work of Lucks [30]).

3.10 Testing avalanche properties of EDON-R′

We show the avalanche propagation of the initial one bit differences of the function of R during

their evolution in all 8 quasigroup operations ∗q, (q = 256, 512).

We have used two experimental settings:

1. Examining the propagation of the initial 1–bit difference in a message consisting of all zeroes

2. Examining the propagation of the initial 1–bit difference in 100 randomly generated mes-

sages of n–bits.

The results for n = 256 are shown in Table 3.10. Notice that a Hamming distance equal to 1
2 n =

128 which would be expected in theoretical models of ideal random functions is achieved after

applying quasigroup operations in the third row (in bold). Similar results are obtained for n = 512

and are shown in Table 3.11. There also a Hamming distance equal to 1
2 n = 256 which would be
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Min = 15

Avr = 28.86

Max = 50

Min = 92

Avr = 117.66

Max = 139

Min = 96

Avr = 120.06

Max = 143

Min = 99

Avr = 127.72

Max = 152

Min = 106

Avr=128.69

Max = 150

Min = 105

Avr=127.91

Max = 152

Min = 108

Avr=127.79

Max = 150

Min = 98

Avr=128.05

Max = 150

Min = 16

Avr = 34.71

Max = 72

Min = 66

Avr = 119.98

Max = 157

Min = 66

Avr = 118.63

Max = 156

Min = 91

Avr=128.00

Max = 160

Min = 95

Avr=128.00

Max = 160

Min = 95

Avr=128.04

Max = 162

Min = 96

Avr=128.01

Max = 158

Min = 94

Avr=127.94

Max = 161

a. b.

Table 3.10: a. Avalanche propagation of the Hamming distance between two 256–bit words M1

and M2 that initially differs in one bit and where M1 = 0 (minimum, average and

maximum) b. Avalanche propagation of the Hamming distance between two 256–bit

words M1 and M2 that initially differs in one bit (minimum, average and maximum)

expected in theoretical models of ideal random functions is achieved after applying quasigroup

operations from the third row (in bold).

3.11 All collision paths ofR and local collisions

The design of the functionR in EDON-R′ is pretty different from the design of compression func-

tions (block ciphers) of known hash functions that are designed from scratch. While other com-

pression functions have 64, 80 or even more iterating steps, R has 8 steps. So far, all successful

attacks against the MDx and SHA families of hash functions exploited local collisions in the pro-

cessing of the data block. Local collisions are collisions that can be found within a few steps of the

compression function.

In what follows we find local collisions for EDON-R′ and discuss difficulties how these local col-

lisions can lead to collisions of the whole function.

The small number of steps in the functionR as well as the algebraic properties of quasigroup op-

erations allow us to describe all possible collision paths within the function which, we emphasize
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Min = 15

Avr = 24.10

Max = 51

Min = 91

Avr = 140.31

Max = 181

Min = 125

Avr = 85.39

Max = 231

Min = 220

Avr = 255.51

Max = 295

Min = 213

Avr = 255.69

Max = 295

Min = 218

Avr = 256.03

Max = 292

Min = 216

Avr = 255.31

Max = 294

Min = 221

Avr = 255.83

Max = 288

Min = 16

Avr = 35.62

Max = 77

Min = 88

Avr = 167.20

Max = 254

Min = 70

Avr = 156.55

Max = 260

Min = 205

Avr = 255.94

Max = 303

Min = 192

Avr = 252.41

Max = 304

Min = 207

Avr = 256.01

Max = 302

Min = 205

Avr = 256.02

Max = 310

Min = 206

Avr = 256.02

Max = 305

a. b.

Table 3.11: a. Avalanche propagation of the Hamming distance between two 512–bit words M1

and M2 that initially differs in one bit and where M1 = 0 (minimum, average and

maximum) b. Avalanche propagation of the Hamming distance between two 512–bit

words M1 and M2 that initially differs in one bit (minimum, average and maximum)

∗q B1 = {B1} B2 = {B1, B2}

A1 = {A1}
C1 = {C1}

where A1 ∗q B1 = C1

C2 = {C1, C2}
where A1 ∗q B1 = C1

and A1 ∗q B2 = C2

A2 = {A1, A2}
C2 = {C1, C2}

where A1 ∗q B1 = C1

and A2 ∗q B1 = C2

C2 = {C1, C2}
where A1 ∗q B1 = C1

and A2 ∗q B2 = C2

or

C1 = {C1}
where A1 ∗q B1 = C1

and A2 ∗q B2 = C1

Table 3.12: Definition of quasigroup operation between one or two-element sets.

again, is a unique property among all known hash functions that are designed from scratch.

In order to track the collision paths for the function R we introduce a definition for quasigroup

operation between sets of cardinality one and two.

Definition 14. Let A1 = {A1}, A2 = {A1, A2}, B1 = {B1}, B2 = {B1, B2}, C1 = {C1}, C2 =

{C1, C2} be sets of cardinality one or two and where Ai, Bi and Ci ∈ Qq(q = 256, 512). The

operation of quasigroup multiplication ∗q between these sets is defined by Table 3.12.
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Following directly from the properties of the unique solutions of equations of type (2.1.1) it is easy

to prove the following two propositions:

Proposition 5. If B1 6= B2 then {A1} ∗q {B1, B2} = {C1, C2} such that C1 6= C2.

Proposition 6. If A1 6= A2 then {A1, A2} ∗q {B1} = {C1, C2} such that C1 6= C2.

However if both A1 6= A2 and B1 6= B2 then {A1, A2} ∗q {B1, B2} can be either {C1, C2} or {C1}
and this is formulated in the following proposition:

Proposition 7. If A1 6= A2 and B1 6= B2 then {A1, A2} ∗q {B1, B2} can be either {C1, C2} (where

C1 6= C2) or {C1}.

