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Abstract 

Transposing the notion of software frameworks to the 
abstraction level of formal specifications and verifications, 
we developed a framework supporting the formal hazard 
analysis of chemical plants. It provides generic specification 
modules for the description of safety properties, specifica- 
tion modules for the description of plant models, and theo- 
rems stating that certain subsystem structures of the plant 
model imply certain safety properties. Using the framework 
for hazard analysis, one firstly describes the plant and its 
control equipment as a composition of framework module 
instances. Secondly, one expresses the different safety prop- 
erties of interest by parameterized framework modules. Fi- 
nally, a safety property is proven when an appropriate the- 
orem instance of the framework can be found. Thus, the 
framework facilitates the formal modeling. Moreover, the 
efforts for formal verifications are reduced drastically since 
framework theorem instances can replace explicit proofs. 

The framework utilizes modular temporal logic spec- 
ifications supported by the specification language cTLA 
which is a variant of Lamport’s temporal logic of actions 
TLA and in particular is devoted to the compositional de- 
scription of process systems. 

1 In t roduct ion  

Modern chemical plants are complex hybrid systems 
consisting of various process and control equipment. Con- 
tinuous mass and energy flows of chemical production pro- 
cesses are controlled by event-discrete real-time hardware 
and software systems. As a rule, the operation of chem- 
ical plants entails diverse risks. Therefore, the design of 
plants has to be accompanied with careful and responsible 
hazard analysis procedures. Since comprehensive and easy- 
applicable formal methods are not yet available, the analysis 
procedures are mainly based on informal discussions follow- 
ing the well-established “Hazard and Operability Studies” 
approach (HazOp) [16]. The potential value of formal meth- 
ods, .however, is appreciated and several approaches were 
proposed applying tool-assistance, formal modeling, and 
formal model based reasoning to  tasks and subtasks of haz- 
ard analysis. Thus, expert systems can provide automated 
procedure assistance [4, 6, 19, 221 and simulation tools pro- 
vide helpful insight into a system under design [5, 17, 231. 

Moreover, approaches exist which support the direct for- 
mal analysis in order to achieve formal safety proofs using 
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qualitative equation models [3, 231, petri net models [20], 
and temporal logic [18]. The approaches are related to tech- 
niques known from the field of formal hardware and soft- 
ware system verification. As in this field, the experience is 
gained that formal verification introduces considerable ad- 
ditional costs and is moreover prone to errors. Therefore, 
tool support is of high interest lowering the costs due to 
automation and increasing the reliability of proofs due to 
mechanical reasoning. Corresponding tools were developed 
using exhaustive state space exploration [21] or symbolic 
model checking techniques [2, 15,181. When analyzing com- 
plex systems of practical interest, the tool support, however, 
is not satisfactory. Fully automated state space exploration 
tools fail due to  the very high number of reachable sys- 
tem states to  be managed. Symbolic theorem proving tools 
need active and intelligent user guidance providing suit- 
able proof structures. Consequently, substantial efforts are 
needed either to  develop abstractions and simplifications 
for automated state space exploration or to design lemmas, 
strategies, and proof outlines to  be supplied to symbolic 
theorem provers. 

Our general approach is also based on symbolic logic 
theorem proving and uses modular temporal logic specifi- 
cations [lo]. Since we aimed to  the efficient verification of 
complex practical systems, we looked for additional means 
in order to  complement the support provided by an ap- 
propriate formal modeling technique and its tools. Firstly, 
we focused on the modular description of hybrid systems 
obtaining re-usable specification modules (generic process 
type definitions) and verification elements (theorems). This 
supported the efficient re-use and the structuring of verifi- 
cations into a series of relatively small subproofs [7]. Sec- 
ondly, we wanted to facilitate the proof design. Therefore 
we proposed relatively direct mappings of traditional in- 
formal HazOp argumentations to  formal proofs [9]. Now, 
we propose a third complementary approach. It adopts 
the well-known notion of “frameworks” from software en- 
gineering (cf. [ l l ] )  and transfers it from the construction 
of software systems to  the construction of formal models 
and proofs. Software frameworks are devoted to special 
application domains. They provide rules governing the ar- 
chitecture of software systems and moreover supply mod- 
ules supporting their efficient composition. Similarly, our 
specification and verification framework is devoted to the 
special application domain of chemical plants. Besides of 
architectural rules it comprises two collections of generic 
specification modules. One collection contains modules de- 
scribing components used by chemical plants (e.g., vessels, 
valves, pumps, mixers) as well as specifications of the com- 
ponents of plant control systems (e.g., sensors, actuators, 
controllers). Based on these modules specifications are de- 



