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Abstract

In the last 7-8 months me and Klima have discovered several deficiencies of narrow-pipe cryptographic
hash designs. It all started with a note to the hash-forum list that narrow-pipe hash functions are
giving outputs that are pretty different than the output that we would expect from a random oracle that
is mapping messages of arbitrary length to hash values of n-bits. Then together with Klima we have
investigated the consequences of that aberration to some practical protocols for key derivation that are
using iterative and repetitive calls to a hash function. Finally, during the third SHA-3 conference I have
shown that narrow-pipe hash functions cannot offer n-bits of security against the length-extension attack
(a requirement that NIST has put as one of the conditions for the SHA-3 competition). In this paper
we collect in one place and explain in details all these problems with narrow-pipe hash designs and we
explain why wide-pipe hash functions such as Blue Midnight Wish do not suffer from the mentioned
deficiencies.

1 Introduction

The importance of cryptographic functions with arbitrary input-length have been confirmed and re-
confirmed numerous times in hundreds of scenarios in information security. The most important proper-
ties that these functions have to have are collision-resistance, preimage-resistance and second-preimage
resistance. However, several additional properties such as multi-collision resistance, being pseudo-random
function, or being a secure MAC, are also considered important.

All practical cryptographic hash function constructions have iterative design and they use a supposed (or
conjectured to be close to) ideal finite-input random function (called compression function) C : {0, 1}m →
{0, 1}l where m > l, and then the domain of the function C is extended to the domain {0, 1}∗ in some
predefined iterative chaining manner.1

The way how the domain extension is defined reflects directly to the properties that the whole crypto-
graphic function has. For example domain extension done by the well known Merkle-Damg̊ard construc-
tion transfers the collision-resistance of the compression function to the extended function. However,
as it was shown in recent years, some other properties of this design clearly show non-random behavior
(such as length-extension vulnerability, vulnerability on multi-collisions e.t.c.).

1The infinite domain {0, 1}∗ in all practical implementations of cryptographic hash functions such as SHA-1 or SHA-2 or

the next SHA-3 is replaced by some huge practically defined finite domain such as the domain D =
⋃maxbitlength

i=0 {0, 1}i,
where maxbitlength = 264 − 1 or maxbitlength = 2128 − 1.



The random oracle model has been proposed to be used in cryptography in 1993 by Bellare and Rogaway
[1]. Although it has been shown that there exist some bogus and impractical (but mathematically correct)
protocols that are provably secure under the random oracle model, but are completely insecure when the
ideal random function is instantiated by any concretely designed hash function [2], in the cryptographic
practice the random oracle model gained a lot of popularity. It has gained that popularity during all these
years, by the simple fact that protocols proved secure in the random oracle model when instantiated by
concrete “good” cryptographic hash functions, are sound and secure and broadly employed in practice.

In a series of 4 notes [9, 10, 11, 12] we have shown that four of the SHA-3 second round candidates: BLAKE
[4], Hamsi [5], SHAvite-3 [6] and Skein [7] and the current standard SHA-2 [8], act pretty differently than

an ideal random function H : D → {0, 1}n where D =
⋃maxbitlength
i=0 {0, 1}i and “maxbitlength” is

the maximal bit length specified for the concrete functions i.e. 264 − 1 bits for BLAKE-32, Hamsi,
SHAvite-3-256 and SHA-256, 2128 − 1 bits for BLAKE-64, SHAvite-3-512 and SHA-512 and 299 − 8 bits
for Skein.

2 Some basic mathematical facts for ideal random functions

We will discuss the properties of ideal random functions over finite and infinite domains.2 More concretely
we will pay our attention for:

Finite narrow domain: Ideal random functions C : X → Y mapping the domain of n-bit strings
X = {0, 1}n to itself i.e. to the domain Y = {0, 1}n, where n > 1 is a natural number;

Finite wide domain: Ideal random functions W : X → Y mapping the domain of n + m-bit strings
X = {0, 1}n+m to the domain Y = {0, 1}n, where m ≥ n;

Proposition 1.. ([9]) Let FC be the family of all functions C : X → Y and let for every y ∈ Y ,
C−1(y) ⊆ X be the set of preimages of y i.e. C−1(y) = {x ∈ X | C(x) = y}. For a function C ∈ FC chosen
uniformly at random and for every y ∈ Y the probability that the set C−1(y) is empty is approximately
e−1 i.e.

Pr{C−1(y) = ∅} ≈ e−1. (1)

�

Corollary 1.. ([9]) If the function C ∈ FC is chosen uniformly at random, then there exists a set
Y C∅ ⊆ Y such that for every y ∈ Y C∅ , C−1(y) = ∅ and

|Y C∅ | ≈ e−1|Y | ≈ 0.36|Y |.

�

Proposition 2.. ([9]) Let FW be the family of all functions W : X → Y where X = {0, 1}n+m and
Y = {0, 1}n. Let for every y ∈ Y , W−1(y) ⊆ X be the set of preimages of y i.e. W−1(y) = {x ∈
X |W (x) = y}. For a function W ∈ FW chosen uniformly at random and for every y ∈ Y the probability
that the set W−1(y) is empty is approximately e−2

m

i.e.

