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Abstract

The complexity degree of modern chemical plants demands forthe use of formal specification methods. A framework
for hybrid systems contains specification modules and verification elements proving the plant safety. The design of a
plant is reduced to the composition of framework components, the identification of possible sources of danger and the
identification of suitable verification elements.
Our contribution introduces a tool supporting the selection of suitable safety properties eliminating possible sources of
danger. The toolharmonic supporting this process is based on approaches of expert systems. An example examination
of a plant specification clarifies the use of this program.
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1 INTRODUCTION

Since the operation of many hybrid chemical systems
entails diverse risks, the design of plants has to be ac-
companied with careful and responsible hazard analy-
sis procedures. Today, hazard analysis mostly follows
the established method of “hazard and operability stud-
ies” (HazOps) [23]. In this informal approach teams of
experts examine systematically descriptions of hybrid
systems in order to detect subtle design faults which
may cause hazards. Moreover, the teams try to detect
the sources of the faults, predict consequences, and de-
velop counter-measures. In order to facilitate HazOp
studies, tool-assistance is proposed based on expert sys-
tems [5, 8, 26, 29] and on simulation [6, 24, 31]. Other
approaches support the model-based formal analysis in
order to achieve formal safety proofs of hybrid techni-
cal systems [3, 25, 27, 31]. Corresponding tool-support
is based on exhaustive state space exploration [28] and
on symbolic model checking [2, 22, 25]. The tools,
however, are not satisfactory for the analysis of com-
plex real-life systems since automated state space ex-
ploration fails due to the high number of reachable sys-
tem states.

Our approach aims at the efficient formal verifica-
tion of complex hybrid systems. It is based on tem-
poral logic specifications [11] and on symbolic logi-
cal theorem proving [10]. Formal system specification
and verification is facilitated by re-using specification
modules (generic process type definitions) and verifi-
cation elements (theorems) [13]. Adopting the notion
of “frameworks” from software engineering (cf. [17])
and transferring it to the construction of formal mod-
els and proofs, we developed a so-called “hazard anal-
ysis specification framework” [15]. Besides of archi-�This work was funded by the German research foundation DFG.
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tectural rules this framework comprises three collec-
tions of specification resp. verification elements sup-
porting the development of hybrid system specifications
and proof scripts. One collection contains specifica-
tion modules describing components used by chemi-
cal plants (e.g., vessels, valves, pumps, sensors, con-
trollers). Plant specifications are developed quite easily
by instantiation and composition of specification mod-
ules from this collection. The second collection con-
sists of modules modeling safety properties to be ful-
filled by a plant (e.g., a heating in a vessel may not run if
the amount of liquid in the vessel is beyond a minimum
value in order to prevent damage). The third collec-
tion contains generic theorems each guaranteeing that a
safety property is provided by a plant subsystem mod-
eled by a composition of component specification mod-
ules. The hazard analysis expert can reduce a proof of
safety properties into lemmas corresponding directly to
framework theorems. Since we already proved the va-
lidity of the theorems, he only has to perform some sim-
ple checks guaranteeing the consistency of the theorem
and the plant model. Thus, the framework approach
does not only facilitate the construction of formal plant
specifications but also formal reasoning. For example,
we specified an ethyl acetate production plant (cf. [6])
and proved 33 safety properties within four days.

The application of the framework in practice made it
clear that an expert can further be supported by a rule-
based tool facilitating the selection of suitable safety
property modules to be proven. In this contribution we
introduce the toolharmonic [7] which examines plant
specifications composed from framework specification
modules for possible system hazards. For instance, any
system structure containing a pump linked to a valve
is hypothetically a hazard source since a liquid may be
pumped against the closed valve causing excess pres-
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sure. Ifharmonic detects a hazard source, it suggests a
corresponding safety module from the framework (e.g.,
a liquid may not be pumped against a closed valve).
If this safety property is fulfilled by the plant (e.g., if
the system contains a controller switching off the pump
if the valve is closed), the expert can perform a safety
proof by means of a framework theorem. Otherwise,
he has to adapt the plant in order to prevent this kind
of hazard.harmonic examined the ethyl acetate plant
on a Sun UltraSPARC-II (300 MHz) within 7 seconds
suggesting 45 safety properties for verification.

