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Abstract

In the SHA-3 competition 4 candidates in the second round are narrow-pipe
designs. Those are: BLAKE, Hamsi, SHAvite-3 and Skein. In this paper we
show that there exist many concrete cases when these functions differ signifi-
cantly from ideal random functions H : {0, 1}N → {0, 1}n that map bit strings
from a big domain where N = n + m, m ≥ n (n = 256 or n = 512). Our
observation is simple: For an ideal random function with a big domain space
{0, 1}N and a finite co-domain space Y = {0, 1}n, for every element y ∈ Y ,
the probability Pr{H−1(y) = ∅} ≈ e−2m ≈ 0 where H−1(y) ⊆ {0, 1}N and
H−1(y) = {x | H(x) = y} (in words - the probability that elements of Y
are “unreachable” is negligible). However, for the aforementioned hash func-
tions, for certain values of N (the values that are causing the last padded block
that will be processed by the compression function of these functions to have
no message bits), there exists a huge non-empty subset Y∅ ⊆ Y with a volume
|Y∅| ≈ e−1|Y | ≈ 0.36|Y | for which it is true that for every y ∈ Y∅, H−1(y) = ∅.

This observation shows that these functions differ a lot from an ideal random
functions with big domains {0, 1}N , N = n + m, m ≥ n, and they can not be
used as a concrete instantiation in any protocol that proves its security using
the random oracle model.

1 Introduction

The importance of cryptographic functions with arbitrary input-length have been
confirmed and re-confirmed numerous times in hundreds of scenarios in information
security. The most important properties that these functions have to have are
collision-resistance, preimage-resistance and second-preimage resistance. However,
several additional properties such as multi-collision resistance, being pseudo-random
function, or being a secure MAC, are also considered important.

All practical cryptographic hash function constructions have iterative design
and they use a supposed (or conjectured to be close to) ideal finite-input random
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function (called compression function) C : {0, 1}m → {0, 1}l where m > l, and then
the domain of the function C is extended to the domain {0, 1}∗ in some predefined
iterative chaining manner.1

The way how the domain extension is defined reflects directly to the properties
that the whole cryptographic function has. For example domain extension done by
the well known Merkle-Damg̊ard construction transfers the collision-resistance of
the compression function to the extended function. However, as it was shown in
recent years, some other properties of this design clearly show non-random behavior
(such as length-extension vulnerability, vulnerability on multi-collisions e.t.c.).

The random oracle model has been proposed to be used in cryptography in 1993
by Bellare and Rogaway [1]. Although it has been shown that there exist some
bogus and impractical (but mathematically correct) protocols that are provably se-
cure under the random oracle model, but are completely insecure when the ideal
random function is instantiated by any concretely designed hash function [2], in
the cryptographic practice the random oracle model gained a lot of popularity. It
has gained that popularity during all these years, by the simple fact that protocols
proved secure in the random oracle model when instantiated by concrete “good”
cryptographic hash functions, are sound and secure and broadly employed in prac-
tice.

In this note we show that four of the SHA-3 [3] second round candidates: BLAKE
[4], Hamsi [5], SHAvite-3 [6] and Skein [7] act pretty differently than an ideal random

function H : D → {0, 1}n where D =
⋃maxbitlength

i=0 {0, 1}i and “maxbitlength”
is the maximal bit length specified for the concrete functions i.e. 264 − 1 bits for
BLAKE-32, Hamsi, and SHAvite-3-256, 2128−1 bits for BLAKE-64 and SHAvite-3-
512 and 299− 8 bits for Skein. All our claims and proofs are of “existential” nature.
Namely we show their deviance from an ideal random function with existential
proofs, not by any concrete design of sets of elements that have abnormal non-
random behavior. Thus, we are not disproving the security claims for these functions
(collision resistance, preimage and second preimage resistance), but we clearly put
them in a category of cryptographic hash functions that can not replace the ideal
random function in the security proofs based on the random oracle model.

2 Some basic mathematical facts for ideal random func-
tions

We will discuss the properties of ideal random functions over finite and infinite
domains.1 More concretely we will pay our attention for:

1The infinite domain {0, 1}∗ in all practical implementations of cryptographic hash functions
such as SHA-1 or SHA-2 or the next SHA-3 is replaced by some huge practically defined fi-

nite domain such as the domain D =
⋃maxbitlength

i=0 {0, 1}i, where maxbitlength = 264 − 1 or
maxbitlength = 2128 − 1.