Pr{C−1(y) = ∅} ≈ e−2
m

. (2)

�

In what follows for the sake of clarity we will work on bit-strings of length which is multiple of n. Namely
we will be interested on strings M = M1|| . . . ||Mi where every |Mj | = n, j = 1, . . . , i. Further, we will
be interested in practical constructions of cryptographic hash functions that achieve a domain extension
from a narrow-domain to the full infinite domain. We will need the following Lemma:

2The infinite domain {0, 1}∗ in all practical implementations of cryptographic hash functions such as SHA-1 or SHA-2 or

the next SHA-3 is replaced by some huge practically defined finite domain such as the domain D =
⋃maxbitlength

i=0 {0, 1}i,
where maxbitlength = 264 − 1 or maxbitlength = 2128 − 1.



Lemma 1.. ([9]) Let FCν be a countable family of functions Cν : X → Y, ν ∈ N and let C : X → Y
is one particular function, where Cν and C are chosen uniformly at random. Let us have a function
Rule : N× Y → FCν that chooses some particular random function from the family FCν according to a

given index and a value from Y . If we define a function H : ({0, 1}n)
i → Y that maps the finite strings

M = M1|| . . . ||Mi to the set of n-bit strings Y = {0, 1}n as a cascade of functions:

H(M) = H(M1|| . . . ||Mi) = CRule(1,IV )(M1) ◦ CRule(2,CRule(1,IV )(M1))(M2)◦
◦ · · · ◦
◦ CRule(i,CRule(i−1,·)(Mi−1))(Mi)◦
◦ C

(3)

then for every y ∈ Y the probability that the set H−1(y) is empty is approximately e−1. �

Proposition 3.. ([10]) Let C1 : X → Y, C2 : X → Y are two particular functions, chosen uniformly at
random (where X = Y = {0, 1}n). If we define a function C : X → Y as a composition:

C = C1 ◦ C2 (4)

then for every y ∈ Y the probability P2 that the set C−1(y) is empty is P2 = e−1+e
−1

.

Proof: We can use the same technique used in the proof of Proposition 1 in [9] but extended to two
domains (i.e. one intermediate domain Z) since we have a composition of two functions. Thus let us put
the following notation:

C ≡ C1 ◦ C2 : X
C1−→ Z

C2−→ Y

From Proposition 1 it follows that for every z ∈ Z the probability that the set C−11 (z) is empty is
approximately e−1 i.e. the probability that z has a preimage is (1− Pr{C−11 (z) = ∅}) = (1− e−1).

Now, for the probability that the set C−1(y) is empty (for every y ∈ Y ) we have:

Pr{C−1(y) = ∅} =

(
1− 1

2n

)2n(1−Pr{C−1
1 (y)=∅})

≈ e−1+e
−1

.

�

Lemma 2.. ([10]) C1, C2, . . . Ck : X → Y are k particular (not necessary different) functions, chosen
uniformly at random (where X = Y = {0, 1}n). If we define a function C : X → Y as a composition:

C = C1 ◦ C2 ◦ . . . ◦ Ck (5)

then for every y ∈ Y the probability Pk that the set C−1(y) is empty is approximately Pk = e−1+Pk−1 ,
where P1 = e−1.

Proof: The lemma can be proved by using mathematical induction for the value of k and the Proposition
3.. �

The Lemma 2. models the probability of some element in Y to have a preimage if we apply consecutively
different random functions defined over the same narrow domain {0, 1}n. Is the sequence Pk convergent?
If yes, what is the limit value and what is the speed of the convergence?

In this paper we will give answers on these questions, but we have to stress that the mathematical proofs
for some of those answers will be given elsewhere.3, 4

Lemma 3.. ([10]) Let P1 = e−1 and Pk = e−1+Pk−1 . Then the following limit holds:

lim
i→∞

(log2(1− P2i) + i− 1) = 0 (6)

3In the initial version of this paper the Lemma 3. was given as a Conjecture, but in the mean time Zoran Šunić from the
Department of Mathematics, Texas A&M University, USA has proven it for which we express him an acknowledgement.

4After reading our first version of the paper submited to the eprint archive, we got an email from Ernst Schulte-Geers
from the German BSI for which we express him an acknowledgement, pointing out that in fact Lemma 3. was known long
time ago from the paper of Flajolet and Odlyzko [19].



As a direct consequence of Lemma 3. is the following Corollary:

Corollary 2.. ([10]) The entropy E(C(X)) of the set C(X) = {C(x) | x ∈ X}, where the function C is
a composition of 2i functions mapping the domain {0, 1}n to itself, as defined in (5) is:

E(C(X)) = n+ log2(1− P2i) (7)

�

The last corollary can be interpreted in the following way: With every consecutive mapping of a narrow
domain {0, 1}n to itself by any random function defined on that domain, the volume of the resulting
image is shrinking. The speed of the shrinking is exponentially slow i.e. for shrinking the original volume
2n of X = {0, 1}n to an image set with a volume of 2n−i+1 elements, we will need to define a composition
of 2i functions i.e.,

C = C1 ◦ C2 ◦ . . . ◦ C2i .

3 Details how BLAKE, Hamsi, SHAvite-3, Skein and SHA-2
aberrate from ideal random functions

3.1 The case of the cryptographic function BLAKE

Let us analyze the iterated procedure defined in BLAKE-32 (and the case for BLAKE-64 is similar).
First, a message M is properly padded:

M ←M ||1000 . . . 0001〈l64〉

and then is parsed into N , 512-bit chunks:

M ≡ m0, . . . ,mN−1.

