
Information Flow Analysis of Component-Structured Applications

Peter Herrmann
University of Dortmund, Computer Science Department, 44221 Dortmund, Germany

Peter.Herrmann@cs.uni-dortmund.de

Abstract

Software component technology facilitates the cost-
effective development of specialized applications. Never-
theless, due to the high number of principals involved in a
component-structured system, it introduces special security
problems which have to be tackled by a thorough security
analysis. In particular, the diversity and complexity of infor-
mation flows between components hold the danger of leak-
ing information. Since information flow analysis, however,
tends to be expensive and error-prone, we apply our object-
oriented security analysis and modeling approach. It em-
ploys UML-based object-oriented modeling techniques and
graph rewriting in order to make the analysis easier and to
assure its quality even for large systems. Information flow
is modeled based on Myers’ and Liskov’s decentralized la-
bel model combining label-based read access policy mod-
els and declassification of information with static analysis.
We report on the principles of information flow analysis of
component-based systems, clarify its application by means
of an example, and outline the corresponding tool-support.

1. Introduction

Due to the increasing deployment of information tech-
nology in enterprises, information system security is getting
more and more important. In order to guarantee secure and
reliable operation, a security model is designed identifying
relevant principals, components, attributes, functions, and
component interactions for a class of systems on a relatively
abstract level. Based on a model a system-specific security
policy� is defined for a particular system enforcing certain
security services which provide objectives concerning con-
fidentiality, integrity, availability, and accountability [2].

In order to apply suitable security services for an existing
or newly designed information system, it has to undergo a

�This term should not be confused with the term “organizational se-
curity policy” describing a management’s security strategy for protecting
assets.

security analysis. Here, the system is audited for vulnerabil-
ities, threats, and risks. Based on the audit results effective
safeguards are selected, designed, and configured. A secu-
rity analysis, however, is mostly expensive and laborious.
Due to the complexity of modern IT systems, the audit has
to be performed by well-trained experts. Moreover, system
users often require that the analysis considers extensive rec-
ommendations and standards in order to guarantee certain
security levels (e.g., UK Government recommends the use
of the security method CRAMM for systems employed in
government departments). Furthermore, one has to be con-
stantly aware of changing system threats requiring a new
security analysis in regular intervals.

A survey of security analysis approaches is provided
in [6]. Typically, an audit comprises a possibly iterated se-
ries of phases concerning the following subtasks:

1. Identification of the system, its components, and the
related principals,

2. valuation of the assets contained in the system and def-
inition of the security objectives,

3. identification of vulnerabilities and threats,

4. assessment of resulting risks,

5. planning, design, and evaluation of suitable counter-
measures.

To reduce the expense of a security analysis, abstract mod-
els of the systems as well as of the security-related require-
ments are developed recently (cf. [6]). The system model
forms the basis for the introduction of problem solutions
which are described by model modifications. Finally, the
abstract solutions are refined to implementable countermea-
sures.

Our object-oriented security analysis approach [18] ap-
plies abstract modeling, model-based analysis, and logical
transformation. Unlike some other approaches (e.g., [5, 11,
24, 26]) it uses object-oriented techniques and graph rewrit-
ing to facilitate the subtasks and to enable automation. The
corresponding tool-support is similar to object-oriented de-
sign tools which are well established in the field of software
engineering (e.g., [37, 43]). In fact, it re-uses the graph edit-
ing framework of the Argo project [43].

The tool supports the interactive design of graphical sys-
tem models in form of class and object diagrams as they
are defined in the well-known Unified Modeling Language
(UML) [10]. The first two subtasks (i.e., system model-
ing, asset valuation, and objective definition) are supported
by libraries of predefined object classes which model sys-
tem component types. By multiple inheritance the classes
can be associated in order to support separation of concern.
Moreover, the classes define basic attributes and methods
for automated analysis and evaluation.

The remaining three subtasks of a security analysis are
performed in a highly automated fashion by application of
graph rewrite systems (e.g., [4]). A rewrite system consists
of a set of graph rewrite rules. Each rule is a tuple of two
graph patterns — a pre-pattern and a post-pattern —, an ap-
plication condition, and an effect function. The rule can be
applied to a graph if the graph contains a subgraph which
is an instance of its pre-pattern. Moreover, the object at-
tributes in the subgraph have to fulfill the application con-
dition. By application of the rule the subgraph is replaced
by an instance of the post-pattern. The attributes of the re-
placement objects are set according to the effect function.

In our approach a separate rewrite system is defined for
each subtask. For instance, the rules of the rewrite sys-
tem for vulnerability identification contains pre-patterns de-
scribing IT system scenarios which come along with certain
vulnerabilities for the systems. The corresponding post-
patterns describe the scenario augmented by special objects
representing vulnerabilities and threats on the scenario el-
ements. Thus, by application of these rules the graphical
system model can be provided by vulnerability and threat
representations. Likewise, by the other graph rewrite sys-
tems one can augment the model by suitable risk and safe-
guard representations.

By provision of different sets of class libraries and
rewrite systems one can facilitate security analysis in var-
ious application domains. A first domain specific real-
ization [20] allows analysis of applications based on the
middleware platform CORBA [34] which will be audited
and protected according to the CORBA security specifica-
tion [35].

This paper is centered on the domain of component-
structured systems. We will introduce the use of our se-
curity analysis approach for analyzing information flow be-
tween software components. As a basis we use the decen-
tralized label model of Myers and Liskov [30, 31, 32] which
is well-suited to our work. In contrast to other information
flow approaches it facilitates the checks at design time in-
stead of run-time which makes it feasible to security analy-
sis which is performed at design time as well.