ite easy steps. Firstly, generic modules are 
order to model components of a particular 

the entire plant is specified by a compo- 
sition of these module instances. The other specification 
module collection contains modules modeling safety prop- 
erties to be kept by a plant (e.g., no excess pressure above 
a certain limit in a vessel). The use of two groups of speci- 
fication modules addressing two different abstraction levels 
(i.e., plant component models and abstract safety proper- 
ties) is an extension to software frameworks which supply 
only software modules but do not provide formal specifi- 
cation elements. Moreover, there is a second important 
extension. In addition to these two groups of specification 
modules, our framework provides verification elements fa- 
cilitating formal proofs that chemical plants keep certain 
safety properties. A collection of generic theorems is in- 
cluded where each theorem instance ensures that a safety 
property is provided by specific subsystems of plant models. 
Since we already proved the validity of the theorems, frame- 
work users only need to select a suitable theorem, to in- 
stantiate it according to the parameter settings of the plant 
models and safety property specifications, and, finally, to 
perform some simple checks guaranteeing the consistency 
of the theorem instance and plant model. Therefore, the 
framework does not only facilitate the efficient construc- 
tion of formal models and specifications, but also supports 
the formal reasoning directly, since formal proofs can rela- 
tively easily be combined from theorems of the framework. 
For example, we specified the example plant used in this 
paper and proved 33 safety properties within four days. 

Our approach roots in an approach for the formal 
verification of complex data communication protocols (cf. 
e.g. [8]) introducing the temporal logic specification lan- 
guage cTLA for the description of event-discrete distributed 
and concurrent process systems. cTLA is based on Leslie 
Lamport’s Temporal Logic of Actions TLA [14]. Particu- 
larly, it supports the modular description of process types. 
System descriptions can be composed from implementation- 
oriented as well as from constraint-oriented processes. 
Process composition has the character of superposition 
(cf. [12]), i.e., relevant properties of processes and subsys- 
tems are also properties of the embedding system. There- 
fore, structured verification can be applied, i.e., for the ver- 
ification of a system property it is sufficient to prove that 
a subsystem exists which has the property. Moreover, since 
cTLA facilitates the description of systems as appropriate 
constraint compositions, specifications can reflect the log- 
ical connections and dependencies of systems. Therefore, 
mostly small subsystems can be identified supporting the 
structured verification of interesting system properties. Be- 
cause of these features, cTLA proved to  be very well suited 
for the establishment of specification and verification frame- 
works. We developed extensions for the modeling of real- 
time and continuous properties which keep the superposi- 
tion character of composition [7] .  Based on these exten- 
sions, frameworks for hybrid systems like the framework 
for the formal hazard analysis of chemical plants can be 
established. 

In the remainder we firstly concentrate on the essen- 
tials of our approach. We discuss the framework structure 
and describe an example system. Moreover, a short com- 
parison with traditional HazOp shall clarify the approach. 

I C  

Thereafter, we enter into more details. The specification 
technique cTLA is outlined and a sketch of a formal veri- 
fication is given verifying a safety property of the example 
system. 