The variable li is defined as a number of processed bits so far. We quote the description of the padding
from [4]:

For example, if the original (non-padded) message is 600-bit long, then the padded message
has two blocks, and l0 = 512, l1 = 600. A particular case occurs when the last block contains
no original message bit; for example a 1020-bit message leads to a padded message with
three blocks (which contain respectively 512, 508, and 0 message bits), and we set l0 = 512,
l1 = 1020, l2 = 0.

Now, let us take that we want to hash just 1020-bit long messages M with BLAKE-32 (the size of 1020 is
chosen to fit the example in the original documentation, but it can be also 1024, or any multiple of 512,
which is a common action if BLAKE-32 would be used as a PRF or KDF hashing a pool of randomness
that is exactly multiple of 512 bits). The iterative procedure will be:

h0 = IV

for i = 0, . . . , 2

hi+1 = compress(hi,mi, s, li)

return h3

or equivalently:

BLAKE-32(M) = compress(compress(compress(h0,m0, s, 512),m1, s, 1020),m2, s, 0).

Note that m2 = const does not have any bit from the original 1020-bit message M . So, we have that the
final 256-bit hash value that is computed is:

BLAKE-32(M) = compress(h2, const, s, 0).



If we suppose that the compression function of BLAKE-32 is ideal, from the Proposition 1. and Lemma
1. we get that there is a huge set Y∅ ⊆ {0, 1}256, with a volume |Y∅| ≈ 0.36× 2256 ≈ 2254.55 i.e.

Pr{BLAKE-32−1(M) = ∅} = e−1.

On the other hand, for an ideal random function W : {0, 1}1020 → {0, 1}256 from Proposition 2. we have
that

Pr{W−1(M) = ∅} = e−2
764

.

3.2 The case of the cryptographic function Hamsi

Let us analyze the iterated procedure defined in Hamsi-256 (and the case for Hamsi-512 is similar). Let
M be a properly padded message i.e.

M = M1|| . . .Ml−1||Ml,

where the last block Ml does not contain message bits but the 64-bit encoding of the length in bits of
the original message M i.e. we have that Ml = 〈l64〉.
Let us hash messages M of length 1024-bits. Then the padded message will have 35 blocks of 32-bits and
will have the following form:

M = M1|| . . .M32||1000 . . . 000||000 . . . 000||00000000000000000000010000000000

The iterative procedure for hashing these messages will be:

hi = (T ◦ P ◦ C(E(Mi), hi−1))⊕ hi−1, h0 = iv256, 0 < i < 35,

Hamsi-256(M) = (T ◦ Pf ◦ C(E(Ml), hl−1))⊕ hl−1

For the precise definition of the variables used in the iterative process see the Hamsi documentation [5].

From the definition of Hamsi-256 it is obvious that it can act at most as an ideal random function with
narrow-domain, but obviously the last call of the compression function for messages of length 1024 bits
has no message bits, thus the deviance from an ideal function that maps 1024 bits to 256-bit digest is
huge as it is shown in Proposition 1., Proposition 2. and Lemma 1..

3.3 The case of the cryptographic function SHAvite-3

We will analyze 256-bit version of SHAvite-3, SHAvite-3-256 (and the 512-bit version is similar). It uses
the HAsh Iterative FrAmework - HAIFA. Hashing with HAIFA has three steps:

1. Message padding, according to the HAIFA padding scheme.

2. Compressing the message using a HAIFA-compatible compression function.

3. Truncating the output to the required length.

Since we will work with 256-bit version of SHAvite-3, the third truncating step will be omitted (which is
crucial for our analysis).

We give here the description of the hashing by SHAvite-3 extracted from the documentation in [6]:

The compression is done using a compression function with four inputs:

• A chaining value (of length mc),

• A message block (of length n),

• The number of bits hashed so far including the current block (a counter of length c),

• A salt (of length s).

In order to compute HAIFACsalt(M) using the compression function C : {0, 1}mc × {0, 1}n × {0, 1}b ×
{0, 1}s 7→ 0, 1mc the message is first padded, and divided into l blocks of n bits each, pad(M) =
M1||M2|| . . . ||Ml Now, the user:



1. Sets h0 as the initial value (according to the procedure defined in Section 3.3).

2. Computes iteratively
hi = C(hi−1,Mi,#bits, salt).

3. Truncates hl (according to the procedure defined in Section 3.3).

4. Output the truncated value as HAIFACsalt(M).

The padding rule in SHAvite-3 works to pad the original message such that it is multiple of n bits where
n = 512 for SHAvite-3-256 or n = 1024 for SHAvite-3-256. The padding of a message M has the following
steps:

1. Pad with a single bit of 1.

2. Pad with as many 0 bits as needed such that the length of the padded message (with the 1 bit and
the 0s) is congruent modulo n to (n− (t+ r)).

3. Pad with the message length encoded in t bits.

4. Pad with the digest length encoded in r bits.

When a full padding block is added (i.e., the entire original message was already processed by the previous
calls to the compression function, and the full message length was already used as an input to the previous
call as the #bits parameter), the compression function is called with the #bits parameter set to zero.

So, let us hash messages M that are 1024-bits long (this analysis works with messages that are multiple
of 512 or 1024 bits) with SHAvite-3-256. The padded message M is:

pad(M) = M1||M2||M3,

where the final padding block M3 does not have any message bits and the truncation phase is omitted.
Thus,

SHAvite-3-256(M) = HAIFACsalt(M) = C(C(C(h0,M1, 512, salt),M2, 1024, salt),M3, 0, salt).