We formalize the notion of collisions for the functionR by the following definition:

Definition 15. Let (C0, C1, X1, X2), (C0, C1, X3, X4) ∈ Q4 where C0 and C1 are initial constants de-

fined in Subsection 1.4.3, and (X1, X2) 6= (X3, X4). IfR(C0, C1, X1, X2) = (D, Y) andR(C0, C1, X3, X4) =

(E, Y) then the quintette (X1, X2, X3, X4) is a collision forR.

Using the Definition 14 and Definition 15 we can trace all possible paths that can produce collisions

in the functionR. That is formulated in the following theorem:

Theorem 8. If (X1, X2) 6= (X3, X4) are two pairs of values in Qq. Then all possible differential paths

starting with the set {X1, X2, X3, X4} that can produce collisions in the functionR are described in

Table 3.13 and Table 3.14.

The corresponding quasigroup equations for all these cases are given in Table 3.15, Table 3.16 and

Table 3.17.

In what follows we need the notation of left conjugates (left parastrophes) of a given quasigroup

operation ∗ i.e.

X ∗ Y = Z ⇔ X \ Z = Y.

Generally, we can divide the problem of finding local collisions in two cases. The first case is the

local collisions described in Table 3.13. For those collisions, we find that solving corresponding

quasigroup equations is hard. For example, let us discuss the case described in Table 3.13a., with

the corresponding equations given in Table 3.15a. We apply the following attack:

1. Choose some arbitrary value for D3.
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{X1} {X2, X3}
{X2, X3} {D1, D2} {D3}
{C0} {D4, D5} {D6, D7}
{C1} {D8, D9} {D10, D11}
{X1} {D12, D13} {D14}

{X1} {X2, X3}
{X2, X3} {D1, D2} {D3, D4}
{C0} {D5, D6} {D7}
{C1} {D8, D9} {D10, D11}
{X1} {D12, D13} {D14}

a. b.

{X1} {X2, X3}
{X2, X3} {D1, D2} {D3, D4}
{C0} {D5, D6} {D7, D8}
{C1} {D9, D10} {D11, D12}
{X1} {D13, D14} {D15}

{X1, X2} {X3}
{X3} {D1, D2} {D3, D4}
{C0} {D5, D6} {D7}
{C1} {D8, D9} {D10, D11}
{X1, X2} {D12, D13} {D14}

c. d.

{X1, X2} {X3}
{X3} {D1, D2} {D3, D4}
{C0} {D5, D6} {D7, D8}
{C1} {D9, D10} {D11}
{X1, X2} {D12} {D13}

{X1, X2} {X3}
{X3} {D1, D2} {D3, D4}
{C0} {D5, D6} {D7, D8}
{C1} {D9, D10} {D11, D12}
{X1, X2} {D13, D14} {D15}

e. f.

Table 3.13: First part of the description of all possible differential paths in the function R that can

give collisions. Cases a. – f.

2. Choose two distinct values D1 and D2.

3. Compute X2 = D1 \D3.

4. Compute X3 = D2 \D3.

5. If (X2 \D1) = (X3 \D2), then set X1 = (X2 \D1) else Go to Step 1.

The difficulty for solving local collision cases described in Table 3.13 lies in the fact that we are

faced with a feedback information (Step 5. in the previous attack) that is coming from the reversed

strings according to the definition of the functionR.
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{X1, X2} {X3, X4}
{X3, X4} {D1} {D2, D3}
{C0} {D4} {D5, D6}
{C1} {D7} {D8, D9}
{X1, X2} {D10, D11} {D12}

{X1, X2} {X3, X4}
{X3, X4} {D1, D2} {D3}
{C0} {D4, D5} {D6, D7}
{C1} {D8, D9} {D10}
{X1, X2} {D11} {D12}

g. h.

{X1, X2} {X3, X4}
{X3, X4} {D1, D2} {D3}
{C0} {D4, D5} {D6, D7}
{C1} {D8, D9} {D10, D11}
{X1, X2} {D12, D13} {D14}

{X1, X2} {X3, X4}
{X3, X4} {D1, D2} {D3, D4}
{C0} {D5, D6} {D7}
{C1} {D8, D9} {D10, D11}
{X1, X2} {D12, D13} {D14}

i. j.

{X1, X2} {X3, X4}
{X3, X4} {D1, D2} {D3, D4}
{C0} {D5, D6} {D7, D8}
{C1} {D9, D10} {D11}
{X1, X2} {D12} {D13}

{X1, X2} {X3, X4}
{X3, X4} {D1, D2} {D3, D4}
{C0} {D5, D6} {D7, D8}
{C1} {D9, D10} {D11, D12}
{X1, X2} {D13, D14} {D15}

k. l.

Table 3.14: Second part of the description of all possible differential paths in the function R that

can give collisions. Cases g. – l.

On the other hand, for some of the local collisions described in the cases g., h., i., j., and k., (Table

3.14) there is no need to use the feedback information in the computations. We use that fact in

order to find local collisions with complexity O(1). However, we want to stress the fact that in

the complete computation of the function R the feedback information of the processed message

bits is the essential part of its definition. In such a way the usefulness of these local collisions in

attacks for finding collisions or free start collisions for the functionR is diminished.

We can elaborate further the non-applicability of the attacks that use local collisions on EDON-R′

by the following discussion. The attacks that use local collisions are applied on hash functions

that have many steps in the phase of their initial message expansion (see for example [31]) and

have generally the following two phases:
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First: Some perturbation is introduced and it is corrected (i.e. the local collision is found).

Second: Perturbation and correction vectors are found, such that the overall difference mask sat-

isfies the message expansion.

EDON-R′ hash function does not have a message expansion part, and does not have many steps

where attacker can find perturbation and correction vectors.

In what follows we are describing the algorithms with complexity O(1) for finding local collisions

for the cases g., h., i., j., and k.