2 Framework 

The framework which is available in the World Wide 
Web (ls4-www . cs .uni-dortmund. de/RVS/P-HYSYS) com- 
prises a set of rules concerning the architecture of specifica- 
tions, a set of specification modules, and a set of theorems. 
The architecture rules focus on plant models which are com- 
posed from instances of generic specification modules. The 
rules refer to the different module groups in connection with 
the different types of real plant components. They govern 
the modeling of plant components by compositions of spec- 
ification module instances. In fact, each plant component 
is modeled in a constraint-oriented way by a composition 
of several modules, since the plant model shall have a rela- 
tively fine-grained structure in order to support the proof of 
system properties from small subsystems. For instance, the 
framework contains modules each describing only a single 
aspect of a vessel in the chemical plant (e.g., the amount 
of a liquid in the vessel, the temperature of the liquid, the 
pressure in the vessel). The specification of the entire ves- 
sel is derived by composing these modules. Moreover, there 
are rules applying to the architecture of a plant model as 
a whole. These rules describe, how plant component mod- 
els are coupled to form the global plant model. Due to 
the constraint-oriented modules, plant models have a three 
layered hierarchical structure. A plant model is a compo- 
sition of subsystems which are compositions of plant com- 
ponent behaviour constraints. This hierarchical structure 
facilitates the design of models. With respect to verifica- 
tion, however, it is not useful, since, here, we want to form 
subsystems which consist of small subsets of the constraints 
of a series of components. Since the composition operation 
of cTLA is associative and commutative, hierarchical plant 
models can easily be transformed into constraint-oriented 
descriptions which are suitable for verification. 

The set of specification modules of the framework is split 
into two collections, one for plant models and the other for 
safety property specifications (cf. Fig. 1). Safety property 
specifications have a very simple structure. Each property 
is described by one instance of a specification module. The 
composition of the instances corresponds to the logical con- 
junction of properties and acts as a safety property specifi- 
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Figure 1: The framework for the formal hazard analysis of 
chemical plants 



cation. A safety property module expresses mainly that a 
certain limit is observed (e.g., flow, power, pressure, volume, 
or temperature in a plant component does not exceed or 
fall below a critical limit). Additionally, there are modules 
excluding critical combinations of operational component 
states (e.g., below a certain flow, a pump will be switched 
off in order not to run dry; below a certain vessel volume, 
the heating will be switched off in order to prevent over- 
heat). 

The set of plant model modules is structured into two 
main groups. One is devoted to plant components, the other 
to malfunctions. The plant component group contains four 
subgroups of component behaviour constraints: continuous, 
discrete, sensor, and actor constraints. For instance, the 
continuous volume of a vessel content obeys a constraint of 
type VesseZVoZume (cf. Sec. 5) which models the current 
volume depending on the amount of liquid running into 
resp. draining from the vessel. A constraint of type Sen- 
sorAZarm describes that a sensor will create an alert when 
the monitored value exceeds a limit. It is an example of 
a hybrid constraint, since the monitoring of a continuous 
value is combined with a discrete reaction. The modules 
of the malfunctions group specify component malfunctions 
to be tolerated by the plant. Examples are leakage or jam 
of pipes and valves as well as failures of active components 
like pumps and heatings. 

The theorems of the framework are implications of the 
form “plant-constraint-subsystem A malfunction-subsystem 
+ safety-property” . They assert that certain plant subsys- 
tem structures guarantee safety properties even under the 
presence of malfunctions. For instance, a very simple sub- 
system corresponds to a controlled pump where the control 
switches off the pump in case of low flow. This subsystem 
guarantees the safety property that there exists a maximum 
duration limit for time intervals where the pump operates 
below a critical flow limit. Mostly, however, the subsystems 
tend to be more complex. Often plant components can in- 
terfere with many other and even very distant components. 
This would lead to very large subsystems. Since there are 
numerous variants for the structure of large subsystems, 
the framework would consequently have to contain numer- 
ous theorems. We solve this problem by an extended form 
of theorems. We add a conjunct to the left side of the impli- 
cation which describes safety requirements of the environ- 

Figure 2: Sketch of the example system 

ment of subsystems. Since these safety requirements are ex- 
pressed by means of the specification module collection for 
safety properties, theorems have the form “plant-constraint- 
subsystem A malfunction-subsystem A safety-property A . . . 
A safety-property + safety-property’’ and one can transi- 
tively use other theorems for the validation of the safety 
requirements of the subsystem environment. For instance, 
consider a set of serially connected tanks. If one can prove 
that the first tank is never empty and that each other tank 
does not run empty if its predecessor is not empty, one can 
infer, that all tanks never are empty. This, however, does 
not work in the case of circular dependencies where we look 
for safety property hierarchies. 