2



Finite narrow domain: Ideal random functions C : X → Y mapping the domain
of n-bit strings X = {0, 1}n to itself i.e. to the domain Y = {0, 1}n, where
n > 1 is a natural number;

Finite wide domain: Ideal random functions W : X → Y mapping the domain
of n + m-bit strings X = {0, 1}n+m to the domain Y = {0, 1}n, where m ≥ n;

Proposition 1 Let FC be the family of all functions C : X → Y and let for every
y ∈ Y , C−1(y) ⊆ X be the set of preimages of y i.e. C−1(y) = {x ∈ X | C(x) = y}.
For a function C ∈ FC chosen uniformly at random and for every y ∈ Y the
probability that the set C−1(y) is empty is approximately e−1 i.e.

Pr{C−1(y) = ∅} ≈ e−1. (1)

Proof: We can look the function C as a table

C ≡





C(0) = C0

C(1) = C1
...

C(2n−1) = C2n−1 .

Since we take the function C ∈ FC to be chosen uniformly at random, we can
consider the process of the definition of its table as a random process

C(i) ← U2−n(i)

where U2−n(i) is a uniformly distributed function over the interval of values {0, 1, . . . , 2n−1}
i.e.

Pr{U2−n(i) = j | i, j ∈ {0, 1, . . . , 2n−1}} =
1
2n

.

Now, for every y ∈ Y , Pr{C−1(y) = ∅} is equal to the probability for any
i ∈ {0, 1, . . . , 2n − 1}, i 6∈ {Cj | j = 0, 1, . . . , 2n − 1} i.e. we want the opposite event

U2−n(i) 6= j

which has a probability

1− 1
2n

to appear 2n times. From here it follows:

Pr{C−1(y) = ∅} =
(

1− 1
2n

)2n

≈ e−1.

¤
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Corollary 1 If the function C ∈ FC is chosen uniformly at random, then there
exists a set Y C

∅ ⊆ Y such that for every y ∈ Y C
∅ , C−1(y) = ∅ and

|Y C
∅ | ≈ e−1|Y | ≈ 0.36|Y |

.

Proposition 2 Let FW be the family of all functions W : X → Y where X =
{0, 1}n+m and Y = {0, 1}n. Let for every y ∈ Y , W−1(y) ⊆ X be the set of
preimages of y i.e. W−1(y) = {x ∈ X | W (x) = y}. For a function W ∈ FW

chosen uniformly at random and for every y ∈ Y the probability that the set W−1(y)
is empty is approximately e−2m

i.e.

Pr{C−1(y) = ∅} ≈ e−2m
. (2)

Proof: We can repeat the proof technique used in previous case, but now the
number of elements in the table that would define W is 2n+m. From there would
follow that

Pr{C−1(y) = ∅} =
(

1− 1
2n

)2n+m

=

((
1− 1

2n

)2n
)2m

≈ e−2m
.

¤
In what follows for the sake of clarity we will work on bit-strings of length

which is multiple of n. Namely we will be interested on strings M = M1|| . . . ||Mi

where every |Mj | = n, j = 1, . . . , i. Further, we will be interested in practical
constructions of cryptographic hash functions that achieve a domain extension from
a narrow-domain to the full infinite domain. We will need the following Lemma:

Lemma 1 Let FCν be a countable family of functions Cν : X → Y, ν ∈ N and let
C : X → Y is one particular function, where Cν and C are chosen uniformly at
random. Let us have a function Rule : N × Y → FCν that chooses some particular
random function from the family FCν according to a given index and a value from
Y . If we define a function H : ({0, 1}n)i → Y that maps the finite strings M =
M1|| . . . ||Mi to the set of n-bit strings Y = {0, 1}n as a cascade of functions:

H(M) = H(M1|| . . . ||Mi) = CRule(1,IV )(M1) ◦ CRule(2,CRule(1,IV )(M1))(M2)◦
◦ · · · ◦
◦ CRule(i,CRule(i−1,·)(Mi−1))(Mi)◦
◦ C

(3)

then for every y ∈ Y the probability that the set H−1(y) is empty is approximately
e−1.
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Proof: What this Lemma claims is that it does not matter what type of clever
chaining rule someone will use in the domain extension definition, as long as there is
a final invocation of a function C : X → Y which employment is independent from
the content of the message M and that is mapping a narrow domain of n-bit strings
X = {0, 1}n to itself i.e. to the domain Y = {0, 1}n. Then, using the Proposition 1
the proof follows. ¤

3 The case of the cryptographic function BLAKE

Let us analyze the iterated procedure defined in BLAKE-32 (and the case for
BLAKE-64 is similar). First, a message M is properly padded:

M ← M ||1000 . . . 0001〈l64〉

and then is parsed into N , 512-bit chunks:

M ≡ m0, . . . , mN−1.