Case g. Finding local collisions for D1:

1. Choose some arbitrary value for D1.

2. Choose two distinct values X3 and X4.

3. Compute X1 = X3 \D1.

4. Compute X2 = X4 \D1.

Case h. Finding local collisions for D3:

1. Choose some arbitrary value for D3.

2. Choose two distinct values D1 and D2.

3. Compute X3 = D1 \D3.

4. Compute X4 = D2 \D3.

5. Compute X1 = X3 \D1.

6. Compute X2 = X4 \D2.

Case i. Finding local collisions for D3:

1. Choose some arbitrary value for D3.

2. Choose two distinct values D1 and D2.

3. Compute X3 = D1 \D3.

4. Compute X4 = D2 \D3.

5. Compute X1 = X3 \D1.

6. Compute X2 = X4 \D2.

Case j. Finding local collisions for D7:

1. Choose some arbitrary value for D7.

2. Choose two distinct values D5 and D6.

3. Compute D3 = D5 \D7.

4. Compute D4 = D6 \D7.

5. Compute D1 = C0 \D5.

6. Compute D2 = C0 \D6.

7. Compute X3 = D1 \D3.

8. Compute X4 = D2 \D4.

9. Compute X1 = X3 \D1.

10. Compute X2 = D4 \D2.
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Case k. Finding local collisions for D11:

1. Choose some arbitrary value for D11.

2. Choose two distinct values D9 and D10.

3. Compute D8 = D10 \D11.

4. Compute D7 = D9 \D11.

5. Compute D5 = C1 \D9.

6. Compute D6 = C1 \D10.

7. Compute D4 = D6 \D8.

8. Compute D3 = D5 \D7.

9. Compute D2 = C0 \D6.

10. Compute D1 = C0 \D5.

11. Compute X4 = D2 \D4.

12. Compute X3 = D1 \D3.

13. Compute X1 = X3 \D1.

14. Compute X2 = D4 \D2.



D14 = D13 ∗D11
D14 = D12 ∗D10
D13 = X1 ∗D9
D12 = X1 ∗D8
D11 = D7 ∗D9
D10 = D6 ∗D8
D9 = D5 ∗ C1
D8 = D4 ∗ C1
D7 = D5 ∗D3
D6 = D4 ∗D3
D5 = C0 ∗D2
D4 = C0 ∗D1
D3 = D2 ∗ X3
D3 = D1 ∗ X2
D2 = X3 ∗ X1
D1 = X2 ∗ X1



D14 = D13 ∗D11
D14 = D12 ∗D10
D13 = X1 ∗D9
D12 = X1 ∗D8
D11 = D7 ∗D9
D10 = D7 ∗D8
D9 = D6 ∗ C1
D8 = D5 ∗ C1
D7 = D6 ∗D4
D7 = D5 ∗D3
D6 = C0 ∗D2
D5 = C0 ∗D1
D4 = D2 ∗ X3
D3 = D1 ∗ X2
D2 = X3 ∗ X1
D1 = X2 ∗ X1



D15 = D14 ∗D12
D15 = D13 ∗D11
D14 = X1 ∗D10
D13 = X1 ∗D9
D12 = D8 ∗D10
D11 = D7 ∗D9
D10 = D6 ∗ C1
D9 = D5 ∗ C1
D8 = D6 ∗D4
D7 = D5 ∗D3
D6 = C0 ∗D2
D5 = C0 ∗D1
D4 = D2 ∗ X3
D3 = D1 ∗ X2
D2 = X3 ∗ X1
D1 = X2 ∗ X1



D14 = D13 ∗D11
D14 = D12 ∗D10
D13 = X2 ∗D9
D12 = X1 ∗D8
D11 = D7 ∗D9
D10 = D7 ∗D8
D9 = D6 ∗ C1
D8 = D5 ∗ C1
D7 = D6 ∗D4
D7 = D5 ∗D3
D6 = C0 ∗D2
D5 = C0 ∗D1
D4 = D2 ∗ X3
D3 = D1 ∗ X3
D2 = X3 ∗ X2
D1 = X3 ∗ X1

a. b. c. d.

Table 3.15: Concrete systems (a. – d.) of quasigroup equations that can give collisions in the

functionR
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

D13 = D12 ∗D11
D12 = X2 ∗D10
D12 = X1 ∗D9
D11 = D8 ∗D10
D11 = D7 ∗D9
D10 = D6 ∗ C1
D9 = D5 ∗ C1
D8 = D6 ∗D4
D7 = D5 ∗D3
D6 = C0 ∗D2
D5 = C0 ∗D1
D4 = D2 ∗ X3
D3 = D1 ∗ X2
D2 = X3 ∗ X2
D1 = X3 ∗ X1



D15 = D14 ∗D12
D15 = D13 ∗D11
D14 = X2 ∗D10
D13 = X1 ∗D9
D12 = D8 ∗D10
D11 = D7 ∗D9
D10 = D6 ∗ C1
D9 = D5 ∗ C1
D8 = D6 ∗D4
D7 = D5 ∗D3
D6 = C0 ∗D2
D5 = C0 ∗D1
D4 = D2 ∗ X3
D3 = D1 ∗ X3
D2 = X3 ∗ X2
D1 = X3 ∗ X1



D12 = D11 ∗D9
D12 = D10 ∗D8
D11 = X2 ∗D7
D10 = X1 ∗D7
D9 = D6 ∗D7
D8 = D5 ∗D7
D7 = D4 ∗ C1
D6 = D4 ∗D3
D5 = D4 ∗D2
D4 = C0 ∗D1
D3 = D1 ∗ X4
D2 = D1 ∗ X3
D1 = X4 ∗ X2
D1 = X3 ∗ X1



D12 = D11 ∗D10
D11 = X2 ∗D9
D11 = X1 ∗D8
D10 = D7 ∗D9
D10 = D6 ∗D8
D9 = D5 ∗ C1
D8 = D4 ∗ C1
D7 = D5 ∗D3
D6 = D4 ∗D3
D5 = C0 ∗ X2
D4 = C0 ∗D1
D3 = D2 ∗ X4
D3 = D1 ∗ X3
D2 = X4 ∗ X2
D1 = X3 ∗ X1

e. f. g. h.