3 Example 

To explain our approach, we introduce in Fig. 2 a hybrid 
technical plant (cf. [ 5 ] )  for the production of ethyl acetate, 
an ester used as a solvent. The ethyl acetate is produced 
in the distillation reactor C1 by esterification of acetic acid 
and ethanol. The acetic acid and a catalyst are stored in the 
vessel B1, while the ethanol is held in B2. The catalyst is 
removed from C1 into a waste tank while the distilled ethyl 
acetate is condensed in the heat exchanger W1 and drops 
into the extractor F1. Here, the ethyl acetate is purified 
by washing it with water into the final product which is 
removed. 

The remaining solution of ethyl acetate, ethanol, and 
water is pumped into the vessel D1, where the ethyl ac- 
etate is removed again by distillation. It condenses in W2 
and is fed back into the extractor F1. The remaining mix- 
ture of ethanol and water is separated in the distillation 
vessel D2. The ethanol is distilled, condensed in the heat 
exchanger W3 and fed back to the storage vessel B2, while 
the remaining water is removed from D2. 

4 Comparing our approach to HazOps 

Below, we will outline the differences between tradi- 
tional Hazard and Operability Studies (HazOps) [16] and 
our approach by means of the example plant. 

In a HazOp, the plant is investigated for possible failures 
and their consequences. For instance, a failure may occur 
if the team driving the plant forgets to add acetic acid and 
the catalyst into the storage vessel B1. Consequently, the 
vessel eventually becomes empty. This leads to the pump 
P1 running dry which might cause a damage of this pump. 
Furthermore, since the controller UC203 guarantees a cer- 
tain ratio of acetic acid and ethanol feeds into the reactor 
C1, the valve between pump P2 and C1 is closed. Thus, 
P2 pumps against a closed valve causing excess pressure. 
As well, the reactor C1 eventually becomes empty. Thus, 
the heating of C1 has to be switched off in order to prevent 
damages of the heating pipes. Likewise, all components of 
the plant have to be investigated for failures. As a result, 
counter-measures like controllers switching off the pumps 
in case of low volume or excess pressure are suggested. 

In our framework approach we do not look for failures 
but try to prove safety properties stating that failures in the 
plant are not possible. If a proof succeed, we can rule out 



system failures due to design errors. Otherwise, we have 
to take counter-measures which are guided by the frame- 

For example, we want to rule out that the 
ay be damaged due to too low volume of liq- 

uid in the reactor. We prove safety properties by theorems 
of the framework. In our example the framework supplies 
two appropriate theorems. One theorem states that the 
environment of the reactor guarantees that the volume of 
liquids does not fall below a certain minimum value. As 
outlined above, this property does not hold since the con- 
troller UC203 may close the input valves if vessel B1 runs 
empty. The other theorem states that the desired safety 
property holds if the reactor contains a sensor signalling 
low volume and a controller switching off the heating after 
this signal and keeping it off until the volume exceeds the 
minimum again. Since the sensor and controller LS-A-207 
fulfill these demands, we can prove by this theorem that 
the heating of C1 cannot be damaged due to low volume of 
liquids if LS-A-207 does not fail (cf. Sec. 6). 

5 cTLA 

TLA [14] is a linear time temporal logic describing safety 
and liveness properties of state transition systems by means 
of canonical formulas. To facilitate the understanding of 
specifications, cTLA [lo] omits the canonical parts of TLA 
formulas. It is oriented at programming languages and in- 
troduces the notion of processes. A specification is struc- 
tured into modular definitions of process types. An instanti- 
ation of a process type forms a process which either has the 
form of a simple process or that of a process composition. 
Simple processes, which directly refer to state transition 
systems, are used to model single plant components resp. 
safety property modules of the framework (cf. Sec. 2). 

Fig. 3 depicts the example of three very simple process 
types. An instance of the type ReactOnAlam (top of Fig. 3) 
is used to specify the controller LS-A-207 in the example 
plant (cf. Fig. 2) describing that the controller reacts on a 
low volume alarm in reactor C1 by switching off the heat- 
ing of C1. The header of ReactOnAlarm declares the type 
name and generic module parameters (e.g., i n i t i a l s t a t e ) .  
These parameters facilitate to model a spectrum of similar 
but different processes by a single process type specification. 

