
Proceedings of the 2000 IEEE International
Symposium on Computer-Aided Control System Design

MA2-3 1 O : l O Anchorage, Alaska, USA September 25-27, 2000

A Framework for the Hazard Analysis of Chemical Plants’

Peter Herrmann and Heiko Krumm
Universitat Dortmund, Fachbereich Informatik, D-44221 Dortmund

Email: {herrmann~krumm}@ls4.cs.uni-dortmund.de
Phone: +49-231-7554674, Fax: +49-231-7554730

Abstract

Transposing the notion of software frameworks to the
abstraction level of formal specifications and verifications,
we developed a framework supporting the formal hazard
analysis of chemical plants. It provides generic specification
modules for the description of safety properties, specifica-
tion modules for the description of plant models, and theo-
rems stating that certain subsystem structures of the plant
model imply certain safety properties. Using the framework
for hazard analysis, one firstly describes the plant and its
control equipment as a composition of framework module
instances. Secondly, one expresses the different safety prop-
erties of interest by parameterized framework modules. Fi-
nally, a safety property is proven when an appropriate the-
orem instance of the framework can be found. Thus, the
framework facilitates the formal modeling. Moreover, the
efforts for formal verifications are reduced drastically since
framework theorem instances can replace explicit proofs.

The framework utilizes modular temporal logic spec-
ifications supported by the specification language cTLA
which is a variant of Lamport’s temporal logic of actions
TLA and in particular is devoted to the compositional de-
scription of process systems.

1 In t roduct ion

Modern chemical plants are complex hybrid systems
consisting of various process and control equipment. Con-
tinuous mass and energy flows of chemical production pro-
cesses are controlled by event-discrete real-time hardware
and software systems. As a rule, the operation of chem-
ical plants entails diverse risks. Therefore, the design of
plants has to be accompanied with careful and responsible
hazard analysis procedures. Since comprehensive and easy-
applicable formal methods are not yet available, the analysis
procedures are mainly based on informal discussions follow-
ing the well-established “Hazard and Operability Studies”
approach (HazOp) [16]. The potential value of formal meth-
ods, .however, is appreciated and several approaches were
proposed applying tool-assistance, formal modeling, and
formal model based reasoning to tasks and subtasks of haz-
ard analysis. Thus, expert systems can provide automated
procedure assistance [4, 6, 19, 221 and simulation tools pro-
vide helpful insight into a system under design [5, 17, 231.

Moreover, approaches exist which support the direct for-
mal analysis in order to achieve formal safety proofs using

~~ ~

‘This work was funded by the German research foundation
DFG .
0-7803-6566-6/00$1 O.OoQ2000 IEEE

qualitative equation models [3, 231, petri net models [20],
and temporal logic [18]. The approaches are related to tech-
niques known from the field of formal hardware and soft-
ware system verification. As in this field, the experience is
gained that formal verification introduces considerable ad-
ditional costs and is moreover prone to errors. Therefore,
tool support is of high interest lowering the costs due to
automation and increasing the reliability of proofs due to
mechanical reasoning. Corresponding tools were developed
using exhaustive state space exploration [21] or symbolic
model checking techniques [2, 15,181. When analyzing com-
plex systems of practical interest, the tool support, however,
is not satisfactory. Fully automated state space exploration
tools fail due to the very high number of reachable sys-
tem states to be managed. Symbolic theorem proving tools
need active and intelligent user guidance providing suit-
able proof structures. Consequently, substantial efforts are
needed either to develop abstractions and simplifications
for automated state space exploration or to design lemmas,
strategies, and proof outlines to be supplied to symbolic
theorem provers.