Since the final padding block M3 does not have any message bits, for messages of length 1024 bits, we
can treat it as M3 = const and

SHAvite-3-256(M) = HAIFACsalt(M) = C(h2, const, 0, salt).

This is exactly the case that is covered by the Proposition 1. (or Lemma 1.). Under the assumption that
SHAvite-3-256 compression function acts as ideal finite-narrow-domain random function that maps 256
bits to 256 bits, we conclude that SHAvite-3-256(M) differs significantly from an ideal finite-wide-domain
random function that maps strings of 1024 bits to hash values of 256 bits.

3.4 The case of the cryptographic function Skein

The subject of this analysis are the variants Skein-256-256 and Skein-512-512 (which according to the
documentation is the primary proposal of the designers [7]). It is an interesting fact that the designs
Skein-512-256 and Skein-1024-512 which are double-pipe designs are not suffering from the defects of
narrow-pipe compression functions that are extended to the infinite domain and are not affected by this
analysis.

The main point of our analysis of Skein-256-256 and Skein-512-512 is the fact that Skein is using a final
invocation of UBI (Unique Block Iteration) without an input by any message bits. Namely it uses the
output function Output(G,N0) which takes as parameters the final chaining value G and the number of
required output bits N0. The output is simple run of the UBI function in a counter mode:

O := UBI(G,ToBytes(0, 8), Tout2
120)||

UBI(G,ToBytes(1, 8), Tout2
120)||

UBI(G,ToBytes(2, 8), Tout2
120)||

. . .



Now let us use Skein-256-256 (the case for Skein-512-512 is similar). In that case the chaining value G has
256 bits, and the UBI() is called only once. We can treat that one call of UBI() as a finite-narrow-domain
mapping that maps 256 bits of G to 256 bits of O. Thus, from the point of view of Proposition 1. and
Proposition 2. we have a clear difference between an ideal function that maps the huge domain D into
the set {0, 1}256 and the function of Skein-256-256. Namely, under the assumption that UBI() acts as an
ideal finite-narrow-domain function, from Proposition 1. and Lemma 1. we have that there exist a huge
set Y∅ ⊆ {0, 1}256, with a volume |Y∅| ≈ 0.36× 2256 ≈ 2254.55 i.e.

Pr{Skein-256-256−1(M) = ∅} = e−1.

3.5 The case of SHA-2

Let us analyze the iterated procedure defined in SHA-256 (and the case for SHA-512 is similar)[8]. First,
a message M is properly padded:

M ←M ||1000 . . . 000〈l64〉

where the 64-bit variable 〈l64〉 is defined as the length of the original message M in bits. Then the padded
message is parsed into N , 512-bit chunks:

M ≡ m0, . . . ,mN−1.

The iterative procedure for hashing the message M then is defined as:

h0 = IV

for i = 0, . . . , N − 1

hi+1 = CompressSHA256(hi,mi)

return hN

where CompressSHA256() is the compression function for SHA-256.

Now, let us hash messages that are extracted from some pool of randomness with a size of 1024 bits. The
padding procedure will make the final block that would be compressed by the CompressSHA256() to
be always the same i.e. to be the following block of 512 bits:

1000 . . . 00010000000000︸ ︷︷ ︸
512 bits

If we suppose that the compression function CompressSHA256() is ideal, from the Proposition 1. and
Lemma 1. we get that there is a huge set Y∅ ⊆ {0, 1}256, with a volume |Y∅| ≈ 0.36× 2256 i.e.

Pr{SHA-256−1(M) = ∅} = e−1.

On the other hand, for an ideal random function W : {0, 1}1024 → {0, 1}256 from Proposition 2. we have
that

Pr{W−1(M) = ∅} = e−2
768

≈ 0.

4 Practical consequences of the observed defects of the narrow-
pipe designs

We point out several concrete protocols that are widely used and where the observed abberations of
narrow-pipe hash designs from the ideal random function will be amplified due to the iterative use of
hash functions in those protocols.



4.1 Reduced entropy outputs from narrow-pipe hash functions

The first practical consequence is by direct application of the Lemma 2..

Let us consider the following scenario: We are using some hash function that gives us 256 bits of output,
and we have a pool of randomness of a size of 220 blocks (where the block size is the size of message blocks
used in the compression function of that hash function). The pool is constantly updated by actions from
the user and from the running operating system. We need random numbers obtained from that pool that
will have preferably close to 256 bits of entropy.

If we use narrow-pipe hash design, then depending on the nature of the distribution of the entropy in
the randomness pool, we can obtain outputs that can have outputs with entropy as low as 237 bits or
outputs with entropy close to 256 bits.

More concretely, if the distribution of the entropy in the pool is somehow concentrated in the first block
(or in the first few blocks), then from the Lemma 2. we have that the entropy of the output will not
be 256 bits but “just” slightly more than 237 bits. We say “just” because having 237 bits of entropy is
really high enough value for any practical use, but it is much smaller than the requested value of 256
bits of entropy. In a case of more uniform distribution of the entropy in the whole pool of randomness,
the narrow-pipe hash design will give us outputs with entropies close to 256 bits. The cases where due
to different reasons (users habits, user laziness, regularity of actions in the operating system, to name
some), the pool is feeded with randomness that is concentrated more on some specific blocks, the outputs
will have entropy between 237 and 256 bits.