The process type body defines the state transition sys- 
tem which corresponds to an instance of the type. The state 
space is defined by the state variable vastate .  The initial 
condition INIT  is a condition over state variables and de- 
fines the set of starting states. Finally, in the body actions 
are defined which model the state transitions (e.g., alarm, 
switch). An action is a predicate on a pair of an current 
state and a successor state and models a set of state transi- 
tions. The state variables which refer to the successor state 
occur in the so-called primed form (e.g., vastate ' ) .  An 
action can have action parameters. The disjunction of the 
actions forms the next state relation of the process. In the 
course of time, a process may perform action steps (i.e., it 
changes its state in accordance with an action) or stuttering 
steps (i.e., it does not change its state while the environ- 
ment performs a state transition). 

According to [l], real-time is represented by means of 
a real-valued state variable now which is incremented lively 

PROCESS ReactOnAlarm 

BODY 
( i n i t i a l s t a t e  : {"ready", "alarm")) 

VARIABLES 
vastate  : {"ready", "alarm"); current alarm state 

INIT vastate  = i n i t i a l s t a t e ;  
ACTIONS 

alarm A signal alarm 

switch A react by switching an actor 
vastate '  = "alarm"; 

vastate  = "alarm" A vastate '  = "ready"; 
END 

PROCESS ReactMaxTime ( maxtime : r e a l  ) 
BODY 

ACTIONS 

V MAX TIME switch : maxtime; 
switch; 

END 

PROCESS VesselVolume ( capacity : r e a l  ; 

BODY 
initvolume : r e a l  ) 

VARIABLES 
vvolume : r e a l ;  current volume 

INIT A vvolume = initvolume; 
ACTIONS 

CONT (INPUT inf low,  outflow : r e a l ;  
OUTPUT volume, room : r e a l )  

vvolume ' = 
Max(Min((inf1ow - outflow) . (now' - now) 

+ vvolume, capacity),O) A 
volume = vvolume A 
room = Max (0,capacity - vvolume) ; 

END 

Figure 3: Process Types ReactOnAlarm, ReactMaxTime, 
and Vessel Volume 

by a clock action t i c k .  Unlike other variables, which are 
private in exactly one process, now can be read by all pro- 
cesses of a system. Additional real-time constructs describe 
activity retarding and activity forcing real-time constraints. 
In accordance to [13], one can specify minimum waiting 
times and maximum reaction times for actions. Moreover, 
one may refer to volatile and to persistent enabling peri- 
ods of an action. The maximum reaction time construct 
is conditional in order to ensure the consistency of process 
compositions. I t  forces an action only with respect to peri- 
ods where the action is enabled and the environment does 
not block it. For instance, the center of Fig. 3 shows the 
process type ReactMaxTime. It  declares an action switch 
with a volatile maximum reaction time. In our example, an 
instance of this process type is used to model the maximum 
reaction time of the controller LS-A-207. 

Continuous properties of a process are expressed by 
means of an action with the special name CONT. All CONT- 
actions of all processes of a system and the tick-action of the 
clock are assumed to occur simultaneously. Thus, the series 
of CONT-steps of the system approximates the continuous 
behaviour (cf. [13]). Usually, the CONT-actions contain dif- 
ference equations for continuous state variables. The time 
difference modeled by an execution of CONT is expressed by 
the difference now'-now. The inputs and outputs of con- 



definition. Thus, one can specify all relevant properties of 
a hybrid system component by one process. However, to 
support a fine-grained constraint-oriented system structure 
(cf. Sec. 2), we mainly use process types which concentrate 

Vesselvol : VesselVolume(CapC1. InitVolC1); on properties of a single sort. 
Systems and subsystems are described as compositions volume of liquid in the reactor C1 

of concurrent processes. Each process encapsulates its vari- Vaporization : VesselVaporize(Liquiddense, 

ables and can change its state by atomic executions of its 
actions. The system state is the vector of the state vari- amount of liquid vaporized in C1 

ables of the processes. State transitions of the system cor- Heater : Heating(MaxPouC1, IncratePouCI, 

respond to simultaneous process actions and process stut- 
tering steps. Each process performs either exactly one ac- heating of the reactor C1 