Table 3.16: Concrete systems (e. – h.) of quasigroup equations that can give collisions in the func-

tionR



D14 = D13 ∗D11
D14 = D12 ∗D10
D13 = X2 ∗D9
D12 = X1 ∗D8
D11 = D7 ∗D9
D10 = D6 ∗D8
D9 = D5 ∗ C1
D8 = D4 ∗ C1
D7 = D5 ∗D3
D6 = D4 ∗D3
D5 = C0 ∗D2
D4 = C0 ∗D1
D3 = D2 ∗ X4
D3 = D1 ∗ X3
D2 = X4 ∗ X2
D1 = X3 ∗ X1



D14 = D13 ∗D11
D14 = D12 ∗D10
D13 = X2 ∗D9
D12 = X1 ∗D8
D11 = D7 ∗D9
D10 = D7 ∗D8
D9 = D6 ∗ C1
D8 = D5 ∗ C1
D7 = D6 ∗D4
D7 = D5 ∗D3
D6 = C0 ∗D2
D5 = C0 ∗D1
D4 = D2 ∗ X4
D3 = D1 ∗ X3
D2 = X4 ∗ X2
D1 = X3 ∗ X1



D13 = D12 ∗D11
D12 = X2 ∗D10
D12 = X1 ∗D9
D11 = D8 ∗D10
D11 = D7 ∗D9
D10 = D6 ∗ C1
D9 = D5 ∗ C1
D8 = D6 ∗D4
D7 = D5 ∗D3
D6 = C0 ∗D2
D5 = C0 ∗D1
D4 = D2 ∗ X4
D3 = D1 ∗ X3
D2 = X4 ∗ X2
D1 = X3 ∗ X1



D15 = D14 ∗D12
D15 = D13 ∗D11
D14 = X2 ∗D10
D13 = X1 ∗D9
D12 = D8 ∗D10
D11 = D7 ∗D9
D10 = d6 ∗ C1
D9 = D5 ∗ C1
D8 = D6 ∗D4
D7 = D5 ∗D3
D6 = C0 ∗D2
D5 = C0 ∗D1
D4 = D2 ∗ X4
D3 = D1 ∗ X3
D2 = X4 ∗ X2
D1 = X3 ∗ X1

i. j. k. l.

Table 3.17: Concrete systems (i. – l.) of quasigroup equations that can give collisions in the func-

tionR
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3.12 Used constants in EDON-R′ - avoiding fixed points for the func-

tionR

The compression function of the earlier hash function Edon-R(n) had one known fixed point, since

it was true thatR1(0) = 0, where 0 is the vector of all zero elements.

In order to avoid the existence of some trivial fixed points, in EDON-R′ we are using the constants

0x55555555 and 0xAAAAAAAA for the 224/256 version, and the constants 0x5555555555555555 and

0xAAAAAAAAAAAAAAAA for the 384/512 version in the affine bijective transformations Â1 and Â3.

The reason why we chose these constants is that they are represented as sequences of alternating

0s and 1s. Having this constants in the affine bijective transformations Â1 and Â3 we are not

aware of any point X such that

R(X) = X.

Moreover, examining functions R defined with words of much smaller size w = 2, 3, 4, 5, lead us

to the conclusion that finding fixed points either for the quasigroups of orders 2256 and 2512 (the

case X ∗q X = X) or for the functionR is infeasible.

3.13 Getting all the additions to behave as XORs

Having a functionR defined only by additions modulo 232 or modulo 264, XORs and left rotations,

it is a natural idea to try to find values for which additions inR behave as XORs [32].

In such a case, one would have a completely linear system in the ring (Zn
2 , +,×) for which colli-

sions, preimages and second preimages can easily be found. However, getting all the additions to

behave as XORs is a challenge.

Here we can point out several significant works that are related with analysis of differential prob-

abilities of operations that combine additions modulo 232, XORs and left rotations. In 1993 Berson

has made a differential cryptanalysis of addition modulo 232 and applied it on MD5 [33]. In 2001

Lipmaa and Moriai have constructed efficient algorithms for computing differential properties

of addition modulo 2w (for general values of w) [34], and in 2004 Lipmaa, Wallén and Dumas

have constructed a linear-time algorithm for computing the additive differential probability of

exclusive-or [35].

All of these works are determining the additive differential probability of exclusive-or:

Pr[((x + α)⊕ (y + β))− (x⊕ y) = γ]
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and the exclusive-or differential probability of addition:

Pr[((x⊕ α) + (y⊕ β))⊕ (x + y) = γ]

where probability is computed for all pairs (x, y) ∈ Z2w ×Z2w and for any predetermined triplet

(α, β, γ) ∈ Z2w ×Z2w ×Z2w .

In the case of EDON-R′, instead of simple combination of two w-bit variables (w = 32 or w = 64)

once by additions modulo 2w then by xoring, we have a linear transformation of 8, w-bit variables

described by transformations defined in Definition 5. Additionally, bearing in mind that R :

{0, 1}32w → {0, 1}16w, in this moment we do not see how the results in [35] will help in finding

concrete values of arguments for the functionR for which additions behave as XORs.

3.14 Infeasibility of going backward and infeasibility of finding free

start collisions

Since the compression function in EDON-R′ now is actually the PGV7 scheme we conjecture that

the compression function in EDON-R′ is one-way function and that it is infeasible to find free-start

collisions.