In the sequel we will give a short introduction into
component-structured software and outline its major secu-
rity aspects. Thereafter we will sketch the decentralized la-

bel model and our security analysis approach. Afterwards,
we will introduce the application of our approach for in-
formation flow analysis of component-structured systems.
Finally, an example application will be discussed.

2. Component Security

Applications coupled from software components (cf.
e.g., [42]) get more and more popular since their creation is
quite easy and cost-effective and they can be tailored to the
particular needs of their customers. Moreover, component-
based software can easily be extended and modified by
changing components and their coupling dynamically. The
components are supplied by different developers and of-
fered on an open market. The application designer selects
and configures suitable components — probably from var-
ious sources — and couples them to the target application.
The combination process utilizes the concept of explicit
contracts. A contract is legally binding and describes the
agreed properties of a component, especially its interface,
its operations, and the relation with its environment. More-
over, component coupling is comforted by rich run-time
support like special component methods providing reflec-
tion and introspection [40] (i.e., the exploration of compo-
nent properties, methods, and interfaces at run-time). Fur-
thermore, coupling is facilitated by scripting languages or
visual application builder tools. One can also realize dis-
tributed component-structured systems. Here, components
are executed on remote hosts and can be booked as com-
munication services. Platforms for component-structured
software comprise Java Beans [40], COM/DCOM [29], and
the CORBA Component Model [33].

Component-structured systems, however, impose new
security aspects since in comparison with ordinary dis-
tributed object-oriented systems more principals and roles
are involved. Besides users and application owners, one has
to consider also component vendors, remote host providers,
and application builders. These new principals introduce
new types of threats since, generally, they cannot trust each
other to full extent. In particular, a malicious component
may spoil security objectives of the whole application if
it, for instance, secretly lacks data to principals who have
not the privilege to read them. Therefore, like other appli-
cations the security of component-structured systems has
to recognize the definition of user classes and roles, the
authentication of users, and access control. Since com-
ponents may be coupled via networks, services for secure
communication must be enforced as well. Moreover, dis-
tributed components are executed on different hosts. As
the host and application owners not necessarily trust each
other, components have to be protected against malicious
host environments and vice versa (cf. [13, 23]). Similarly,
application owners and component vendors have to be pro-

tected against each others, too. An application has to be
safeguarded against malicious components which may vi-
olate the integrity of the application and its resources, the
confidentiality and availability of the managed information
and supported operation, and the accountability of the per-
formed actions. In contrast, a component vendor has to be
protected against wrong accusations due to spite of appli-
cation administrators, malicious surrounding components,
and host malfunctions. Moreover, the vendor needs protec-
tion against unlicensed use of components.

The corresponding security model identifies various
roles like users, resource owners, application owners, and
component vendors. Objects in the model comprise soft-
ware components, component interfaces, resources, host
environments, and communication facilities. Associations
between objects express the configuration of components to
an application and the contribution of a component to the
functionality of the application. A component accesses re-
sources and forwards information and control to other com-
ponents resp. the application environment. Component in-
terfaces provide several types of mechanisms like method
invocations, event coupling, and infobusses [41]. During
run-time a series of interface events occur which forms the
behavior of the component. Based on the security model
a component-specific system security policy constrains the
behavior by defining static and dynamic conditions in or-
der to guarantee security-related objectives for a certain
component-structured system.

One can check that a component fulfills these condi-
tions by utilizing the explicit component contracts (cf. [42])
which can be extended in order to describe security-relevant
obligations (e.g., a certain data unit must only be forwarded
via an explicit interface). The obligations may be specified
formally in the form of behavior constraints (cf. [3, 17])
enabling the component user to prove in two steps that a
component fulfills owner’s security policy. At first, one has
to verify that all obligations and their combinations fulfill
the conditions of the security policy. This proof can be per-
formed at design time by means of a security analysis. For
instance, by analyzing the data flow between components
one can check that data units pass only principals who are
entitled to read them. At second, one must check that the
obligations are kept by the components which is performed
either at design time by source code analysis resp. byte
code verification or at run-time by security wrappers [19].
Here, the interface behavior of a component is observed and
checked for correspondence with the obligations.

Access control and information flow models are well-
suited to prove that components guarantee the confidential-
ity of applications. Access control (and also authentication)
is used to limit the access to single components to a set of
entitled principals (cf. [7, 25, 38]). Our security analysis
approach can also be used for introducing access control

and authentication systems to IT systems and components
which is described in [18].

While access control models constrain the release of in-
formation, they do not limit its propagation between the
components of the application (cf. [31]). In contrast, by
application of information control models one may prevent
unauthorized disclosure of information due to wrong prop-
agation paths. By these models one can prove that the path
of an data unit contains only components granting reading
access to readers allowed to read the data unit. Moreover,
one can distinguish harmless from dangerous components.
Unlike a harmless component, a dangerous component �
is coupled to a component � granting access to a princi-
pal who is not privileged to read a data unit � passing �.
� is potentially dangerous since it may maliciously or er-
roneously leak � to � exposing it to a read access by a
non-privileged principal. Dangerous components have to be
scrutinized for compliance with the information flow poli-
cies of the system owner.

3. Decentralized Labeling

In order to carry out information flow control in a secu-
rity analysis at design time, we have to use a model facili-
tating static analysis. We selected Myers’ and Liskov’s de-
centralized label model [30, 31, 32] since it combines static
analysis with labeling and declassification. Labels are spe-
cial identifiers assigned to system units like components,
interfaces, and information. A unit owner may specify a
separate read access policy for each system unit by setting
its label. In our object-oriented security analysis approach
labels can easily be integrated in the form of special class
properties. In contrast to its customary definition, here, de-
classification describes a special operation on labels which
permits a unit owner to relax the unit’s read access policy.
Since in real-life systems the read access policies of data
have to be relaxed sometimes, declassification is a neces-
sary means to apply information flow control in practice.