tion or an stuttering step. Thus, the system actions can SensorAlarm : SenseMin(SenseVo1); 

be defined by conjunctions of process actions and process sensor: liquid volume in C1 falls below SenseVol 

stuttering steps. Consequently, concurrency is modeled by SensorAlarmTime : SenseMaxTime(Sensetime1; 

interleaving while the coupling of processes corresponds to time constraint for sensor 

joint actions. Fig. 4 shows an example of a system specifica- SensorRelease : SenseMax(SenseVo1); 

tion. The process type SwitchOffHeatingDueToLow Volume sensor: liquid volume in C1 exceeds SenseVol 

models a part of the example plant. In the part PROCESSES Suit chOf f Heat ing : React OnAlarm ("ready") ; 

the processes of the system are declared as instantiations control unit LS-A-207 switches heating off 
Switchof f HeatingTime : ReactMaxTime (Reacttime) ; of process H ~ ~ ~ ,  it consists of processes 

modeling important properties of the reactor C1 (the vol- time constraint for LS-A-207 

ume liquid, the amount of ethyl acetate vaporized within a KeepHeatingOf f : BlockOnAlarm("b1ock") ; 
LS-A-207 guarantees that heating is not switched on while time-unit, and the heating), the signalling low vel- 

ume in C1, and the controller LS-A-207 which realizes the the amount of liquid is below the minimum 

PROCESS SuitchOffHeatingDueToLouVolume 
(Capcl : real; . . .) 

PROCESSES 

Gasdense, Enthalpy) 

DecratePouCi) ; 

ACTIONS non-listed processes perform stuttering steps 

OUTPUT Clvol, Clvapliquid, Clvapgas, 
CONT (INPUT BlClvol, B2Clvol. 

Clpouer, Cloutflow : real) 
continuous volume Aow 
VesselVol.CONT (BlClvol + B2Clvol. 

Clvapliquid + Cloutflow ; 
Clvol) A 

Vaporization.CONT (Clvol, Clpouer, 

Heater.CONT ( ; Clpower) A 
SensorAlarm.CONT (Clvolume ; ) A 
SensorRelease.CONT (Clvolume ; ) A . . .; 

Clvapliquid, Clvapgas) A 

switching off of the heating in C1 after the volume falls be- 
low a minimum value. Moreover, LS-A-207 guarantees that 
the heating remains off until the amount of liquid recovers. 
Thereafter, in the part ACTIONS the system specification de- 
scribes the coupling of the processes by the definition of the 
joint system actions. For instance, the action HeatingOff 
models that, if the controller LS-A-207 reacts on a sensor 
alarm (action SuitchOffHeating. switch), the heating is 
switched off simultaneously (action Heater. off). Further- 
more, HeatingOf f must switch within a volatile reaction 
time (action SuitchOffHeatingTime. switch). The cTLA 
specification of the example plant is available on the inter- 
net (ls4-WU. cs . uni-dortmund. de/RVS/P-HYSYS). 

Alarm A sensor reports liquid volume below minimum 
SensorAlarm.alarm A SensorAlarmTime.alarm A 
SuitchOf f Heating. alarm A 
KeepHeatingOff .alarm A . . .; 

SensorRe1ease.alarm A 
KeepHeatingOff .release A . . .; 

6 Verification Example 

Release E sensor reports liquid volume above minimum Below, we will exemplify the use of the framework by 
sketching the formal proof that the heating of the reactor 
C1 in our example system (cf. Fig. 2) does only work if the 

HeatingOff A LS-A-207 switches the heating off 
Heater.off A SuitchOffHeating.suitch A 
Suitch0ffHeatingTime.suitch A . . .; PROCESS VesselMinVolumeOrNoPower 

BODY 
(minvolume : real) 

HeatingOn 4 switch on heating only if i t  is not blocked 
Heater. on A KeepHeatingOff .switch A . . .; 

Figure 4: Subsystem SwitchOffHeatingDueToLow Volume 

tinuous processes are modeled by action parameters. As an 
example, the bottom of Fig. 3 depicts the process VesselVol- 
ume which is used in the example plant to model the volume 
of liquids in the reactor C1. The process declares a contin- 
uous real-valued state variable vvolume. The CONT-action 
declares the continuous inflows and outflows of liquids and 
lists the difference equation for vvolume. 