On the other hand, we want to emphasize, if in all this scenarios we use wide-pipe hash design, the
outputs will always have close to 256 bits of entropy, regardless where the distribution of the entropy in
the pool will be.

From this perspective, we can say that although the consequences can be just of theoretical interest,
there are real and practical scenarios where the abberation of narrow-pipe hash design from ideal random
functions can be amplified to some more significant and theoretically visible level.

4.2 Reduced entropy outputs from HMACs produced by narrow-pipe hash
functions

HMAC [13] is one very popular scheme for computing MAC - Message Authentication Codes when a
shared secret is used by the parties in the communication. We are interested in a possible loss of entropy
in the HMAC construction if we use narrow-pipe hash constructions.

Proposition 4.. ([10]) Let a message M be of a size of 256 bits and has a full entropy of 256 and let
“secret” is shared secret of 256 bits. If in HMAC construction we use a narrow-pipe hash function that
parses the hashed messages in 512 blocks, then mac = HMAC(secret,M) has an entropy of 254.58 bits.

Proof: Let we use the hash function SHA256 that has the compression function CompressSHA256().
From the definition of HMAC we have that

mac = HMAC(secret,M) = hash((secret⊕ opad)||hash((secret⊕ ipad)||M))

where ⊕ is the operation of bitwise xoring and || is the operation of string concatenation.

Computing of mac will use four calls of the compression function CompressSHA256() in the following
sequence:

1. h1 = CompressSHA256(iv256, (secret⊕ ipad)) ≡ C1(iv256)

2. h2 = CompressSHA256(h1,M ||CONST256) ≡ C2(h1), where

CONST256 = 1000 . . . 001000000000︸ ︷︷ ︸
256 bits

.

3. h3 = CompressSHA256(iv256, (secret⊕ opad)) ≡ C3(iv256)

4. mac = h4 = CompressSHA256(h3, h2||CONST256) ≡ C4(h3)



For a fixed secret key “secret” the value h1 will be always the same and will be obtained with C1(iv256).
The function C2 depends from the message M that has a full entropy of 256 bits, thus C2 is not one
function but it represent a whole class of 2256 random functions mapping 256 bits to 256 bits. Thus, we
can consider that any call of the function C2 decreases the entropy of h2 to 256 + log2(1− P1).

For the value h3 we have a similar situation as for h1. Similarly as C2(), the function C4() is a class of
random functions that depends of the value h2. Since we have already determined that the entropy of
h2 is 256 + log2(1− P1), it follows that for computing the entropy of mac we can apply the Corollary 2.
obtaining that entropy E(mac) is

E(mac) = 256 + log2(1− P2),

where P1 = 1
e , and P2 = e−1+

1
e which gives us the value E(mac) = 254.58. �

What is the difference if we use a double-pipe hash function instead of narrow-pipe in Proposition 4.?
The first difference is off course the fact that the initialization variable in the compression function as
well as the intermediate variables h1, h2, h3 and h4 are 512 bits long, and we will need final chopping.
Then, under the assumption that the compression function acts as ideal random function mapping 512
bits to 512 bits, and having the entropy of the message M to be 256, we have that the entropy of h2 is
also 256 (not 256 + log2(1 − P1)). The same applies for the entropy of h4 which will give us that the
entropy of mac after the chopping will be 256 bits.

Proposition 5.. ([10]) Let a message M be of a size of 512 bits and has a full entropy of 512 and let
“secret” is shared secret of 256 bits. If in HMAC construction we use a narrow-pipe hash function that
parses the hashed messages in 512 blocks, then mac = HMAC(secret,M) has an entropy of 254.58 bits.

Proof: Let we use the hash function SHA256 that has the compression function CompressSHA256().
From the definition of HMAC we have that

mac = HMAC(secret,M) = hash((secret⊕ opad)||hash((secret⊕ ipad)||M))

where ⊕ is the operation of bitwise xoring and || is the operation of string concatenation.

Computing of mac will use five calls of the compression function CompressSHA256() in the following
sequence:

1. h1 = CompressSHA256(iv256, (secret⊕ ipad)) ≡ C1(iv256)

2. h2 = CompressSHA256(h1,M) ≡ C2(h1)

3. h3 = CompressSHA256(h2, CONST512) ≡ C3(h2), where

CONST512 = 1000 . . . 0001100000000︸ ︷︷ ︸
512 bits

.

4. h4 = CompressSHA256(iv256, (secret⊕ opad)) ≡ C4(iv256)

5. mac = h5 = CompressSHA256(h4, h3||CONST256) ≡ C5(h4), where

CONST256 = 1000 . . . 000100000000︸ ︷︷ ︸
256 bits

.

Above, we consider the call of the function CompressSHA256(iv256, (secret ⊕ ipad)) as a call to an
ideal random function C1 : {0, 1}256 → {0, 1}256 that will map the 256-bit value iv256 to the 256-bit
value h1. The function C2 is a specific one. Actually, since it depends from the message M that has a
full entropy of 512 bits, C2 is not one function but it represent a whole class of 2512 random functions
mapping 256 bits to 256 bits. Thus, we can consider that there is no entropy loss for h2 i.e. it has a full
entropy of 256 bits.