Information flow control was dealt with in various ap-
proaches. For instance, other work proposes the applica-
tion of labels [15, 27, 28, 39] and declassification [14], too.
The correctness checks, however, are carried out during
run-time in these approaches which makes them less suited
to our application. In contrast, most approaches for static
analysis of information flows treat information flow analy-
sis only by type checking of secure programming languages
(e.g., [1, 16, 36, 44]) which is also unfavorable for security
analysis. Therefore we decided to apply the decentralized
label model.

In this model each component, component interface, and
data unit is provided with a label describing its individual
read access policy (cf. Sec. 5). Labels refer to a set of iden-
tifiers indicating principals, principal groups, or roles. As

an example we will refer to the label � � �� � �� �� � � �� ��
below where ��� �� �� is a set of principals. Labels consist of
a list of sub-labels� separated by semicolons (e.g., � � �� �).
A sub-label contains an owner identifier and a list of reader
identifiers which are separated by colons. The owner identi-
fier denotes an owner of system unit who defines a read ac-
cess policy. The readers, to whom access is granted by the
owner, are indicated by the reader identifiers. Thus, in the
first sub-label of � principal � defines that principal � and
herself may read the corresponding system unit. A labeled
system unit has to fulfill all sub-label policies. Therefore
read access is granted to principals only who are readers in
all sub-labels (e.g., label � allows only reading by principal
�). So, the corresponding set of so-called effective readers
is the intersection of the set of readers in the sub-labels.

Moreover, the decentralized label model facilitates the
definition of principal hierarchies by a so-called acts for-
relation �. If � � � holds, one may add � as a reader to
each sub-label which contains � as a reader. Thus, if � acts
for �, to each system unit, which may be read by �, � is also
granted reading access. Moreover, � may be replaced by �

as an owner of a sub-label. Thus, � may adopt an access
policy of �. Due to these rules label � may be replaced
by the label �� � �� � �� �� � � �� �� ��. The relation � is
reflexive and transitive but not anti-symmetric. Thus, two
distinct principals may act in behalf of each other.

The relabeling operator� enables to compare the access
policies of two labels. If �� � �� holds, the policy of ��

is more restrictive than that of ��, i.e., the effective readers
of �� are equal to or a subset of the effective readers of ��.
Defining

�� � ��� � 	����

 � 	���� �

 � �� � 	����

 � 	�����
�� � ��� � �����

 � ����� �

 � �� � �����

 � ������

then �� � �� corresponds to the condition

������ � �� � ��������� � 	��	��

Thus, �� � �� is valid if �� may be replaced by a label
��� according to the rules of the acts for-relation and for
each sub-label in �� exists a sub-label in ��� with the same
owner and the same or a subset of readers. Relabeling is
important for the definition of a suitable information flow
policy. For example, in a component-structured system the
information flow is not violated if a data unit with label �
is only propagated to components the labels � of which
fulfill � �� .

Declassification is the counterpart of relabeling. Here,
the access policy of a system unit may be relaxed by adding
readers to a sub-label or by removing a sub-label. In or-
der to prevent policies of other principals, a declassification

�Myers and Liskov speak about “label components”. We altered this
term to “sub-labels” in order to avoid confusion with software components.

may be performed only by components which have the per-
mission to act for the particular sub-label owner.

Finally, the decentralized label model defines functions
for the combination of labels. For our application the join-
operator � is of particular interest. A join � � � �� of
two labels � and � is the least restrictive label which is a
relabeling of � and � . Thus, � guarantees exactly the ac-
cess policies of� and� . In general,� is the concatenation
of the labels � and � . Assuming � � �� � �� �� � � �� ��
and � � �� � �� �� � � ��, the join � � � �� is equal
to �� � �� �� � � �� �� � � �� �� � � ��. In order to keep the
number of sub-labels in a joined label short, one can omit
redundant sub-labels. Since, for instance, in� the sub-label
� � �� � is superseded by the sub-label � � � which defines a
more restrictive policy, the join � corresponds to the label
�� � �� �� � � �� �� � � ��, too. A complementary operator is
the meet 	 of two labels � and � . It is defined as the most
restrictive label which can be relabeled to both � and � .

4. Object-Oriented Security Analysis

A set of so-called Common Criteria (CC) [21] stan-
dardizes the security analysis of IT systems and provides
a methodology for vulnerability detection, risk assessment,
and countermeasure integration. Fig. 1 delineates the main
security classes and associations defined by the CC. Often,
computer systems and system components store and main-
tain essential data and therefore are assets for their owners.
These assets, however, are constantly exposed to threats by
intruders, called threat agents, exploiting the vulnerabilities
of the assets for attacks (e.g., a software may contain Trojan
Horse code which may be utilized for eavesdropping data).
Thus, the threat agents lead to security risks for the assets.
The asset owners try to minimize these risks by imposing
countermeasures which reduce the vulnerabilities (e.g., by
a source code analysis the malicious Trojan Horse code may
be detected and removed). The countermeasures, however,
contain vulnerabilities themselves which have to be reduced
by other countermeasures.