The framework andharmonic are based on the tem-
poral logic specification language cTLA [11, 14] which
was extended from Leslie Lamport’s “Temporal Logic
of Actions” (TLA) [21]. cTLA uses a compositional
process concept supporting the modular description of
processes both in a resource-oriented and a constraint-
oriented specification style [30]. Process composition
has the character of superposition [4, 18]. Here, rel-
evant properties of processes and subsystems are also
relevant properties of the embedding system. Thus, su-
perposition enables the use of framework theorems for
safety proofs since a safety property fulfilled by a cer-
tain plant subsystem is also guaranteed by any entire
plant specification containing the plant subsystem.

In the remainder we sketch the hazard analysis
framework and cTLA. Afterwards, we introducehar-
monic and outline an example application.

2 FRAMEWORK FOR HYBRID SYSTEMS

Specification modules and theorems comprised by the
hazard analysis framework [13, 15] (cf. WWW:
ls4-www.cs.uni-dortmund.de/RVS/P-HYSYS) facil-
itate the formal specification and verification of hybrid
technical systems. As depicted in Fig. 1 the set of spec-
ification modules consists of two collections for plant
models resp. safety property modules both modeled by
cTLA processes. A specification of a plant system is
composed from plant model instantiations. A group
of plant model modules is devoted to continuous, dis-
crete, and hybrid system components which are mainly
specified in a constraint-oriented way (cf. [30]). For in-
stance, a vessel can be modeled by three separate plant
model instances describing the volume of a liquid in the
vessel, the temperature of this liquid, and the pressure
in the vessel. Another group of plant modules speci-
fies component malfunctions to be tolerated by a hybrid
system (e.g., leakage of valves, jam of pipes, failures of
active components like pumps or heatings).

The safety property modules are used to develop safe
plant specifications describing a list of safety properties
to be fulfilled by a hybrid system in order to prevent
serious system hazards. A module states either that a
system component observes a critical limit (e.g., the
power of a vessel heating does not exceed 6000Watt
to prevent overheat) or that a critical system state will
be excluded (e.g., a pump is switched off if the flow of
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Figure 1: The framework for the formal hazard analysis
of chemical plants

pumped liquid is blocked due to a closed valve). A for-
mal description of a single safety property is developed
by instantiating a safety property module, while a com-
plete safe plant specification is derived by composing
these module instances.

The formal proof that a plant system specification
fulfills the safety properties in a safe plant specification
is performed by means of framework theorems which
are already proven implications of the form “plant sub-
system̂ malfunction subsystem̂ safety property sub-
system) safety property” asserting that a certain plant
subsystem guarantees a safety property even if certain
malfunctions occur. For instance, the scenario that a
liquid is pumped against a closed valve, is reflected by
a framework theorem. In this theorem, the plant sub-
system consists of the pump, the sensor, the controller,
the pipe of pumped liquid, and appropriate links be-
tween these components. Since this control subsystem
may tolerate a pipe jam but not controller or sensor fail-
ures, the malfunction subsystem contains only a plant
model describing pipe jams. The safety property sub-
system was introduced since plant components often in-
terfere with many other and, perhaps, very distant com-
ponents causing lengthy plant subsystem descriptions.
In order to prevent this and, consequently, a large num-
ber of framework theorems, some theorems contain an
additional conjunct of safety property modules at the
premise describing safety requirements to the subsys-
tem environment. These safety properties are verified
transitively by using other framework theorems. For in-
stance, consider a proof that a number of serially linked
vessels never run empty. Without using a safety prop-
erty subsystem in theorems, we would need a separate
theorem for each line of vessels. The proof, however,
can be performed easily by inductive application of a
theorem stating that a vessel may not run empty under
the safety requirement that its predecessor does not be-
come empty as well.