The variable li is defined as a number of processed bits so far. We quote the
description of the padding from [4]:

For example, if the original (non-padded) message is 600-bit long, then
the padded message has two blocks, and l0 = 512, l1 = 600. A particular
case occurs when the last block contains no original message bit; for
example a 1020-bit message leads to a padded message with three blocks
(which contain respectively 512, 508, and 0 message bits), and we set
l0 = 512, l1 = 1020, l2 = 0.

Now, let us take that we want to hash just 1020-bit long messages M with
BLAKE-32 (the size of 1020 is chosen to fit the example in the original documen-
tation, but it can be also 1024, or any multiple of 512, which is a common action if
BLAKE-32 would be used as a PRF or KDF hashing a pool of randomness that is
exactly multiple of 512 bits). The iterative procedure will be:

h0 = IV

for i = 0, . . . , 2

hi+1 = compress(hi,mi, s, li)

return h2

or equivalently:

BLAKE-32(M) = compress(compress(compress(h0,m0, s, 512), m1, s, 1020),m2, s, 0).
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Note that m2 = const does not have any bit from the original 1020-bit message
M . So, we have that the final 256-bit hash value that is computed is:

BLAKE-32(M) = compress(h1, const, s, 0).

If we suppose that the compression function of BLAKE-32 is ideal, from the Propo-
sition 1 and Lemma 1 we get that there is a huge set Y∅ ⊆ {0, 1}256, with a volume
|Y∅| ≈ 0.36× 2256 ≈ 2254.55 i.e.

Pr{BLAKE-32−1(M) = ∅} = e−1.

On the other hand, for an ideal random function W : {0, 1}1020 → {0, 1}256 from
Proposition 2 we have that

Pr{W−1(M) = ∅} = e−2764
.

4 The case of the cryptographic function Hamsi

Let us analyze the iterated procedure defined in Hamsi-256 (and the case for Hamsi-
512 is similar). Let M be a properly padded message i.e.

M = M1|| . . . Ml−1||Ml,

where the last block Ml does not contain message bits but the 64-bit encoding of
the length in bits of the original message M i.e. we have that Ml = 〈l64〉.

Let us hash messages M of length 1024-bits. Then the padded message will have
35 blocks of 32-bits and will have the following form:

M = M1|| . . . M32||1000 . . . 000||000 . . . 000||00000000000000000000010000000000

The iterative procedure for hashing these messages will be:

hi = (T ◦ P ◦ C(E(Mi), hi−1))⊕ hi−1, h0 = iv256, 0 < i < 35,

Hamsi-256(M) = (T ◦ Pf ◦ C(E(Ml), hl−1))⊕ hl−1

For the precise definition of the variables used in the iterative process see the
Hamsi documentation [5].

From the definition of Hamsi-256 it is obvious that it can act at most as an ideal
random function with narrow-domain, but obviously the last call of the compression
function for messages of length 1024 bits has no message bits, thus the deviance
from an ideal function that maps 1024 bits to 256-bit digest is huge as it is shown
in Proposition 1, Proposition 2 and Lemma 1.
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5 The case of the cryptographic function SHAvite-3

We will analyze 256-bit version of SHAvite-3, SHAvite-3256 (and the 512-bit version
is similar). It uses the HAsh Iterative FrAmework - HAIFA. Hashing with HAIFA
has three steps:

1. Message padding, according to the HAIFA padding scheme.

2. Compressing the message using a HAIFA-compatible compression function.

3. Truncating the output to the required length.

Since we will work with 256-bit version of SHAvite-3, the third truncating step
will be omitted (which is crucial for our analysis).

We give here the description of the hashing by SHAvite-3 extracted from the
documentation in [6]:

The compression is done using a compression function with four inputs:

• A chaining value (of length mc),

• A message block (of length n),

• The number of bits hashed so far including the current block (a counter of
length c),

• A salt (of length s).

In order to compute HAIFAC
salt(M) using the compression function C : {0, 1}mc×

{0, 1}n × {0, 1}b × {0, 1}s 7→ 0, 1mc the message is first padded, and divided into l
blocks of n bits each, pad(M) = M1||M2|| . . . ||Ml Now, the user:

1. Sets h0 as the initial value (according to the procedure defined in Section 3.3).

2. Computes iteratively

hi = C(hi−1,Mi, #bits, salt).

3. Truncates hl (according to the procedure defined in Section 3.3).

4. Output the truncated value as HAIFAC
salt(M).

The padding rule in SHAvite-3 works to pad the original message such that it is
multiple of n bits where n = 512 for SHAvite-3-256 or n = 1024 for SHAvite-3-256.
The padding of a message M has the following steps:

1. Pad with a single bit of 1.

2. Pad with as many 0 bits as needed such that the length of the padded message
(with the 1 bit and the 0s) is congruent modulo n to (n− (t + r)).
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3. Pad with the message length encoded in t bits.