Our approach supports the creation of CC-compliant sys-

Principal

Owners Threat agents

Countermeasures Threats

Vulnerabilities

Asset

Availability

Risk

Integrity

Risk

Confidentiality

Risk
give rise to

reduce exploit

regarding

own Risk

value : {low,medium,high}

regarding

leading to

leading to

impose

Figure 1. CC security classes

Security Threat seriousness level
level 1 2 3 4 5 6 7

1 0 0 1 1 2 3 3
2 0 1 1 2 3 3 4
3 1 1 2 3 3 4 5
4 1 2 3 3 4 5 5
5 2 3 3 4 5 5 6
6 3 3 4 5 5 6 7
7 3 4 5 5 6 7 7

Table 1. Matrix for calculating risk values

tem models by providing a library of basic asset classes like
networks, stations, applications, and data as well as asso-
ciations between the classes. Moreover, for each applica-
tion domain more specialized classes (e.g., software compo-
nents, component interfaces, declassification permissions)
are also available. Based on the class libraries, our ARGO-
based tool facilitates the modeling of systems, consisting of
asset class and association instances, in the form of UML
object diagrams (cf. [10]). The classes contain three proper-
ties in order to define the extent of protection needed for an
asset with respect to the main security objectives confiden-
tiality, integrity, and availability. The properties refer to the
seven security levels corresponding to the evaluation assur-
ance levels defined in the CC. For instance, level 7 shall be
assigned to the availability property of an asset if its break-
down leads to total collapse of the attacked institution.

In the next analysis phase vulnerabilities and threats on
the assets are identified which are modeled as classes, too.
Objects of these classes are added to the UML object dia-
gram description of a system by application of graph rewrite
rules (cf. [4]). Moreover, one has to estimate the seriousness
of vulnerabilities and threats (i.e., the likelihood of attacks)
which depends on the kind of applied countermeasures. The
seriousness is modeled by a class property which may con-
tain seven values, too. Depending on the particular domain
the estimations are performed interactively or by support of
graph rewrite rules.

Thereafter a graph rewrite system is used for determining
the risks on the system assets. For each pair of an asset and
a vulnerability an instance of a special risk class is created
stating a risk for the confidentiality, integrity, or availability
of an asset. Moreover, the tool calculates the value of the
risk which is modeled by a class property, too. The risk
level depends on the security level of the asset and on the
seriousness level of the vulnerability (cf. [12]). Currently,
the risk level is determined by application of the matrix�

�The risk level 0 states that no risk is assumed and the risk object is
removed.

in Tab. 1 which, however, can be altered according to the
applied security policy. Finally, one has to assess the risks
which is also supported by a graph rewrite system. If all
risks are bearable, the security analysis will be terminated,
here.

The last phase is supported by a countermeasure class
library and a rewrite system for the introduction of counter-
measures. Attributes of a countermeasure object describe a
protection level and the cost of imposing the countermea-
sure. The protection level refers to the CC which define
requirements of countermeasures in order to fulfill a cer-
tain security level of an asset. In a first step, the tool sug-
gests for each pair of an asset and a risk all countermea-
sures with a sufficient protection level (i.e., the protection
level must be equal or higher than the risk level). There-
after the tool compares the costs of the countermeasures
and selects one depending of its costs and its level of pro-
tection. Since countermeasures may contain vulnerabilities
themselves, the analysis iterates the third and forth phases.
If the newly calculated risks can be accepted as bearable,
the analysis terminates. Otherwise, new countermeasures
are suggested and further iterations take place.

5. Information Flow Analysis

In order to apply the object-oriented security analysis
approach for evaluation of security flows of component-
structured software, we had to develop new class libraries
and graph rewrite systems. The five classes Component,
Channel, Data, DataStruct, and Permission were added to
the class library for the design of system models. These
classes are multiply inherited from basic application resp.
data classes (cf. Sec. 4) and from a new class InfoFlow.
They inherit the properties describing security levels from
the basic classes while InfoFlow introduces two new prop-
erties modeling an acts for-hierarchy and a label (cf. Sec 3).
Moreover, the class library is extended by the association
classes Sends, Receives, Transfers, Stores, Permits, and
Contains specifying relations between objects.

Fig. 2 delineates an example system for the manage-
ment of patient records in a hospital which is explained
in Sec. 6. It consists of four software components speci-
fied by the objects HospDB, Declass, D1, and D2 of class
Component. Objects of class Channel model simplex infor-
mation channels between two components (e.g., the object
HospDB-Declass models information flow from HospDB to
Declass). The channel object is linked with the transmit-
ting component by an edge of association type Sends and
with the receiving component by a Receives association.
Data units stored in components or transferred via chan-
nels are specified by objects of class Data. In particular,
one can define data structures utilizing instances of the class
DataStruct which is inherited from Data. The data objects

Figure 2. Patient records management exam-
ple

forming the data structure are linked to the DataStruct in-
stance by edges of type Contains. In Fig. 2, for instance,
P1Data models a data structure consisting of the data ob-
jects P1DPatConfid and P1DHospConfid. A data or data
structure object may be associated to a channel by an edge
of class Transfers modeling that the data unit is transferred
via this channel. Likewise, it may be linked to a component
by a Stores association stating that the component stores
the data. Another class inherited from Data is Permission
which contains certain rules for declassifying data units (cf.
Sec. 3). It is linked with the data object to be declassified
by an edge of class Permits. In our example the object PP1
is a permission object stating that the component Declass
may declassify the data structure P1Data according to its
declassification rules.