3 CTLA

The safety property modules as well as the plant mod-
ules of the framework are specified by cTLA process
type specifications [14] which model system behaviors
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by means of state transition systems. A cTLA process
type contains private state variables describing the sys-
tem state and actions which are predicates on a pair
of a current and a next state and specify a set of tran-
sitions. Some additional cTLA constructs [11] which
correspond to similar TLA concepts [1, 20] are used to
express liveness, real time, and continuous system be-
havior. Liveness is specified by fairness assumptions
on actions stating that an action may not be enabled in-
finitely often without being eventually executed. Sim-
ilarly, a real time construct states that an action must
be executed if it is enabled for a certain period of time.
A special action is used to model continuous flows by
means of difference equations. Furthermore, a process
type may contain a list of generic process parameters in
order to specify a spectrum of similar process instances.

For clarification Fig. 2 sketches two cTLA process
types of the hazard analysis framework. The process
type ValveFlow models a simple binary valve which
allows the flow of a liquid only if it is open. It con-
tains two generic process parameters. The parameter
initvalve describes if the valve is open or closed in
its initial state. The maximum flow of liquid through
the valve is determined bymaxflow. The current state
of the valve is modeled by a variablevalve which is de-
fined in the partVARIABLES. The special predicateINIT
specifies the set of initial variable states.valve cor-
responds initially to the generic parameterinitvalve.

Binary valve within a line between two vessels
PROCESS ValveFlow

( initialvalve : {"closed","open"} ;
initial state of valve
maxflow : real )
maximum flow through valve

BODY
VARIABLES
valve : {"closed","open"}; current state of valve

INIT
∆= valve = initialvalve;

ACTIONS

CONT (OUTPUT flow : real)
∆= flow through line

flow = IF (valve = "closed")
THEN 0 ELSE maxflow ^

valve 0 = valve;

close
∆= close valve

valve 0 = "closed";

open
∆= open valve

valve 0 = "open";
END

Maximum time for a controller to switch an actor in [sec]
PROCESS ReactMaxTime ( maxtime : real ) maximum
time
BODY
ACTIONS
switch;

V MAX TIME switch : maxtime;
END

Figure 2: cTLA process typesValveFlowand React-
MaxTime

PROCESS CloseValveTimely

PROCESSES
V : ValveFlow ("closed",0.01);
CT : ReactMaxTime (2);

ACTIONS
CONT (OUTPUT flow)

∆=
V.CONT (; flow) ^ CT.stutter;

close
∆= V.close ^ CT.switch;

open
∆= V.open ^ CT.stutter;

END

Figure 3: cTLA system typeCloseValveTimely

The process contains the three actionsCONT, close, and
open which are listed in the partACTIONS. Here, vari-
ables modeling the current state are described by the
variable identifier (fi.valve) while variables specifying
the next state are supplemented by the special symbol0 (fi. valve’). The actionCONT describes the continu-
ous behavior of the valve. It contains a special action
parameterflow modeling the current flow through the
valve which corresponds to 0 if the valve is closed and
to the maximum flowmaxflow if it is open1. The ac-
tionsclose andopen model the closing resp. opening
of the valve. The process typeReactMaxTimemodels a
real time constraint. The constructV MAX TIME states
that the actionswitch has to be executed before it is
continuously enabled formaxtime time units.

cTLA processes are composed to (sub)system de-
scriptions (fi. plant system and safe plant system spec-
ifications in the hazard analysis framework). As in the
formal description technique LOTOS, interactions be-
tween these processes are modeled by joint system ac-
tions which are coupled from local process actions. The
process actions coupled to the same system action have
to be executed simultaneously. Data transfer between
processes in a system is described by action parame-
ters. Fig. 3 describes a simple subsystem specifica-
tion which is modeled by the cTLA system specifica-
tion type CloseValveTimely. It describes that a valve
may not be open for longer than 2 time units. The sub-
system is composed of two process instances listed in
the partPROCESSES. The valve is modeled by the pro-
cess instanceV which is instantiated from the cTLA
processValveFlow in Fig. 2. The generic process pa-
rametersinitvalve andmaxflow are replaced by the
values"closed" resp. 0:01. The processCT of type
ReactMaxTimemodels the timing constraint guarantee-
ing the timely closing of the valve. The coupling of
local process actions to joint system actions is specified
in the partACTIONS. The system contains the system
actionsCONT, close, andopen modeling the continu-
ous behavior and the closing resp. opening of the valve.
SinceV is the only instance modeling continuous flows,
CONT consists of the local actionCONT from processV