For the value h3 we start to consider the entropy loss again from the value 256. The call to the function
C3 will decrease the entropy of h3 to 256+log2(1−P1). For a fixed secret key “secret” the value h4 will be
always the same and will be mapped with C5(h4) to the final value mac. Similarly as C2(), the function
C5() is a class of random functions that depends of the value h3. Since we have already determined that



the entropy of h3 is 256 + log2(1 − P1), it follows that for computing the entropy of mac we can apply
the Corollary 2. obtaining that entropy E(mac) is

E(mac) = 256 + log2(1− P2),

where P1 = 1
e , and P2 = e−1+

1
e which gives us the value E(mac) = 254.58. �

Again, if we are interested to know what will happen if we use a double-pipe hash function in the
Proposition 5., we can say that the entropy of the 512-bit variable h3 will start to decrease from the value
512 and will be 512 + log2(1− P1), and the entropy of h5 will be 512 + log2(1− P2), that after the final
chopping will give us a mac with full entropy of 256.

4.3 Loss of entropy in the pseudo-random function of SSL/TLS 1.2

SSL/TLS 1.2 is one very popular suit of cryptographic algorithms, tools and protocols defined in [14]. Its
pseudo-random function PRF which is producing pseudo-random values based on a shared secret value
“secret”, a seed value “seed” (and by an optional variable called “label”) is defined as follows:

PRF (secret, label, seed) = P<hash>(secret, label || seed), (8)

where the function P<hash>(secret, seed) is defined as:

P<hash>(secret, seed) = HMAC<hash>(secret, A(1) || seed) ||
HMAC<hash>(secret, A(2) || seed) || (9)

HMAC<hash>(secret, A(3) || seed) ||
. . .

and where A(i) are defined as:

A(0) = seed

A(i) = HMAC<hash>(secret, A(i− 1)). (10)

Proposition 6.. ([10]) Let “secret” is shared secret of 256 bits. The entropy E(A(i)) of the i-th value
A(i) as defined in the equation (10) for the hash function SHA-256 can be computed with the following
expression:

E(A(i)) = 256 + log2(1− P2i) (11)

where the values P2i are defined recursively in the Lemma 2..

Proof: We can use the same technique described in the previous subsection and in the proof of Propo-
sition 4.. Since we have two volume compressive calls of the compression function, and since the compu-
tation of A(i) depends on the value of the previous value A(i− 1) in the computation of A(i) we have 2i
times shrinking of the entropy. �

As a direct consequence of the previous Proposition we have the following:

Corollary 3.. ([10]) Let the size of “A(i) || seed” is 512 bits, and let “secret” is shared secret of 256
bits. For the i-th part PRFi = HMACSHA−256(secret, A(i) || seed) as defined in the equation (9) the
entropy E(PRFi) can be computed with the following expression:

E(PRFi) = E(PRFi) = 256 + log2(1− P2i+3) (12)

Proof: Computing of PRFi will use five calls of the compression function CompressSHA256() in the
following sequence:

1. h1 = CompressSHA256(iv256, (secret⊕ ipad)) ≡ C1(iv256)

2. h2 = CompressSHA256(h1, A(i) || seed) ≡ C2(h1)

3. h3 = CompressSHA256(h2, CONST1024) ≡ C3(h2), where

CONST1024 = 1000 . . . 0010000000000︸ ︷︷ ︸
512 bits

.



4. h4 = CompressSHA256(iv256, (secret⊕ opad)) ≡ C4(iv256)

5. PRFi = h5 = CompressSHA256(h4, h3||CONST256) ≡ C5(h4), where

CONST256 = 1000 . . . 000100000000︸ ︷︷ ︸
256 bits

.

Similarly as in Proposition 5. we can see that the function C2 is a specific one since it depends from
A(i) || seed. For a given and fixed seed, the entropy of “A(i) || seed” is the entropy of A(i) and from
Proposition 6., it is E(A(i)) = 256 + log2(1 − P2i) bits. From here it follows that the entropy of h2 is
E(h2) = 256 + log2(1− P2i+1).

For the value h3 we further have E(h2) = 256 + log2(1−P2i+2). For a fixed secret key “secret” the value
h4 will be always the same and will be mapped with C5(h4) to the final value PRFi, with an entropy

E(PRFi) = 256 + log2(1− P2i+3).

�

For illustration we can say that the entropy of E(PRF1) = 253.463, but the entropy of E(PRF60) =
250.00.

On the other hand, having in mind the discussions about the different attitude of double-pipe hash
function in used HMACs, it is clear that with double-pipe hash designs we will not face this kind of
entropy loss.

5 “Faster” collision attack on narrow-pipe hash designs

As pointed to us in a private message by Bart Preneel, the “faster” collision attack is very well known
in the context of MAC algorithms since there it makes much more sense to evaluate attacks in terms of
number of chosen texts rather than in terms of number of compression function calls. That was a concern
in the design of Message Authenticator Algorithm (MAA) by Davies and Clayden in the 1980s [15] and
is described in details in Preneel’s PhD thesis [16] (together with an analysis of the effect). This very
same observation was used in the Crypto’95 paper of Paul van Oorschot and Preneel [17] to reduce the
number of queries to find a MAC collision and hence a forgery for non-injective MAC functions (for a
fixed message block).

Although it is straightforward to conclude that this same observation applies to hash functions, from
the point of view of the SHA-3 competition, it is worth to note that there are candidates (wide-pipe
candidates) that are not affected by this observation.

In this section we will use the following notation:

• C(h,m) - a compression function C with chaining variable h and message block variable m.

• hlen - the length of the chaining variable, i. e. the length of compression function output.

• mlen - the length of the message block.

• hashlen - the length of the hash function output.