Our general approach is also based on symbolic logic
theorem proving and uses modular temporal logic specifi-
cations [lo]. Since we aimed to the efficient verification of
complex practical systems, we looked for additional means
in order to complement the support provided by an ap-
propriate formal modeling technique and its tools. Firstly,
we focused on the modular description of hybrid systems
obtaining re-usable specification modules (generic process
type definitions) and verification elements (theorems). This
supported the efficient re-use and the structuring of verifi-
cations into a series of relatively small subproofs [7]. Sec-
ondly, we wanted to facilitate the proof design. Therefore
we proposed relatively direct mappings of traditional in-
formal HazOp argumentations to formal proofs [9]. Now,
we propose a third complementary approach. It adopts
the well-known notion of “frameworks” from software en-
gineering (cf. [l l]) and transfers it from the construction
of software systems to the construction of formal models
and proofs. Software frameworks are devoted to special
application domains. They provide rules governing the ar-
chitecture of software systems and moreover supply mod-
ules supporting their efficient composition. Similarly, our
specification and verification framework is devoted to the
special application domain of chemical plants. Besides of
architectural rules it comprises two collections of generic
specification modules. One collection contains modules de-
scribing components used by chemical plants (e.g., vessels,
valves, pumps, mixers) as well as specifications of the com-
ponents of plant control systems (e.g., sensors, actuators,
controllers). Based on these modules specifications are de-

ite easy steps. Firstly, generic modules are
order to model components of a particular

the entire plant is specified by a compo-
sition of these module instances. The other specification
module collection contains modules modeling safety prop-
erties to be kept by a plant (e.g., no excess pressure above
a certain limit in a vessel). The use of two groups of speci-
fication modules addressing two different abstraction levels
(i.e., plant component models and abstract safety proper-
ties) is an extension to software frameworks which supply
only software modules but do not provide formal specifi-
cation elements. Moreover, there is a second important
extension. In addition to these two groups of specification
modules, our framework provides verification elements fa-
cilitating formal proofs that chemical plants keep certain
safety properties. A collection of generic theorems is in-
cluded where each theorem instance ensures that a safety
property is provided by specific subsystems of plant models.
Since we already proved the validity of the theorems, frame-
work users only need to select a suitable theorem, to in-
stantiate it according to the parameter settings of the plant
models and safety property specifications, and, finally, to
perform some simple checks guaranteeing the consistency
of the theorem instance and plant model. Therefore, the
framework does not only facilitate the efficient construc-
tion of formal models and specifications, but also supports
the formal reasoning directly, since formal proofs can rela-
tively easily be combined from theorems of the framework.
For example, we specified the example plant used in this
paper and proved 33 safety properties within four days.

Our approach roots in an approach for the formal
verification of complex data communication protocols (cf.
e.g. [8]) introducing the temporal logic specification lan-
guage cTLA for the description of event-discrete distributed
and concurrent process systems. cTLA is based on Leslie
Lamport’s Temporal Logic of Actions TLA [14]. Particu-
larly, it supports the modular description of process types.
System descriptions can be composed from implementation-
oriented as well as from constraint-oriented processes.
Process composition has the character of superposition
(cf. [12]), i.e., relevant properties of processes and subsys-
tems are also properties of the embedding system. There-
fore, structured verification can be applied, i.e., for the ver-
ification of a system property it is sufficient to prove that
a subsystem exists which has the property. Moreover, since
cTLA facilitates the description of systems as appropriate
constraint compositions, specifications can reflect the log-
ical connections and dependencies of systems. Therefore,
mostly small subsystems can be identified supporting the
structured verification of interesting system properties. Be-
cause of these features, cTLA proved to be very well suited
for the establishment of specification and verification frame-
works. We developed extensions for the modeling of real-
time and continuous properties which keep the superposi-
tion character of composition [7] . Based on these exten-
sions, frameworks for hybrid systems like the framework
for the formal hazard analysis of chemical plants can be
established.

In the remainder we firstly concentrate on the essen-
tials of our approach. We discuss the framework structure
and describe an example system. Moreover, a short com-
parison with traditional HazOp shall clarify the approach.

I C

Thereafter, we enter into more details. The specification
technique cTLA is outlined and a sketch of a formal veri-
fication is given verifying a safety property of the example
system.