1The flow through an open valve may fall below the maximum
value. This, however, is specified by separate cTLA processes.
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while CT performs a so-called stuttering step, in which
its local variables are not changed. The interaction be-
tween the two processes is modeled by the system ac-
tion close. By incorporating the actionclose of pro-
cess instanceV one guarantees that this system action
models the closing of the valve. The actionswitch of
processCT assures that the system action is executed
within 2 time units. The system actionopen consists
of the process actionopen of V while CT performs a
stuttering step.

4 HARMONIC

The identification of suitable safety properties is sup-
ported by the toolharmonic (hazardrecognition tool
to model technical systems based oncTLA) [7]. It fol-
lows the knowledge-based approach introduced in [19].
To solve the problem of hazard detection it consists of
five knowledge-bases which can be easily changed and
adapted to the framework components. Safety proper-
ties are determined from the given system specification.
To identify suitable properties, typical process struc-
tures, like dependencies between different components
(e.g. a valve and a pump in one line), have to be iden-
tified. This is been done by support of rules which are
stored in the knowledge-base production rules.

To identify these structures, a flow graph is used.
This graph is computed from the plant specification.
Nodes are sources and sinks of liquid, gas, energy or
pressure flows specified by cTLA-processes (e.g., the
processVesselVolume modeling the volume of liquid
in a vessel is a source and sink of liquid flows). Edges
model flows and are specified by cTLA-processes like
the flow depending on the valve (ValveFlow) and on
the pump (PumpFlow). These processes define real
flows existing in a chemical plant. Which components
of the framework are nodes of the flow graph, which
of their parameters define an incoming resp. outgoing
flow and which components define flows is been told to
the toolharmonic by support of the flow graph knowl-
edge.

Rules use functions likeareInFlows, isOutFlow
or inSys. These functions are implemented in source
code and examine the flow graph. The syntax of the
functions is defined in the function knowledge-base and
used for parsing purposes of the production rules. For
instance, the rule

areInFlows(ValveFlow, PumpFlow, VesselVolume)
:: ValveOpenorNoPump(#);

states if a valve (ValveFlow) and a pump (Pump-
Flow) are connected in line (areInFlows) to a vessel
(VesselVolume), the safety propertyValveOpenOrNo-
Pump(#) has to be fulfilled by the system specification
to prevent a pump running against a closed valve.

All knowledge-bases are easy adaptable to frame-
work changes. So, good maintenance, changeability
and flexibility are provided. Framework components
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Figure 4: Structure model

defining plant constraints are stored in the base compo-
nent knowledge, and framework safety properties are
saved in the safety property knowledge-base. Elements
of these two bases are specified in cTLA.

The acquisition of all five knowledge-bases is been
done by the dialogue component (cf. Fig. 4), which im-
plements an interface to a knowledge expert, and the
knowledge acquisition component, which prepares the
information for internal computing. This information is
stored in the knowledge representation to produce them
to the problem solving component. The latter com-
ponent gets the plant system specification from a user
through the dialogue component. The specification is
prepared for internal computations (component filter)
and the flow graph is calculated (flow graph comput-
ing). After these steps the production rules are applied
and the results are forwarded to an explanation com-
ponent for giving possible explanations of the results.
Finally the results are passed back to the user through
the interface dialogue component.

5 EXAMPLE

In this section we give a small impression of the
functionality of harmonic. Fig. 5 depicts a part of
an ethyl acetate plant (cf. [6]). The volume of ves-
sel F1 is modeled by a cTLA processF1FVol (of
typeVesselVolume) and the volume ofD1 by D1FVol

Figure 5: PID of a plant part
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F1FVol
(Type: VesselVolume)

D1FVol
(Type: VesselVolume)

flowF1D1
(FlowF1D1.CONT)
(Type: PumpFlow)

flowV3
(V3.CONT)
(Type: ValveFlow)