If the compression function has the property, that for every value m the function C(h,m) ≡ Cm(h) is an
ideal random function of the variable h, we denote it as IRF (h).

If the compression function has the property, that for every value h the function C(h,m) ≡ Ch(m) is an
ideal random function of the variable m, we denote it as IRF (m).

The hash function is defined by a narrow-pipe compression function (NPCF), iff hashlen = hlen = mlen
2

and the compression function is IRF (h) and IRF (m).

The hash function is defined by a wide-pipe compression function (WPCF), iff hashlen = hlen
2 = mlen

2
and the compression function is IRF (h) and IRF (m).

Theorem 1.. ([11]) Suppose that the hash function H : {0, 1}∗ → {0, 1}n is defined by a narrow-pipe
compression function C : {0, 1}n × {0, 1}mlen → {0, 1}n. Then we can find a collision (M,M ′) for the
hash function H using much less than 2n/2 calls to the hash function H (the lower bound of the birthday
paradox).



Proof: For the sake of simplicity, let us suppose n = hashlen = 256. The general case is analogous. In
this case, the hashed message is padded and divided into 512-bit blocks. Let us suppose that a message
M (for instance the content of a hard disk or a RAM memory) is divided into two parts A and B, i.e.
M = A||B, where the part A consist of just one message block of 512 bits, and the number of 512-bit
blocks in the part B is N = 235 (in case of current 2TByte HDD). Let us denote by hA the intermediate
chaining value, obtained after hashing the part A of the message M and let us suppose that the content
of the part B is never changing - so it consists of constant message blocks const1, const2, . . ., constN .
We compute the final hash with the following iterative procedure:

h1 = C(hA, const1)
h2 = C(h1, const2)
h3 = C(h2, const3)

. . .
hN = C(hN−1, constN )

H(M) = hN

If the compression function C is IRF (h), then the chaining values are loosing the entropy in every of the
N steps above. From Corollary 3[10] we obtain that the entropy of the final hash hN is equal to

E(hash) = hashlen+ 1− log2(N),

and for N = 235 it gives
E(hash) = 222.

If we compute hash values for 2111 different parts A (whereas the part B remains unchanged), we will
obtain 2111 hash values hN . According to the birthday paradox it is sufficient for finding a collision in the
set of these values with probability around 1

2 . Cryptographically strong hash function H should require
approximately 2128 hash computations. �

Corollary 4.. ([11]) For hash functions H() constructed as in Theorem 1., finding a pair of colliding
messages (M,M ′) that are long N = 2k blocks, can be done with O(2n/2−k/2) calls to the hash function
H(). �

Note 1: If we count the number of calls to the compression function C(Hi,Mi), then with our collision
strategy we are calling actually more times the compression function. Namely, 2111× 235 = 2145. So, our
finding does not reduces the n

2 bits of collision security that narrow-pipe functions are declaring, but we
clearly show that narrow-pipe designs have a property when we count the calls to the hash function as a
whole, the birthday paradox bound of 2n/2 calls to the hash function is clearly lowered.

Note 2: This technique is not applicable to wide-pipe hash functions because the entropy reduction after
applying the compression function C(Hi,Mi) to different message blocks starts from the value hlen which
is two times bigger than hashlen i.e. hlen = 2hashlen. So the final reduction from hlen to hashlen bits
will make the technique described in this note ineffective against wide-pipe designs.

6 Length extension attack on narrow-pipe SHA-3 candidates

In their call for the SHA-3 competition [3], NIST has defined several security requirements such as collision
resistance of n

2 bits, preimage resistance of n bits, resistance against second preimages of 2n−k bits for
messages long 2k bits and resistance against length-extension attack. However, in the SHA-3 call there is
no clear statement how many bits of security should SHA-3 candidates provide against length extension
attack.

On my request for clarification submitted to the SHA-3 hash forum list on 12 December 2008, I got the
following answer by the NIST representative submitted to the hash forum list on 14 January 2009:

“We expect the winning n-bit hash function to be able to provide n bits of security against
length extension attacks. That is, given H(M), with M wholly or partially unknown to the
attacker: the cost of finding (Z, x) so that x = H(M ||Z) should be greater than or equal to
either the cost of guessing M or 2n times the cost of computing a typical hash compression
function.”



In this section we will show that four SHA-3 candidates that are narrow-pipe designs do not provide n
bits of security.

6.1 A generic modeling of the narrow-pipe iterative finalization

In order to launch a length-extension attack to the narrow-pipe designs we will need to model the
finalization of the iterative process that narrow-pipe designs do when they are processing messages.
Moreover, we will assume that the length of the digested messages is such that the final processed block
does not have any bits from the message but is a constant PADDING that consist only from the bits
defined by the padding rule of that hash function.

In that case, the modeling of the narrow-pipe hash designs can be expressed by the following expression:

H = f(parameters, compress(Hchain, parameters, PADDING)) (13)

and is graphically described in Figure 1.

Figure 1: A graphic representation of narrow-pipe hash designs finalization of the iterative process of
message digestion.

Note that in the narrow-pipe designs where the final function f() is missing, we can treat it as the identity
function in the expression (13) and that although the parts parameters are different for all four designs,
it will not change our analysis and our attack.

How narrow-pipe designs are protected from the length-extension attack?