After system design one defines the security levels and
the read access policies of the system assets as well as the
declassification rules of the permission objects by setting
corresponding object properties. Moreover, one fixes the
acts for-hierarchy which is modeled by identical property
settings in all objects. We assume that this hierarchy is
fixed during the whole security analysis process. Since,
according to [32], hierarchy revocations occur only infre-
quently, after each change a new analysis can be expected.
This corresponds to the fact that a security analysis has to
be repeated from time to time in order to react to new at-
tack strategies. As an example, Fig. 3 shows the property
of object PP1. Besides the object name one sets the se-
curity levels for confidentiality, integrity, and availability
objectives to a number between one and seven. For the

Figure 3. Properties of object PP1

particular domain, however, only the confidentiality level
is used. The acts for-hierarchy is defined in the next prop-
erty in which the operator � is represented by the symbol
�. Beneath, one can set the label of object PP1. In contrast
to other objects, instances of class Permission contain two
further properties for defining declassification policy rules.
By Add Readers the assignment of new readers in sub-labels
is specified. In this example, the component Declass stor-
ing the permission may add the reader �� to sub-labels with
owners �� or � in the label of object P1Data. The dele-
tion of sub-labels is modeled by the property RemoveOwn-
ers which contains a list of principal identifiers. Sub-labels
owned by list members may be deleted.

The instantiation of these properties, moreover, is sup-
ported by two graph rewrite systems. The user has to set
the confidentiality level for data objects only. By applying
rules of one rewrite system the confidentiality levels of the
components and channels are set to the maximum security
level of the stored or transferred data units. Likewise, the la-
bels need to be adjusted for components and data units only.
By the rules of the other rewrite system consistent labels of
other system elements are fixed. For instance, the label of
a data structure will be set to the Join of the data objects
defining the structure (cf. Sec. 3).

The vulnerabilities and threats to the assets are modeled
by a second class library containing two different types for
describing vulnerabilities. The one class indicates incon-
sistent label settings which may cause eavesdropping of in-
formation. For instance, a component � may store a data
unit � with a stricter read access policy than � itself. Thus,
at least one principal may exist which may access � but
not �. By accessing � this principal, however, may read
the stored data unit �, too. Vulnerabilities due to inconsis-
tent label settings are modeled by the class IncorrectLabels
and inherited classes describing certain kinds of inconsis-
tencies. The other vulnerability describes potential informa-
tion leaks due to malicious component behavior. This vul-
nerability is assigned to components containing data which
must not be transferred to each successor component. It is
specified by an instance of class IncorrectInfoFlow. A vul-
nerability of an asset leads to a threat on the confidential-

Figure 4. Pre- and post-pattern of a graph
rewrite rule

ity of data which is modeled by objects of class Informa-
tionLeakOut. Moreover, the class contains two association
classes. Edges of type To are used to describe the relation
between a vulnerability and the corresponding asset while
the link between vulnerabilities and threats are specified by
edges of the class Exploiting.

The vulnerability and threat analysis is automatically
performed by application of a further graph rewrite system.
With respect to incorrect label settings one has to prove that
each data unit � in the system is propagated to components
and channels with read access policies which are at least as
strict than that of �. Thus, the label of each system unit
passed by � has to be a relabeling of the data unit label.
If �, however, is assigned with a permission � enabling
its declassification, the test is more subtle. The analysis
has to check if � passed already a component permitted
to classify it. Then the relabeling check has to include the
label of � relaxed by the classification rules defined by � .
The check for potentially malicious components is also per-
formed by relabeling tests. Here, for each — possibly de-
classified — data unit � passing a component � one has to
examine whether the labels of all successor components of
� are relabelings of the label of �. If the result of this ex-
amination is false, the component is dangerous and the tool
indicates it by an object of type IncorrectInfoFlow.

As an example, Fig. 4 outlines the pre- and post pattern
of one rule of the rewrite system. The rule states that a label
setting is wrong if the label of data unit � is stricter than
the label of a component � receiving � from a transfer via
channel ��. The scenario of �, ��, and � is listed in the
pre-pattern on the left side of the figure. Moreover, this pre-
pattern contains some inhibitory objects and edges which
must not be in the subgraph mapping this pattern. In par-
ticular, � must not be associated to a permission � since
declassified data is modeled by other rules. Furthermore,
the scenario must not contain the vulnerability object to be
added in order to avoid iteration of this rule. The right side
of Fig. 4 delineates the post-pattern in which the vulnera-
bility object DataExCompomentL, an instance of a class in-
herited from IncorrectLabels, and the corresponding edges
are enclosed to �, ��, and �. In addition, the rule contains
an application condition avoiding its execution if the label

of � is a relabeling of �.
Afterwards, one evaluates the seriousness of the vulnera-

bilities and threats in the system model which is performed
by a graph rewrite system, too. Incorrect label settings refer
to an inconsistent security policy which may easily be ex-
ploited by malicious intruders. Therefore, the seriousness
of instances of class IncorrectLabels and inherited classes
are always rated to the maximum value �. In contrast, the
likelihood of a successful attack caused by a malicious com-
ponent depends on the selected countermeasures. Accord-
ing the regulations of the CC [21] the property is set to �
if the component was scrutinized by a source code analy-
sis. In case of a byte code verification we apply the value �
while due to the danger of steganography the application of
security wrappers leads to a seriousness value of 	. Finally,
the application of components without any protection leads
to the setting �.

The creation of risk objects and the calculation of the risk
level according to the matrix in Tab. 1 is also performed by
a graph rewrite system. Moreover, rules are available which
may be combined to a rewrite system fulfilling a certain risk
assessment policy (e.g., the acceptance of all risks with a
level of � or �).

Countermeasures are imposed in two different ways. In
order to get rid of vulnerabilities due to incorrect label set-
tings, one applies a graph rewrite system making system
unit labels stricter. For instance, the rewrite system reacts
on the object DataExComponentL created by the rule out-
lined in Fig. 4 by replacing the label of component� by the
Join of the previous label of � and of the label of data unit
�. Due to the definition of Join the new label is a relabeling
of the label of � and therefore fulfills the read access policy
of �.