3.15 Statement about the cryptographic strength of EDON-R′

In summary, we can say that the design of EDON-R′ heavily uses combinations of bitwise op-

erations of XORing, rotating and operations of addition in Z232 or in Z264 (which are mutually

nonlinear operations). This strategy, combined with the conjectured one-wayness of the PGV7

compression function and the good differential properties of the underlying quasigroup opera-

tions used inR are the cornerstones of the EDON-R′ strength.

According to all this, we give a statement of the cryptographic strength of EDON-R′ against at-

tacks for finding collisions, preimages, second preimages, the resistance to length-extension at-

tacks, the resistance to multicollision attacks and the provable resistance to differential cryptanal-

ysis which is summarized in Table 3.18. We also formally state that any m-bit hash function spec-

ified by taking a fixed subset of the EDON-R′s output bits meets the properties summarized in

Table 3.18 when n is replaced by m.
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Algorithm

abbreviation

Digest

size

n (in bits)

Work factor for

finding

collision

Work factor for

finding a

preimage

Work factor for finding

a second preimage of a

message shorter than 2k

bits

Resistance to

length-

extension

attacks

Resistance to

multicollision

attacks

Provable

resistance to

differential

cryptanalysis

Edon-R224 224 ≈ 2112 ≈ 2224 ≈ 2224−k Yes Yes Yes

Edon-R256 256 ≈ 2128 ≈ 2256 ≈ 2256−k Yes Yes Yes

Edon-R384 384 ≈ 2192 ≈ 2384 ≈ 2384−k Yes Yes Yes

Edon-R512 512 ≈ 2256 ≈ 2512 ≈ 2512−k Yes Yes Yes

Table 3.18: Cryptographic strength of the EDON-R′

3.16 EDON-R′ support of HMAC

EDON-R′ is an iterative cryptographic hash function. Thus, in combination with a shared secret

key it can be used in the HMAC standard as it is defined in [36–38].

As the cryptographic strength of HMAC depends on the properties of the underlying hash func-

tion, and the conjectured cryptographic strength of EDON-R′ is claimed in the Section 3.15 here

we give a formal statement that EDON-R′ can be securely used with the HMAC.

In what follows we are giving 4 examples for every digest size of 224, 256, 384 and 512 bits.
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Edon-R224-MAC Test Examples

Key:

00010203 04050607 08090A0B 0C0D0E0F 10111213 14151617 18191A1B 1C1D1E1F

20212223 24252627 28292A2B 2C2D2E2F 30313233 34353637 38393A3B 3C3D3E3F

Key_length: 64

Data:

’Sample #1’

Data_length: 9

HMAC:

7D0FD0B4 30B1EF4A 4B681700 48D99A3C 6425EED5 1E481B94 A432574F

Key:

30313233 34353637 38393A3B 3C3D3E3F 40414243

Key_length: 20

Data:

’Sample #2’

Data_length: 9

HMAC:

0AD55358 6BEE0999 4A8A8AFE CE10233B 2C9C4EDD 5086EE58 D255959D

Key:

50515253 54555657 58595A5B 5C5D5E5F 60616263 64656667 68696A6B 6C6D6E6F

70717273 74757677 78797A7B 7C7D7E7F 80818283 84858687 88898A8B 8C8D8E8F

90919293 94959697 98999A9B 9C9D9E9F A0A1A2A3 A4A5A6A7 A8A9AAAB ACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic.’

Data_length: 110

HMAC:

083B6C48 96D03D93 8CDABA61 65BAAAAF 01578A44 5E03EB33 1D904444

Key:

50515253 54555657 58595A5B 5C5D5E5F 60616263 64656667 68696A6B 6C6D6E6F

70717273 74757677 78797A7B 7C7D7E7F 80818283 84858687 88898A8B 8C8D8E8F

90919293 94959697 98999A9B 9C9D9E9F A0A1A2A3 A4A5A6A7 A8A9AAAB ACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic: there is a chance that

a source with no knowledge of the key can present a purported MAC.’

Data_length: 200

HMAC:

B21CC8FF 54C0B949 89EE05B5 0F41FD3C CB3F0839 F8F574CB 2D1541FB

54



CHAPTER 3: DESIGN RATIONALE

Edon-R256-MAC Test Examples

Key:

00010203 04050607 08090A0B 0C0D0E0F 10111213 14151617 18191A1B 1C1D1E1F

20212223 24252627 28292A2B 2C2D2E2F 30313233 34353637 38393A3B 3C3D3E3F

Key_length: 64

Data:

’Sample #1’

Data_length: 9

HMAC:

68CD60E5 4097EE66 F0F047DA 629CD743 160F2440 63195E09 C3621505 E36BAAF3

Key:

30313233 34353637 38393A3B 3C3D3E3F 40414243

Key_length: 20

Data:

’Sample #2’

Data_length: 9

HMAC:

AA0D6BA7 A92EDB00 51C50267 E04B3E2F 646BEFAB 514FA7BB 93425BCD E3A6F385

Key:

50515253 54555657 58595A5B 5C5D5E5F 60616263 64656667 68696A6B 6C6D6E6F

70717273 74757677 78797A7B 7C7D7E7F 80818283 84858687 88898A8B 8C8D8E8F

90919293 94959697 98999A9B 9C9D9E9F A0A1A2A3 A4A5A6A7 A8A9AAAB ACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic.’

Data_length: 110

HMAC:

B546682F 7A36E074 D023B713 83C31D9A BD267F21 677154DA C879C10A F5FFE2EE

Key:

50515253 54555657 58595A5B 5C5D5E5F 60616263 64656667 68696A6B 6C6D6E6F

70717273 74757677 78797A7B 7C7D7E7F 80818283 84858687 88898A8B 8C8D8E8F

90919293 94959697 98999A9B 9C9D9E9F A0A1A2A3 A4A5A6A7 A8A9AAAB ACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic: there is a chance that

a source with no knowledge of the key can present a purported MAC.’