Several constructs stating safety, real-time, and contin- 
uous properties may be contained in the same process type 

VARIABLES 
vvolume : real; current volume 
vpouer : real; current power 

A INIT = vpouer = 0; 
ACTIONS 

CONT (OUTPUT volume, power : real) 4 
IF (vvolume < minvolume) 
THEN vpower' = 0 ELSE vpouer' 2 0 A 
power = vpouer A 
volume = vvolume; 

END 

Figure 5: Safety Constraint VesselMin VolumeOrNoPower 
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amount of liquid in C1 exceeds a minimum value. Thus, we 
e heating pipes are covered with liquid if 
nd therefore cannot run too hot. In Fig. 5 

we sketch the process VesselMan VolumeOrNoPower which 
models the safety constraint we want to prove. It contains a 
process parameter minvolume indicating the minimum vol- 
ume of liquid below which no power must be supplied. The 
volume of liquid in the reactor is modeled by the variable 
vvolume while vpower describes the amount of power sup- 
plied by the heating. Initially, no power is supplied at all. 
The state.transitions in this process type are modeled by the 
continuous action CONT stating that power may be supplied 
only (vpower' 2 0) if the volume of liquid in the reactor is 
greater or equal to minvolume. 

To prove that our example plant fulfills this safety spec- 
ification, we use the framework theorem VesselManOrNo- 
Power listed in Fig. 6'. A framework theorem states that 
a subsystem specification Sys implies a safety constraint 
(e.g., VesselManVolumeOrNoPower) if the conditions Pars 
and EnvCond hold. Similarly to cTLA system processes, Sys 
contains a part PROCESSES listing the processes, the subsys- 
tem is composed from, and a part ACTIONS describing the 
coupling of the process actions to joint subsystem actions. 
The subsystem Sys is composed from the instance sohdtlv 
of the subsystem process SwatchOffHeatangDueToLow Vol- 
ume (cf. Fig. 4) and the instance MaxDraining of the safety 
process type LzneMaxFlow. sohdtlv describes the subsys- 
tem of the plant specification which realizes the safety con- 
straint (i.e., the reactor volume, the amount of liquid vapor- 
ized, the heater, the sensor, and the controller LS-A-207). 
The safety constraint MaxDraining models that the envi- 
ronment of the reactor guarantees that at most an amount 
of Maxoutflow liquid drains from the reactor per time unit. 
The validity of MaxDraining is proven separately by another 
framework theorem. 

The condition Pars states that the parameters of the 
processes listed in Sys and the safety constraint to be proven 
are instantiated consistently. Here, Pars states that the sen- 
sor reacts early in order to guarantee that the heating stops 
running before the volume of liquid falls below the minimum 
value Minvolume. Pars considers the reaction times of the 
sensor and controller as well as the time the heating needs 
to cool down. It states that the parameter SenseVolume, 
which indicates the volume of liquid triggering a sensor sig- 
nal, is greater than the sum of minvolume, the amount of 
liquid vaporized until the sensor and controller react, the 
amount of liquid vaporized while the heating cools down, 
and the amount of liquid draining from the reactor until 
the sensor and controller react and the heating needs to 
cool down. 

By the environment condition EnvCond we prove that 
the processes of the plant specification not listed in Sys  do 
not block relevant actions of Sys. Here, EnvCond guaran- 
tees that the environment of Sys does not block the actions 
A l a r m  and HeatingOf f . Without fulfilling this condition, 
the environment may prevent the sensor to signal low vol- 
ume and the controller to switch off the heating spoiling the 
safety constraint VesselMan VolumeOrNoPower. 

'Fig. 6 shows a shortened form of the theorem. In long form, 
Sys consists directly of the processes listed in SvtitchOflHeating- 
DueToLow Volume and MaxDraining. 

THEOREM VesselMinVolumeOrNoPower 
LET P a r s  4 
SenseVol > Minvolume + 

(MaxPowCl / (Liquiddense . Enthalpy)) 
. (Sensetime + Reacttime) + 
MaxPowCl' / (2 . DecratePowCl . 