To reduce vulnerabilities due to malicious components,
a countermeasure class library was designed. Currently, it
consists of the classes SecurityWrapper, ByteCodeVerifica-
tion, and SourceCodeAnalysis. The protection level prop-
erties of class instances are initialized according to rules of
the CC evaluation assessment levels while the initial cost
settings are estimated. For the security wrapper both prop-
erties are set to
 reflecting the low deployment costs and
the danger of Steganography. In contrast, the properties
of the byte code verification, which is more laborious and
therefore more expensive but provides a higher degree of
protection, are rated to �. Finally, for the source code anal-
ysis the protection value is set to � since disguising of infor-
mation flows is harder in source code than in compiled byte
code. Due to the usually enormous source code costs for
commercial software the costs are rated to �, here. In spe-
cial cases (e.g., freely available source code) these values
may be changed manually. Moreover, for this domain two
further graph rewrite systems were developed facilitating
the selection of suitable countermeasures with a sufficient

protection level as well as selecting a cost-efficient counter-
measure.

In order to realize support for information flow analy-
sis of component-based software, we developed 21 classes
by inheriting already existing classes. Moreover, we cre-
ated nine graph rewrite systems consisting of altogether
45 rewrite rules. The total design time including pro-
gramming the operators of the decentralized labeling model
amounted to eight working days for a single person.

6. Example Application

As an example to clarify our approach we use the pa-
tient records managing system delineated in Fig. 2 which is
a simplified version of the example outlined in [32]. In this
system the basic idea is to prevent that every physician in
the hospital may read the record of each patient. Instead,
a doctor shall have access only to the records of patients
treated by herself. To specify this security policy, the model
uses the following principal roles: � refers to the hospital
owner, �� and �� to two single patients, � to the set of all
patients, �� and �� to separate doctors, and � to the set of
all doctors. These roles are related by the acts for-hierarchy
� � ���� � ��� �� � �� �� � �� �� � �� �� � �. The hier-
archy elements � � �� and � � �� reflect that the hospital
owner � keeps track of the records in behalf of the patients
and therefore must be allowed to act for each patient. The
other elements state that � describes the set of all patients
and that each single patient may act for this role. Likewise,
each doctor may act for the set of all doctors �.

The patient records of �� and �� are modeled by the data
structures D1Data resp. D2Data. D1Data consists of the
data units P1DPatConfid and P1DHospConfid. P1DPat-
Confid models a patient record part which, before select-
ing a treating doctor, may be only read by patient �� him-
self and the hospital owner � (e.g., ��’s medical record),
while data unit P1DHospConfid describes confidential in-
formation which may be accessed by � only. P1Data is
associated to a permission object PP1 facilitating its de-
classification in order to make the patient record readable
for ��’s particular doctor (in this example ��). Similarly,
the patient record D2Data of patient �� is composed from
the data units P2DPatConfid and P2DHospConfid and may
be accessed by doctor �� due to the declassification pol-
icy stated in permission PP2. The system is coupled from
four software components: The patient records are stored
in the database component HospDB. The assignment of pa-
tient records to particular doctors in order to enable treat-
ment of patients is realized by the component Declass. In
order to fulfill this task, Declass has to declassify the patient
records and therefore stores the permission objects PP1 and
PP2. The components�� and�� allow the doctors�� and
�� to read patient records. The transfer of patient records

from HospDB via Declass to �� or �� is modeled by the
channels HospDB-Declass, Declass-D1, and Declass-D2.

After designing the system model, one has to define
component and data unit labels, data unit confidentiality se-
curity levels, and declassification rules in the permissions.
The access policy to the patient records is constrained by the
patients themselves as well as by the hospital owner. The
patient requires that his record may be accessed only by �

and himself and therefore adds the sub-label �� � �� �� to
the objects P1DPatConfid and P1DHospConfid. The hos-
pital prevents other principals reading the hospital confi-
dential part of the record by attaching sub-label � � � to
the label of P1DHospConfid. Likewise the labels of the
components of ��’s patient record are set to �� � �� ��
resp. �� � �� ���� � �. The permission PP1 is owned
by �� who enables access for � and himself (cf. label
�� � �� �� in Fig. 3). Similarly, permission PP2 carries the
label �� � �� ��. The four components are supervised by the
hospital owner. HospDB and Declass are not intended to
print out information to anybody. Therefore reading access
is only granted to � itself for maintenance (label � � �). In
contrast, the components �� and �� are used for the out-
put of patient records. Therefore, the label of �� is set to
� � �� �� and the label of �� to � � �� ��. The labels of
the data structures and channels are added automatically by
a graph rewrite system. While the channels are set to the la-
bels of the components linked by an edge of type Receives,
the data structures P1Data and P2Data carry the label � � �
due to the stricter policy of the hospital owner.

The confidentiality security levels of the patient records
are set to the value 	. This reflects that on the one hand
eavesdropping of patient data does not lead to a break down
of the hospital operations. On the other hand, however, the
leaking of patient data is a serious privacy violation leading
to costly compensations and distrust in the hospital. Weigh-
ing up the aspects, we consider a high to moderate valuation
(level) as appropriate. By applying graph rewrite rules the
value 	 is also set to the confidentiality security properties
of the components and channels.

Finally, we have to fix the declassification rules of the
permission. The patient record of �� is constrained by �

as well as ��. Since �� accepts �� as the doctor treating
him, both record owners accept �� as a reader and the Add
Readers property of PP1 is set to �� � ���� � �� (cf. Fig. 3).
Likewise, in PP2 this property is set to the value �� � ���� �
��.