2 Framework

The framework which is available in the World Wide
Web (ls4-www . cs .uni-dortmund. de/RVS/P-HYSYS) com-
prises a set of rules concerning the architecture of specifica-
tions, a set of specification modules, and a set of theorems.
The architecture rules focus on plant models which are com-
posed from instances of generic specification modules. The
rules refer to the different module groups in connection with
the different types of real plant components. They govern
the modeling of plant components by compositions of spec-
ification module instances. In fact, each plant component
is modeled in a constraint-oriented way by a composition
of several modules, since the plant model shall have a rela-
tively fine-grained structure in order to support the proof of
system properties from small subsystems. For instance, the
framework contains modules each describing only a single
aspect of a vessel in the chemical plant (e.g., the amount
of a liquid in the vessel, the temperature of the liquid, the
pressure in the vessel). The specification of the entire ves-
sel is derived by composing these modules. Moreover, there
are rules applying to the architecture of a plant model as
a whole. These rules describe, how plant component mod-
els are coupled to form the global plant model. Due to
the constraint-oriented modules, plant models have a three
layered hierarchical structure. A plant model is a compo-
sition of subsystems which are compositions of plant com-
ponent behaviour constraints. This hierarchical structure
facilitates the design of models. With respect to verifica-
tion, however, it is not useful, since, here, we want to form
subsystems which consist of small subsets of the constraints
of a series of components. Since the composition operation
of cTLA is associative and commutative, hierarchical plant
models can easily be transformed into constraint-oriented
descriptions which are suitable for verification.

The set of specification modules of the framework is split
into two collections, one for plant models and the other for
safety property specifications (cf. Fig. 1). Safety property
specifications have a very simple structure. Each property
is described by one instance of a specification module. The
composition of the instances corresponds to the logical con-
junction of properties and acts as a safety property specifi-

Model S by - Composition of
Safety Propeaies

Combine - Roof of P 3 S
&om Theorems

-b

Model P by - Compositionof -+
Components

Plant Model Modules
Plant P Framework

Figure 1: The framework for the formal hazard analysis of
chemical plants

cation. A safety property module expresses mainly that a
certain limit is observed (e.g., flow, power, pressure, volume,
or temperature in a plant component does not exceed or
fall below a critical limit). Additionally, there are modules
excluding critical combinations of operational component
states (e.g., below a certain flow, a pump will be switched
off in order not to run dry; below a certain vessel volume,
the heating will be switched off in order to prevent over-
heat).

The set of plant model modules is structured into two
main groups. One is devoted to plant components, the other
to malfunctions. The plant component group contains four
subgroups of component behaviour constraints: continuous,
discrete, sensor, and actor constraints. For instance, the
continuous volume of a vessel content obeys a constraint of
type VesseZVoZume (cf. Sec. 5) which models the current
volume depending on the amount of liquid running into
resp. draining from the vessel. A constraint of type Sen-
sorAZarm describes that a sensor will create an alert when
the monitored value exceeds a limit. It is an example of
a hybrid constraint, since the monitoring of a continuous
value is combined with a discrete reaction. The modules
of the malfunctions group specify component malfunctions
to be tolerated by the plant. Examples are leakage or jam
of pipes and valves as well as failures of active components
like pumps and heatings.

The theorems of the framework are implications of the
form “plant-constraint-subsystem A malfunction-subsystem
+ safety-property” . They assert that certain plant subsys-
tem structures guarantee safety properties even under the
presence of malfunctions. For instance, a very simple sub-
system corresponds to a controlled pump where the control
switches off the pump in case of low flow. This subsystem
guarantees the safety property that there exists a maximum
duration limit for time intervals where the pump operates
below a critical flow limit. Mostly, however, the subsystems
tend to be more complex. Often plant components can in-
terfere with many other and even very distant components.
This would lead to very large subsystems. Since there are
numerous variants for the structure of large subsystems,
the framework would consequently have to contain numer-
ous theorems. We solve this problem by an extended form
of theorems. We add a conjunct to the left side of the impli-
cation which describes safety requirements of the environ-

Figure 2: Sketch of the example system

ment of subsystems. Since these safety requirements are ex-
pressed by means of the specification module collection for
safety properties, theorems have the form “plant-constraint-
subsystem A malfunction-subsystem A safety-property A . . .
A safety-property + safety-property’’ and one can transi-
tively use other theorems for the validation of the safety
requirements of the subsystem environment. For instance,
consider a set of serially connected tanks. If one can prove
that the first tank is never empty and that each other tank
does not run empty if its predecessor is not empty, one can
infer, that all tanks never are empty. This, however, does
not work in the case of circular dependencies where we look
for safety property hierarchies.

3 Example

To explain our approach, we introduce in Fig. 2 a hybrid
technical plant (cf. [5]) for the production of ethyl acetate,
an ester used as a solvent. The ethyl acetate is produced
in the distillation reactor C1 by esterification of acetic acid
and ethanol. The acetic acid and a catalyst are stored in the
vessel B1, while the ethanol is held in B2. The catalyst is
removed from C1 into a waste tank while the distilled ethyl
acetate is condensed in the heat exchanger W1 and drops
into the extractor F1. Here, the ethyl acetate is purified
by washing it with water into the final product which is
removed.