Data_length: 200

HMAC:

7CC32CDE AC30424B 2DAD46CA 8668DB46 320483FB 397B447E 5B850A9F 85DA365D
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Edon-R384-MAC Test Examples

Key:

0001020304050607 08090A0B0C0D0E0F 1011121314151617 18191A1B1C1D1E1F

2021222324252627 28292A2B2C2D2E2F 3031323334353637 38393A3B3C3D3E3F

Key_length: 64

Data:

’Sample #1’

Data_length: 9

HMAC:

59BE76E2114FF25A C773B81CA56BEC8F 4E32BC5C794FC181 1CB6BED8A652512D

032CC9CC250E46B7 BACDB81B16E13990

Key:

3031323334353637 38393A3B3C3D3E3F 40414243

Key_length: 20

Data:

’Sample #2’

Data_length: 9

HMAC:

5270C198B25D0562 E380EFF658424CB7 36EED18F1F510C89 7E4F2599ACA60B8B

1C08764A4D0977A4 C650AC42EC9944AA

Key:

5051525354555657 58595A5B5C5D5E5F 6061626364656667 68696A6B6C6D6E6F

7071727374757677 78797A7B7C7D7E7F 8081828384858687 88898A8B8C8D8E8F

9091929394959697 98999A9B9C9D9E9F A0A1A2A3A4A5A6A7 A8A9AAABACADAEAF

B0B1B2B350515253 5455565758595A5B 5C5D5E5F60616263 6465666768696A6B

6C6D6E6F70717273 7475767778797A7B 7C7D7E7F80818283 8485868788898A8B

8C8D8E8F90919293 9495969798999A9B 9C9D9E9FA0A1A2A3 A4A5A6A7A8A9AAAB

ACADAEAFB0B1B2B3

Key_length: 200

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic.’

Data_length: 110

HMAC:

398D6277400960D9 1DB12436A852FF52 3322647C879FFA0B C1C8EE6127125B6E

0AB5C3EAA34789C4 99A55BBE42EA36E4

Key:

5051525354555657 58595A5B5C5D5E5F 6061626364656667 68696A6B6C6D6E6F

7071727374757677 78797A7B7C7D7E7F 8081828384858687 88898A8B8C8D8E8F

9091929394959697 98999A9B9C9D9E9F A0A1A2A3A4A5A6A7 A8A9AAABACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic: there is a chance that

a source with no knowledge of the key can present a purported MAC.’

Data_length: 200

HMAC:

D69E47C92300C288 76015BE961285AC1 072EC19DA5DF36A2 7ADF131473069ED9

A097EBC3F1DCE1BB D0E10A2AAFF2CBDA
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Edon-R512-MAC Test Examples

Key:

0001020304050607 08090A0B0C0D0E0F 1011121314151617 18191A1B1C1D1E1F

2021222324252627 28292A2B2C2D2E2F 3031323334353637 38393A3B3C3D3E3F

Key_length: 64

Data:

’Sample #1’

Data_length: 9

HMAC:

1546A94D1DBEA41C 5AD7B561BEE1FCFF 4EB9B8B1623F8A56 F9C064733B7938BE

352C84E7D3A2547A D27DEE60D8B8FB91 2F0BA505A56ED725 D8CBFF2B0EFAF50D

Key:

3031323334353637 38393A3B3C3D3E3F 40414243

Key_length: 20

Data:

’Sample #2’

Data_length: 9

HMAC:

B8E83E2BFA0F89CE 4816A5B325B85CBA 6AD6412A14BE3BD6 465FA4F3A510EFB4

6BEC99C036279642 3FB5D8547E1C79FD 5D7B193CC949B574 919DEF16A01B22AF

Key:

5051525354555657 58595A5B5C5D5E5F 6061626364656667 68696A6B6C6D6E6F

7071727374757677 78797A7B7C7D7E7F 8081828384858687 88898A8B8C8D8E8F

9091929394959697 98999A9B9C9D9E9F A0A1A2A3A4A5A6A7 A8A9AAABACADAEAF

B0B1B2B350515253 5455565758595A5B 5C5D5E5F60616263 6465666768696A6B

6C6D6E6F70717273 7475767778797A7B 7C7D7E7F80818283 8485868788898A8B

8C8D8E8F90919293 9495969798999A9B 9C9D9E9FA0A1A2A3 A4A5A6A7A8A9AAAB

ACADAEAFB0B1B2B3

Key_length: 200

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic.’

Data_length: 110

HMAC:

DEDFCB4BA2BB5DC2 6453B09FD289CE10 4113A2977917D4C0 7BAA3638106530D1

9F1114E7EAC287C5 FBD5E014C26C61D4 7A4D864A06C6CCCA BC10B5663B0A27CF

Key:

5051525354555657 58595A5B5C5D5E5F 6061626364656667 68696A6B6C6D6E6F

7071727374757677 78797A7B7C7D7E7F 8081828384858687 88898A8B8C8D8E8F

9091929394959697 98999A9B9C9D9E9F A0A1A2A3A4A5A6A7 A8A9AAABACADAEAF

B0B1B2B3

Key_length: 100

Data:

’The successful verification of a MAC does not completely guarantee

that the accompanying message is authentic: there is a chance that

a source with no knowledge of the key can present a purported MAC.’

Data_length: 200

HMAC:

C80A4065B93B3B80 F02888BF436E12FE B2E27BD761FC9674 3B469E9756EA9577

9FE99BA1D4D5EBCA 4F686593A63C2244 82B1FBFFDA865A1B CFE0DBAF28BD7926

3.17 EDON-R′ support of randomized hashing

EDON-R′ can be used in the randomizing scheme proposed in [39, 40].