In the next step we analyze the system model for vulnera-
bilities and threats. In order to show incorrect label settings
to the reader, we replaced the correct labels of component
�� and channel Declass-D2 by wrong labels � � �� ��� �.
Thus, at �� access is mistakenly enabled to any patient.
Fig. 5 delineates the distorted system model augmented by
vulnerability and threat objects. As expected, the objects

Figure 5. Example system with vulnerabilities
and threats

DataExComponentL and DataExChannelL refer to the er-
roneous labels of component �� and channel Declass-D2.
Similarly, the two objects IncorrectDataFowarding indicate
that component Declass may leak information intended to
�� by transferring it to �� and vice versa. Each vulnerabil-
ity object is associated to a threat object CompInfoLeakOut
referring to the threat of leaking information. The serious-
ness of the vulnerability and threat objects is set to the max-
imum value � since no countermeasures are integrated, yet.

Thereafter, for each vulnerability a separate risk object is
generated. According to the matrix in Tab. 1 the risk levels
of all objects are set to the value �. Since we want to accept
only risks of levels � and �, we have to continue the security
analysis with planning countermeasures. With respect to
the incorrect label settings, we apply a graph rewrite system
which replaces the wrong labels of�� and Declass-D2 with
the correct label � � �� �� again. In order to reduce the
information flow policies, we apply another rewrite system
suggesting countermeasures. Since the protection level of
a security wrapper for a component with risk level � is too
low, the tool suggests byte code verification and source code
analysis to guard against malicious behavior of component
Declass. As byte code verification, moreover, is the less
expensive safeguard, it is selected.

In the next iteration, the two vulnerability objects Incor-
rectDataForwarding are generated again. Due to the coun-
termeasure, however, their seriousness values are now set
to �. Likewise, the levels of the corresponding risks are as-
signed with � which, according to our security policy, can
be accepted as remaining risks. Thus, the information flow
analysis will be terminated now and we have to perform a
byte code verification of component Declass. In case of us-
ing Java Beans-based components, this verification is facil-
itated by powerful tool-support and can be performed with

an acceptable expenditure.
Due to the extensive tool-support the specification and

analysis of the example system could be performed in a cou-
ple of minutes.

7. Concluding Remarks

We reported on the application of object-oriented model-
ing and graph rewriting for the highly automated informa-
tion flow control of component-structured software. The
corresponding tool-support is well-suited to real-life sys-
tems since it supports UML-based description techniques
for complex systems (e.g., hierarchical system models hid-
ing subsystems in folders which are modeled by separate
UML-object diagrams). Currently, more work is devoted
to extensions of the class libraries and rewrite systems and,
in particular, to the consideration of trust between princi-
pals which can be realized by applying trust management
approaches (e.g., [8, 9, 22]). For instance, in order to de-
termine the seriousness of a threat due to a malicious com-
ponent leaking information, one considers not only the ap-
plied countermeasures but also the trust into the component
designer.

Moreover, one has to consider integrity and availabil-
ity aspects of component-structured software, too. Here,
we will augment the component contracts by specification
modules in a temporal logic-based modular specification
and verification technique [17]. The contract specifications
of all components may be composed to a system interface
specification. Since the security policy can be modeled
based on the same specification technique, one can prove
formally that the combined interface specification fulfills
the security policy. Moreover, one has to check that the
real component behavior complies with the contract speci-
fication which can be performed, for instance, by security
wrappers [19].

References

[1] M. Abadi. Secrecy by Typing in Security Protocols. In
Proc. 3rd International Conference on Theoretical Aspects
of Computer Software, 1997.

[2] E. Amoroso. Fundamentals of Computer Security Technol-
ogy. Prentice Hall, New Jersey, 1993.

[3] R. J. R. Back and R. Kurkio-Suonio. Decentralization of
process nets with a centralized control. Distributed Com-
puting, (3):73–87, 1989.

[4] R. Bardohl, G. Taentzer, M. Minas, and A. Schürr. Applica-
tion of graph transformation to visual languages. In Hand-
book on Graph Grammars and Computing by Graph Trans-
formation, Volume 2, chapter 1. World Scientific, 1999.

[5] R. Baskerville. Designing Information Systems Security.
Wiley & Sons, Chichester, 1988.

[6] R. Baskerville. Information Systems Design Methods: Im-
plications for Information Systems Development. ACM
Computing Surveys, 25(4):375–414, Dec. 1993.

[7] D. E. Bell and L. J. LaPadula. Secure Computer System:
Mathematical Foundations. Technical Report MTR-2547,
MITRE Corporation, Bedford, Mass., 1973.

[8] T. Beth, M. Borcherding, and B. Klein. Valuation of Trust in
Open Networks. In Proc. European Symposium on Research
in Security (ESORICS), LNCS 875, pages 3–18, Brighton,
1994. Springer-Verlag.

[9] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis.
The Role of Trust Management in Distributed Systems Se-
curity. In Internet Programming: Security Issues for Mobile
and Distributed Objects. Springer-Verlag, 1999.

[10] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified
Modeling Language User Guide. Addison-Wesley, 1999.

[11] CCTA. SSADM-CRAMM Subject Guide for SSADM Ver-
sion 3 and CRAMM Version 2. CCTA, London, 1991.

[12] R. Courtney. Security Risk Assessment in Electronic Data
Processing. In AFIPS Conf. Proc. National Computer Con-
ference 46, pages 97–104, Arlington, 1977. AFIPS.

[13] W. Farmer, J. Guttman, and V. Swarup. Security for Mobile
Agents: Issues and Requirements. In Proc. 19th National
Information Systems Security Conference (NISSC 96), pages
591–597, 1996.