Figure 6: Flow graph

(VesselVolume). The pumpP3 is specified by the
framework componentFlowF1D1 (of type PumpFlow)
and the valveV3 by the processV3 (ValveFlow).
Application of the flow graph knowledge identifies
the processesFlowF1D1 (of type PumpFlow) and V3
(ValveFlow) for flow definition. They define the flow
namesflowF1D1 resp. flowV3. In this example,
sources and sinks are specified by the process type
VesselVolume and flows are defined by process types
ValveFlow and PumpFlow. Fig. 6 depicts the corre-
sponding flow graph part. Rules defined in the pro-
duction rule base can be applied on this graph after its
computation:

inSys(ValveFlow) :: LineMaxFlow(1.0);
isInFlow(ValveFlow, VesselVolume)

:: VesselMaxPressureOrNoFlow(#);
areInFlows(ValveFlow, PumpFlow, VesselVolume)

:: ValveOpenorNoPump(#);

The results are shown in Fig. 7. The first rule checks
whether processes of typeValveFlow are defined any-
where in the specification. It contains the safety
propertyLineMaxFlow with parameter1.0. This safety
property assures that the flow through the valveV3 does
not exceed a limit of 1.0 m3/sec. The second rule
states that for all flows which are of typeValveFlow

Rule causing the following output:
inSys(ValveFlow) :: LineMaxFlow(1.0)
Component: File: Safety-Property: Params:
-----------------------------------------------------
V3 PS.ct LineMaxFlow (1.0)

Rule causing the following output:
isInFlow(ValveFlow, VesselVolume)

:: VesselMaxPressureOrNoFlow(#)
Component: File: Safety-Property: Params:
-----------------------------------------------------
V3 PS.ct VesselMaxPressureOrNoFlow (#)
D1FVol PS.ct VesselMaxPressureOrNoFlow (#)

Rule causing the following output:
areInFlows(ValveFlow, PumpFlow, VesselVolume)

:: ValveOpenOrNoPump(#)
Component: File: Safety-Property: Params:
-----------------------------------------------------
V3 PS.ct ValveOpenOrNoPump (#)
FlowF1D1 PS.ct ValveOpenOrNoPump (#)
D1FVol PS.ct ValveOpenOrNoPump (#)

Figure 7: Results

and incoming flows of processes of typeVesselVolume
the safety propertyVesselMaxPressureOrNoFlow has
to be fulfilled. This property assures that a flow
through a valve connected to a vessel occurs only if
the pressure in the vessel does not exceed a certain
value. Since the safety property parameter is not de-
fined (#), the plant developer adjusts the parameter
after the plant evaluation. Due to the second rule
harmonic suggested processesV3 and D1FVol to the
system developer for checking with safety property
VesselMaxPressureOrNoFlow. The last rule gets all
processes of typeValveFlow andPumpFlow which are
incoming flows of processes of typeVesselVolume.
Therefore it is possible to check whether a valve and
a pump are connected in one line to a vessel. The prop-
erty ValveOpenOrNoPump assures that a pump does
only work for a certain period of time if the flow in a
line is blocked due to a closed valve. In our example
valveV3 (process:V3, flow name:flowV3) and pump
P3 (FlowF1D1, flowF1D1) are connected to vesselD1
(D1FVol).

The safety properties are computed for each process
found during the evaluation of one rule. Since com-
ponents can be specified in different subsystems, the
expert has to decide for which subsystem or subsys-
tems he proves the detected safety property (e.g., in
the third rule valveV3 and pumpP3 (FlowF1D1) could
be specified inSubsystem1 and vesselD1 (D1FVol) in
Subsystem2).

6 CONCLUDING REMARKS

The approach of specification frameworks, which was
also used in the computer science field of telecommuni-
cation protocols [12, 14], proved as a successful means
in supporting formal hazard analysis of hybrid techni-
cal systems.harmonic facilitates the framework ap-
plication by suggesting useful safety properties to be
kept by a plant in order to avoid hazards. It comple-
ments two other tools. The cTLA-program ctc [16] en-
ables the composition of single specification modules
to complete subsystem or system descriptions. The tool
COAST [9] supports formal proofs by the selection of
suitable framework theorems and carrying out the the-
orem consistency checks.
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