Since the designers of narrow-pipe hash functions are designing the compression function as one-way
pseudo-random function, the value Hchain, which is the internal state of the hash function, is hidden
from the attacker. That means that by just knowing the final hash value H it is infeasible for the
attacker to find the preimage Hchain that has produced that value H. Consequently, the attacker will
have a difficulty to produce a message Z such that only by knowing the value H (where H = Hash(M)
and the message M is unknown to the attacker), he/she can produce a valid hash value x = Hash(M ||Z).

In what follows our goal will be to show that the attacker can recover that internal state Hchain with
much less complexity than 2n calls to the compression function - the complexity that NIST requires in
order to claim that the design is offering n bits of security against the length-extension attack.



A generic length-extension attack on narrow-pipe hash functions

1. One time pre-computation phase

Step 0. Fix the length of the messages such that the PADDING block does
not posses any message bits.

Step 1. Produce 2k pairs (hchain, h) for random values hchain with the ex-
pression:
h = f(parameters, compress(hchain, parameters, PADDING)).
This phase has a complexity of 2k calls to the compression function (or
2k+1 calls if the design has a final transformation f()).

2. Query (attack) phase

Step 2. Ask the user to produce a hash value H(M) where M is unknown
(but its length is fixed in Step 0).

Step 3. If there exists a pre-computed pair (h′chain, h
′) such that H(M) =

H = h′, put Hchain = h′chain, put whatever message block Z and
produce a valid x = H(M ||Z).

Table 1: A generic length-extension attack on narrow-pipe hash functions

6.2 The attack

Our attack is based on the old Merkle’s observation [18] that when an adversary is given 2k distinct
target hashes, (second) preimages can be found after hashing about 2n−k messages, instead of expected
2n different messages. In our attack we use the Merkle’s observation not on the whole hash function, but
on the two final invocations of the compression function. In order our attack to work, we will assume that
the length of the messages is such that after the padding, the final padded block is without any message
bits (which is usual situation when the length of the message is a multiple of 256, 512 or 1024 bits).

A generic description of the length-extension attack on narrow-pipe hash functions is given in Table 1.

Proposition 7.. ([12]) The probability that the condition in Step 3 is true is 1
2n−k .

Proof: The proof is a trivial application of the ratio between the volume of the pre-computed pairs
(hchain, h) which has a value 2k and the volume of all possible hash values of n bits which is 2n. �

Proposition 8.. ([12]) For the conditional probability that the corresponding h′chain is the actual chain-
ing value Hchain the following relation holds:

P (Hchain = h′chain | H(M) = h′) ≥ 0.58× 2k−n ≈ 2k−n−0.780961. (14)

Proof: (Sketch) It is sufficient to notice that for an ideal random function g : {0, 1}n → {0, 1}n that
maps n bits to n bits, the probability that an n-bit value has m preimages for the first 8 values of m is
approximately given in the Table 2 (the precise analytical expressions for the given probabilities can be
a nice exercise in the Elementary Probability courses).

Number of
preimages m Probability P

0 0.36787
1 0.36787
2 0.18394
3 0.06131
4 0.01533
5 0.00307
6 0.00051
7 0.00007

Table 2: The probabilities an n bit value to have m preimages for an ideal random function g : {0, 1}n →
{0, 1}n.

The relation (14) follows directly from Proposition 7. and from Table 2. �



Corollary 5.. ([12]) After approximately 2n−k+0.780961 queries the attacker should expect one successful
length extension. �

Corollary 6.. ([12]) The security of narrow-pipe hash designs is upper bounded by the following values:

max(2
n
2 , 2n−k+0.780961), (15)

where k ≤ n.

Proof: The minimal number of calls to the compression function of the narrow-pipe for which the attack
can be successful is achieved approximately for n

2 . �

The interpretation of the Corollary 6. is that narrow-pipe hash designs do not offer n bits of security
against length-extension attack but just n

2 bits of security.

6.3 Why wide-pipe designs are resistant to our attack?

A natural question is raising about the security of wide-pipe hash designs and their resistance against
the described length-extension attack. The reason of the success of our attack is the narrow size of just
n bits of the hidden value Hchain that our attack is managing to recover with a generic collision search
technique.

Since in the wide-pipe hash designs that internal state of the hash function has at least 2n bits, the search
for the internal collisions would need at least 2n calls to the compression function which is actually the
value that NIST needs for the resistance against the length-extension attack.

7 Narrow-pipe designs break another NIST requirements

There is one more inconvenience with narrow-pipe hash designs that directly breaks one of the NIST
requirements for SHA-3 hash competition [3]. Namely, one of the NIST requirement is: “NIST also
desires that the SHA-3 hash functions will be designed so that a possibly successful attack on the SHA-2
hash functions is unlikely to be applicable to SHA-3.”

Now, from all previously stated in this paper it is clear that if an attack is launched
exploiting narrow-pipe weakness of SHA-2 hash functions, then that attack can be directly
used also against narrow-pipe SHA-3 candidates.

8 Conclusions and future cryptanalysis directions

We have shown that narrow-pipe designs differ significantly from ideal random functions defined over huge
domains. The first consequence from this is that they can not be used as an instantiation in security
proofs based on random oracle model.

Several other consequences are also evident such as entropy loss in numerous algorithms and protocols
such as HMAC and SSL, the possibility to find “faster” collisions in less than 2

n
2 calls to hash function

and the length-extension security of “just” n
2 bits.

All these properties of the narrow-pipe hash functions make them a no-match from security point of view
to the wide-pipe hash designs.
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