4. Pad with the digest length encoded in r bits.

When a full padding block is added (i.e., the entire original message was already
processed by the previous calls to the compression function, and the full message
length was already used as an input to the previous call as the #bits parameter),
the compression function is called with the #bits parameter set to zero.

So, let us hash messages M that are 1024-bits long (this analysis works with
messages that are multiple of 512 or 1024 bits) with SHAvite-3-256. The padded
message M is:

pad(M) = M1||M2||M3,

where the final padding block M3 does not have any message bits and the truncation
phase is omitted. Thus,

SHAvite-3-256(M) = HAIFAC
salt(M) = C(C(C(h0,M1, 512, salt),M2, 1024, salt),M3, 0, salt).

Since the final padding block M3 does not have any message bits, for messages
of length 1024 bits, we can treat it as M3 = const and

SHAvite-3-256(M) = HAIFAC
salt(M) = C(h2, const, 0, salt).

This is exactly the case that is covered by the Proposition 1 (or Lemma 1).
Under the assumption that SHAvite-3-256 compression function acts as ideal finite-
narrow-domain random function that maps 256 bits to 256 bits, we conclude that
SHAvite-3-256(M) differs significantly from an ideal finite-wide-domain random
function that maps strings of 1024 bits to hash values of 256 bits.

6 The case of the cryptographic function Skein

The subject of this analysis are the variants Skein-256-256 and Skein-512-512 (which
according to the documentation is the primary proposal of the designers [7]). It is an
interesting fact that the designs Skein-512-256 and Skein-1024-512 which are double-
pipe designs are not suffering from the defects of narrow-pipe compression functions
that are extended to the infinite domain and are not affected by this analysis.

The main point of our analysis of Skein-256-256 and Skein-512-512 is the fact
that Skein is using a final invocation of UBI (Unique Block Iteration) without an
input by any message bits. Namely it uses the output function Output(G,N0) which
takes as parameters the final chaining value G and the number of required output
bits N0. The output is simple run of the UBI function in a counter mode:

O := UBI(G,ToBytes(0, 8), Tout2120)||
UBI(G,ToBytes(1, 8), Tout2120)||
UBI(G,ToBytes(2, 8), Tout2120)||
. . .
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Now let us use Skein-256-256 (the case for Skain-512-512 is similar). In that
case the chaining value G has 256 bits, and the UBI() is called only once. We
can treat that one call of UBI() as a finite-narrow-domain mapping that maps 256
bits of G to 256 bits of O. Thus, from the point of view of Proposition 1 and
Proposition ?? we have a clear difference between an ideal function that maps the
huge domain D into the set {0, 1}256 and the function of Skein-256-256. Namely,
under the assumption that UBI() acts as an ideal finite-narrow-domain function,
from Proposition 1 and Lemma 1 we have that there exist a huge set Y∅ ⊆ {0, 1}256,
with a volume |Y∅| ≈ 0.36× 2256 ≈ 2254.55 i.e.

Pr{Skein-256-256−1(M) = ∅} = e−1.

7 Practical consequences of the observed defects of the
narrow-pipe designs

We have mentioned that our findings are of “existential” nature i.e. our proofs
are not constructional and we are not giving a procedure that will allocate the
unreachable set Y∅.

An immediate conclusion can be that in the second preimage attack, if one is
given as challenge a message whose length implies that the last block processed
by the iterated hash consists only of padding bits, then the generic search runs in
0.632 ∗ 2n instead of 2n (eg, 2255.34 for 256-bit hashes).

However, the observed defect can be more devastating in some other cases. For
example, if we are using the aforementioned hash functions in HMAC where authen-
ticated messages are such that the last block processed by the iterated hash consists
only of padding bits, then the volume of the “unreachable” set from the HMAC
output grows up to ≈ 53%. We note that this is not the case for the double-pipe
hash designs.

We are sure that very soon after publishing of this paper, a close look at the con-
sequences of the observed defect of these functions will follow by the cryptographic
community.

8 Conclusions and future cryptanalysis directions

We have shown that four narrow-pipe SHA-3 candidates differ significantly from
ideal random functions defined over huge domains. The first consequence from this
is that they can not be used as an instantiation in security proofs based on random
oracle model.

Several other consequences are also evident but will require further careful in-
vestigation and elaboration and we leave them as directions for future cryptanalysis.
Namely, any use of these functions as PRFs or KDFs or MACs (or HMACs) will
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result in outputs that from theoretical point of view differ significantly from out-
puts of ideal random functions defined over huge domains. Practical consequences
of that non-random behavior in numerous algorithms and protocols are yet to be
determined.
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