((MaxPowC1 / DecratePowCl + Sensetime 
Liquiddense . Enthalpy) + 

+ Reacttime) . Maxoutflow) 
sensor sensitivity guarantees that heating power supply is 
stopped before the vessel volume falls below the critical limit 

PROCESSES Subsystem 
sys A 

sohdtlv : SwitchOffHeatingDueToLowVolume 
(Capcl, InitVolCl, Liquiddense, 
Gasdense, Enthalpy, MaxPowCl. 
IncratePowCl. DecratePowCl, 
SenseVol, Sensetime, Reacttime) ; 

subsystem of plant containing relevant processes to switch 
o f f  heating due to low volume 
MaxDraining : LineMaxFlow (Maxoutflow); 
maximum flow of fluid out of the vessel 

ACTIONS 
CONT ( OUTPUT Clvol. Clvapliquid, Clvapgas, 

Civappower, Cloutflow : r e a l  2 
continuous volume flow 

sohdtlv.CONT 
(CHOOSE x : x 2 0. CHOOSE x : x 2 0 ; 
no draining through inflow lines from B1 and B2 
Clvol, Clvapliquid, Clvapgas, Clvappower, 
Cloutflow) A 

MaxDraining.CONT ( ; boutflow ) ; 

sohdtlv.Alarm A MaxDraining.stutter; 

sohdtlv.Release A MaxDraining.stutter; 
HeatingOff LS-A-207 switches the heating off 

sohdtlv.Heating0ff A MaxDraining.stutter; 
HeatingOn A switching on heating if it is not blocked 

sohdtlv.Heating0n A MaxDrainjng.stutter; 

A Alarm = sensor reports liquid volume below minimum 

Release sensor reports liquid volume above minimum 

EnvCond A 
Enabled(sohdtlv.Alarm) + Sys.eAlam # {I A 
Enabled(sohdtlv.Heating0ff) + 

SF. eHeatingOf f # {I ; 
I N  Pars A Sys A OEnvCond + 

VesselMinVolumeOrNoPower (Minvolume); 

Figure 6: Theorem VesselMin VolumeOrNoPower 

In order to prove VesselMinVolumeOrNoPower, we re- 
place the process parameters in the theorem by their cur- 
rent values. For example, since both the sensor and the 
controller react within 0.1 seconds, we instantiate the pa- 
rameters Sensetime and Reacttime with 0.1. Afterwards, 
we check five conditions of the theorem. At first, we have 
to check that the processes listed in Sys (i.e., sohdtlv) are 
also contained in the plant model. Secondly, we check that 
the safety specifications of Sys (i.e., MaxDraining) are al- 
ready proven by means of other theorems. Thirdly, we check 
that the action coupling of Sys is consistent to  the action 
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coupling of the plant model. For instance, the condition 
on the f i s t  parameter of the action sohdtlv.CONT in Sys 
models that no liquid may drain through the pipe linking 
the reactor C1 with the vessel B1. In the plant specifi- 
cation the process modeling the pump P1 guarantees this 
assumption. Fourthly, we have to prove that the condi- 
tion Pars hold. Due to the replacements of the process 
parameters this proof is performed by simple mathemati- 
cal transformations. Finally, we check that the invariant 
EnvCond holds. Since in the plant specification the enabling 
conditions of the actions Alarm and HeatingOff only de- 
pend on processes in sohdtlv, this condition holds, too. 
One verifies other safety properties in the same manner by 
choosing suitable framework theorems and performing the 
five condition checks as described above. 

7 Concluding remarks 

We introduced the notion of frameworks for the mod- 
eling and verification of technical systems and outlined a 
corresponding framework for the hazard analysis of chemi- 
cal plants. The framework was successfully applied to the 
example system (Sec. 3) and other chemical plants. While 
the general framework approach does not depend on specific 
specification languages, we profit from the special features 
of cTLA. It supports the description of hybrid systems. Be- 
sides of safety and liveness properties of event-discrete pro- 
cesses, it can express real-time properties and properties of 
continuous processes. Therefore, integral models compris- 
ing plants as well as control hardware and software can be 
described. This gives - in connection with the superpo- 
sition property of cTLA's process composition - a very 
good basis for frameworks in real-time and hybrid system 
application domains. 
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