3.18 Resistance to SHA-2 attacks

EDON-R′ is designed to have a security strength that is at least as good as the hash algorithms cur-

rently specified in FIPS 180-2, and this security strength is achieved with significantly improved

efficiency. Having in mind the fact that EDON-R′ design differs completely from the design of

SHA-2 family of hash functions, we claim that any possibly successful attack on SHA-2 family of

hash functions is unlikely to be applicable to EDON-R′.
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Estimated Computational Efficiency and

Memory Requirements

4.1 Speed of EDON-R′ on NIST SHA-3 Reference Platform

We have developed and measured the performances of EDON-R′ on a platform with the following

characteristics:

CPU: Intel Core 2 Duo,

Clock speed: 2.4 GHz,

Memory: 4GB RAM,

Operating system: Windows Vista Enterprise 64-bit (x64) Edition with Service Pack 1,

Compiler: ANSI C compiler in the Microsoft Visual Studio 2005 Professional Edition.

Compiler: ANSI C compiler in the Intel C++ v 11.0.072.

For measuring the speed of the hash function expressed as cycles/byte we have used the rdtsc()

function and a modified version of a source code that was given to us by Dr. Brian Gladman from

his optimized realization of SHA-2 hash function [41].

4.1.1 Speed of the Optimized 32–bit version of EDON-R′

In the Table 4.1 we are giving the speed of all four instances of EDON-R′ for the optimized 32–bit

version obtained by Microsoft Visual Studio 2005 Professional Edition.
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Speed in cycles/byte for different lengths

(in bytes) of the digested message.
MD Size 1 10 100 1000 10,000 100,000

224 877.00 87.70 15.37 9.70 9.31 9.29

256 817.00 80.50 14.29 9.70 9.31 9.29

384 2257.00 224.50 22.69 21.13 16.28 15.72

512 2257.00 224.50 22.69 21.05 16.29 15.72

Table 4.1: The performance of optimized 32–bit version of EDON-R′ in machine cycles per data

byte on Intel Core 2 Duo for different hash data lengths, obtained by Microsoft Visual

Studio 2005 Professional Edition.

Speed in cycles/byte for different lengths

(in bytes) of the digested message.
MD Size 1 10 100 1000 10,000 100,000

224 637.00 64.90 10.93 7.08 6.78 6.74

256 601.00 58.90 10.69 7.07 6.78 6.71

384 1537.00 153.70 15.49 13.03 10.96 10.74

512 1537.00 154.90 15.49 12.77 10.93 10.74

Table 4.2: The performance of optimized 32–bit version of EDON-R′ in machine cycles per data

byte on Intel Core 2 Duo for different hash data lengths, obtained by Intel C++ v

11.0.072.

In the Table 4.2 we are giving the speed of all four instances of EDON-R′ for the optimized 32–bit

version obtained by Intel C++ v 11.0.072.

4.1.2 Speed of the Optimized 64–bit version of EDON-R′

In the Table 4.3 we are giving the speed of all four instances of EDON-R′ for the optimized 64–bit

version obtained by Microsoft Visual Studio 2005 Professional Edition.

In the Table 4.4 we are giving the speed of all four instances of EDON-R′ for the optimized 64–bit

version obtained by Intel C++ v 11.0.072.
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Speed in cycles/byte for different lengths

(in bytes) of the digested message.
MD Size 1 10 100 1000 10,000 100,000

224 553.00 56.50 9.37 6.37 6.14 6.06

256 565.00 56.50 9.37 6.35 6.14 6.09

384 637.00 60.10 6.01 3.33 3.13 3.09

512 601.00 60.10 6.01 3.31 3.13 3.09

Table 4.3: The performance of optimized 64–bit version of EDON-R′ in machine cycles per data

byte on Intel Core 2 Duo for different hash data lengths, obtained by Microsoft Visual

Studio 2005 Professional Edition.

Speed in cycles/byte for different lengths

(in bytes) of the digested message.
MD Size 1 10 100 1000 10,000 100,000

224 493.00 49.30 8.53 5.52 4.85 4.90

256 469.00 46.90 8.05 5.13 4.85 4.90

384 505.00 55.30 5.17 2.90 2.72 2.74

512 553.00 51.70 5.17 2.93 2.73 2.74

Table 4.4: The performance of optimized 64–bit version of EDON-R′ in machine cycles per data

byte on Intel Core 2 Duo for different hash data lengths, obtained by Intel C++ v

11.0.072.
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4.2 Memory requirements of EDON-R′ on NIST SHA-3 Reference Plat-

form

When processing the message block M(i) = (M(i)
0 , M(i)

1 , . . . , M(i)
15 ), we need the current value of

the double pipe P(i−1) = (P(i−1)
0 , P(i−1)

1 , . . . , P(i−1)
15 ), the values of the new double pipe – in the

reference source code indexed as P(i) = (P(i)
16 , P(i)

17 , . . . , P(i)
31 ) and 16 temporary variables (in the

reference source code denoted as t0, . . . , t15).

The need of memory is thus:

• 16 words of M(i),

• 32 words of P(i).

• 16 temporary words t0, . . . , t15.

which is in total 64 words. That means that EDON-R′224 and EDON-R′256 use 256 bytes and

EDON-R′384 and EDON-R′512 use 512 bytes.

4.3 Estimates for efficiency and memory requirements on 8-bit proces-

sors

We have used 8-bit Atmel processors ATmega16 and ATmega406 to test the implementation and

performance of the compression function of the two main representatives of the EDON-R′ hash

function: Edon-R256 and Edon-R512. We have used WinAVR – an open source software devel-

opment tools for the Atmel AVR series of RISC microprocessors and for simulation we have used

the AVR Studio v 4.14. In Table 4.5 we are giving the length of the produced executable code and

the speed in number of cycles per byte.