[14] E. Ferrari, P. Samarati, E. Bertino, and S. Jajodia. Provid-
ing flexibility in information flow control for object-oriented
systems. In Proc. IEEE Symposium on Security and Privacy,
pages 130–140, Oakland, 1997.

[15] R. Graubart. On the Need for a Third Form of Access Con-
trol. In Proc. 12th National Computer Security Conference,
pages 296–303, Gaithersburg, MD, 1989.

[16] N. Heintze and J. G. Riecke. The SLam Calculus: Program-
ming with Secrecy and Integrity. In Proc. ACM Symposium
on Principles of Programming Languages (POPL’98), San
Diego, 1998.

[17] P. Herrmann and H. Krumm. A Framework for Modeling
Transfer Protocols. Computer Networks, 34(2):317–337,
2000.

[18] P. Herrmann and H. Krumm. Object-oriented security anal-
ysis and modeling. In Proc. 9th International Conference
on Telecommunication Systems — Modeling and Analysis,
pages 21–32, Dallas, 2001. ATSMA, IFIP.

[19] P. Herrmann and H. Krumm. Trust-adapted enforcement of
security policies in distributed component-structured appli-
cations. In Proc. 6th IEEE Symposium on Computers and
Communications, pages 2–8, Hammamet, 2001. IEEE Com-
puter Society Press.

[20] P. Herrmann, L. Wiebusch, and H. Krumm. Tool-Assisted
Security Assessment of Distributed Applications. In Proc.
3rd IFIP WG 6.1 International Working Conference on
Distributed Applications and Interoperable Systems (DAIS
2001), pages 289–294, Krakow, 2001. Kluwer Academic
Publisher.

[21] ISO/IEC. Common Criteria for Information Technology Se-
curity Evaluation, 1998. International Standard ISO/IEC
15408.

[22] A. Jøsang. An Algebra for Assessing Trust in Certifica-
tion Chains. In J. Kochmar, editor, Proc. Network and Dis-
tributed Systems Security Symposium (NDSS’99). The Inter-
net Society, 1999.

[23] G. Karjoth, D. Lange, and M. Oshima. A Security
Model for Aglets. IEEE Internet Computing, pages 68–77,
July/August 1997.

[24] D. M. Kienzle and W. A. Wulf. A Practical Approach
to Security Assessment. In Proc. Workshop New Security
Paradigms ’97, pages 5–16, Lake District, 1997.

[25] B. W. Lampson. Protection. In Proc. Princeton Conference
on Information and Systems Sciences, 1971.

[26] J. Leiwo, C. Gamage, and Y. Zheng. Harmonizer — A Tool
for Processing Information Security Requirements in Orga-
nization. In Proc. 3rd Nordic Workshop on Secure Computer
Systems (NORDSEC’98), Trondheim, 1998.

[27] C. J. McCollum, J. R. Messing, and L. Notargiacomo. Be-
yond the Pale of MAC and DAC — Defining New Forms of
Access Control. In Proc. IEEE Symposium on Security and
Privacy, pages 190–200, Oakland, CA, 1990.

[28] M. D. McIlroy and J. A. Reeds. Multilevel Security in
the UNIX Tradition. Software — Practice and Experience,
22(8):673–694, 1992.

[29] Microsoft. The Microsoft COM Technologies. available
via WWW: http://www.microsoft.com/com/comPapers.asp,
1998.

[30] A. C. Myers. JFlow: Practical Mostly-Static Information
Flow Control. In Proc. 26th ACM Symposium on Principles
of Programming Languages (POPL’99), San Antonio, 1999.

[31] A. C. Myers and B. Liskov. A Decentralized Model for In-
formation Control Flow. In Proc. 16th ACM Symposium on
Operating Systems Principles, Saint-Malo, France, 1997.

[32] A. C. Myers and B. Liskov. Complete, Safe Information
with Decentralized Labels. In Proc. IEEE Symposium on
Security and Privacy, pages 186–197, Oakland, 1998.

[33] Object Management Group. CORBA Component Model
Request for Proposals, June 1997.

[34] Object Management Group (OMG). A Discussion of the Ob-
ject Management Architecture, 1997.

[35] Object Management Group (OMG), CORBA. Security Ser-
vices Specification, Version 1.5, 2000.

[36] J. Palsberg and P. Ørbaek. Trust in the �-Calculus. In Proc.
2nd Internation Symposium on Static Analysis, LNCS 983,
pages 314–329. Springer-Verlag, 1995.

[37] T. Quatrani. Visual Modeling with Rational Rose 2000 and
UML. Addison-Wesley, 2 edition, 2000.

[38] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-Based Access Control Models. IEEE Com-
puter, pages 38–47, Feb. 1996.

[39] A. Stoughton. Access Flow: A Protection Model which Inte-
grates Access Control and Information Flow. In Proc. IEEE
Symposium on Security and Privacy, pages 9–18, Oakland,
CA, 1981.

[40] Sun Microsystems. Java Beans Specification. available via
WWW: http://java.sun.com/beans/docs/spec.html, 1998.

[41] Sun Microsystems, Palo Alto. Infobus 1.2 Specification,
1999.

[42] C. Szyperski. Component Software — Beyond Object Ori-
ented Programming. Addison-Wesley, 1997.

[43] Tigris. ArgoUML Vision, argouml.tigris.org/vision.html,
2000.

[44] D. Volpano, G. Smith, and C. Irvine. A Sound Type System
for Secure Flow Analysis. Journal of Computer Security,
4(3):167–187, 1996.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