Name
Code size

(.text + .data + .bootloader)

in bytes

Speed

(cycles/byte)
8–bit MCU

Edon-R224/256 6002 616 ATmega16

Edon-R384/512 38798 1857 ATmega406

Table 4.5: The size and the speed of code for the compression functions for Edon-R224/256 and

Edon-R384/512
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From the analysis of the produced executable code we can project that by direct assembler pro-

gramming EDON-R′ can be implemented in less than 3 Kbytes (Edon-R256) and in less than 16

KBytes (Edon-R512) but this claim will have to be confirmed in the forthcoming period during

the NIST competition.

4.4 Estimates for a Compact Hardware Implementation

We are giving the estimates for the compact hardware implementation of the compression function

of EDON-R′ in Table 4.6 having in mind the minimal memory requirements described in Section

4.2. Namely, since for

Name
Estimated gate count for the

needed memory

Estimated gate

count for the

algorithm logic

Estimated minimal

total gate count

Edon-R224/256 12,288 ≈1,000 ≈13,288

Edon-R384/512 24,576 ≈2,000 ≈26,576

Table 4.6: Estimated number of logic gates for realization of the compression functions for Edon-

R224/256 and Edon-R384/512

4.5 Internal Parallelizability of EDON-R′

The design of EDON-R′ allows very high level of parallelization in computation of its compression

function. This parallelism can be achieved by using specifically designed hardware, and indeed

with the advent of multicore CPUs, those parts can be computed in different cores in parallel.

From the specification given below, we claim that EDON-R′ can be computed after 5 "parallel"

steps. Of course those 5 "parallel" steps have different hardware specification and different com-

plexity, but can serve as a general measure of the parallelizability of EDON-R′. The high level

parallel specification of EDON-R′ according to the specification of R given in Table 2.5 is as fol-

lows:

ComputingR(C0, C1, A0, A1)

Step 1: Compute X(1)
0 = A1 ∗A0

Step 2: Compute in parallel:

• X(1)
1 = X(1)

0 ∗A1
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• X(2)
0 = C0 ∗ X(1)

0

Step 3: Compute in parallel:

• X(2)
1 = X(2)

0 ∗ X(1)
1

• X(3)
0 = X(2)

0 ∗ C1

Step 4: Compute in parallel:

• X(3)
1 = X(2)

1 ∗ X(3)
0

• B0 = A0 ∗ X(3)
0

Step 5: Compute B1 = B0 ∗ X(3)
1

Internally, every quasigroup operation X ∗Y can be further parallelized and computed in 4 parallel

steps. The two permutations π2 ≡ Â1 ◦ ROTLr1,m ◦A2 and π3 ≡ Â3 ◦ ROTLr2,m ◦A4 where

m = 32, 64 can be computed in 3 parallel steps, and one step is needed for the mutual xoring.

Those steps are:

Computing Z = X ∗ Y

Step 1: Compute in parallel:

• Temp1 ← Â1(X)

• Temp2 ← Â3(Y)

Step 2: Compute in parallel:

• Temp3 ← ROTLr1,q(Temp1)

• Temp4 ← ROTLr2,q(Temp2)

Step 3: Compute in parallel:

• Temp5 ← A2(Temp3)

• Temp6 ← A4(Temp4)

Step 4: Compute Z = Temp5 ⊕ Temp6

Thus, theoretically we can digest one message block by the compression function of EDON-R′ in

20 parallel steps.
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Statements

5.1 Statement by the Submitter

I, Danilo Gligoroski, do hereby declare that, to the best of my knowledge, the practice of the algo-

rithm, reference implementation, and optimized implementations that I have submitted, known

as EDON-R′, may be covered by the following U.S. and/or foreign patents: NONE.

I do hereby declare that I am aware of no patent applications that may cover the practice of my

submitted algorithm, reference implementation or optimized implementations.

I do hereby understand that my submitted algorithm may not be selected for inclusion in the

Secure Hash Standard. I also understand and agree that after the close of the submission period,

my submission may not be withdrawn from public consideration for SHA-3. I further understand

that I will not receive financial compensation from the U.S. Government for my submission. I

certify that, to the best of my knowledge, I have fully disclosed all patents and patent applications

relating to my algorithm. I also understand that the U.S. Government may, during the course of the

lifetime of the SHS or during the FIPS public review process, modify the algorithm’s specifications

(e.g., to protect against a newly discovered vulnerability). Should my submission be selected for

SHA-3, I hereby agree not to place any restrictions on the use of the algorithm, intending it to be

available on a worldwide, non-exclusive, royalty-free basis.

I do hereby agree to provide the statements required by Sections 5.2 and 5.3, below, for any patent

or patent application identified to cover the practice of my algorithm, reference implementation

or optimized implementations and the right to use such implementations for the purposes of the

SHA-3 evaluation process.

I understand that NIST will announce the selected algorithm(s) and proceed to publish the draft
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FIPS for public comment. If my algorithm (or the derived algorithm) is not selected for SHA-3

(including those that are not selected for the second round of public evaluation), I understand

that all rights, including use rights of the reference and optimized implementations, revert back

to the submitter (and other owner[s, as appropriate). Additionally, should the U.S. Government

not select my algorithm for SHA-3 at the time NIST ends the competition, all rights revert to the

submitter (and other owners as appropriate).

Signed: Danilo Gligoroski

Title:Prof.

Dated: 12 January 2009

Place: Trondheim, Norway
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5.2 Statement by Patent (and Patent Application) Owner(s)

N/A
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5.3 Statement by Reference/Optimized Implementations’ Owner(s)

I, Danilo Gligoroski am the owner of the submitted reference implementation and optimized im-

plementations and hereby grant the U.S. Government and any interested party the right to use

such implementations for the purposes of the SHA-3 evaluation process, notwithstanding that the

implementations may be copyrighted.

Signed: Danilo Gligoroski

Title: Prof.

Dated: 12 January 2009

Place: Trondheim, Norway
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