The remaining solution of ethyl acetate, ethanol, and
water is pumped into the vessel D1, where the ethyl ac-
etate is removed again by distillation. It condenses in W2
and is fed back into the extractor F1. The remaining mix-
ture of ethanol and water is separated in the distillation
vessel D2. The ethanol is distilled, condensed in the heat
exchanger W3 and fed back to the storage vessel B2, while
the remaining water is removed from D2.

4 Comparing our approach to HazOps

Below, we will outline the differences between tradi-
tional Hazard and Operability Studies (HazOps) [16] and
our approach by means of the example plant.

In a HazOp, the plant is investigated for possible failures
and their consequences. For instance, a failure may occur
if the team driving the plant forgets to add acetic acid and
the catalyst into the storage vessel B1. Consequently, the
vessel eventually becomes empty. This leads to the pump
P1 running dry which might cause a damage of this pump.
Furthermore, since the controller UC203 guarantees a cer-
tain ratio of acetic acid and ethanol feeds into the reactor
C1, the valve between pump P2 and C1 is closed. Thus,
P2 pumps against a closed valve causing excess pressure.
As well, the reactor C1 eventually becomes empty. Thus,
the heating of C1 has to be switched off in order to prevent
damages of the heating pipes. Likewise, all components of
the plant have to be investigated for failures. As a result,
counter-measures like controllers switching off the pumps
in case of low volume or excess pressure are suggested.

In our framework approach we do not look for failures
but try to prove safety properties stating that failures in the
plant are not possible. If a proof succeed, we can rule out

system failures due to design errors. Otherwise, we have
to take counter-measures which are guided by the frame-

For example, we want to rule out that the
ay be damaged due to too low volume of liq-

uid in the reactor. We prove safety properties by theorems
of the framework. In our example the framework supplies
two appropriate theorems. One theorem states that the
environment of the reactor guarantees that the volume of
liquids does not fall below a certain minimum value. As
outlined above, this property does not hold since the con-
troller UC203 may close the input valves if vessel B1 runs
empty. The other theorem states that the desired safety
property holds if the reactor contains a sensor signalling
low volume and a controller switching off the heating after
this signal and keeping it off until the volume exceeds the
minimum again. Since the sensor and controller LS-A-207
fulfill these demands, we can prove by this theorem that
the heating of C1 cannot be damaged due to low volume of
liquids if LS-A-207 does not fail (cf. Sec. 6).

5 cTLA

TLA [14] is a linear time temporal logic describing safety
and liveness properties of state transition systems by means
of canonical formulas. To facilitate the understanding of
specifications, cTLA [lo] omits the canonical parts of TLA
formulas. It is oriented at programming languages and in-
troduces the notion of processes. A specification is struc-
tured into modular definitions of process types. An instanti-
ation of a process type forms a process which either has the
form of a simple process or that of a process composition.
Simple processes, which directly refer to state transition
systems, are used to model single plant components resp.
safety property modules of the framework (cf. Sec. 2).

Fig. 3 depicts the example of three very simple process
types. An instance of the type ReactOnAlam (top of Fig. 3)
is used to specify the controller LS-A-207 in the example
plant (cf. Fig. 2) describing that the controller reacts on a
low volume alarm in reactor C1 by switching off the heat-
ing of C1. The header of ReactOnAlarm declares the type
name and generic module parameters (e.g., i n i t i a l s t a t e) .
These parameters facilitate to model a spectrum of similar
but different processes by a single process type specification.

The process type body defines the state transition sys-
tem which corresponds to an instance of the type. The state
space is defined by the state variable vastate . The initial
condition INIT is a condition over state variables and de-
fines the set of starting states. Finally, in the body actions
are defined which model the state transitions (e.g., alarm,
switch). An action is a predicate on a pair of an current
state and a successor state and models a set of state transi-
tions. The state variables which refer to the successor state
occur in the so-called primed form (e.g., vastate ') . An
action can have action parameters. The disjunction of the
actions forms the next state relation of the process. In the
course of time, a process may perform action steps (i.e., it
changes its state in accordance with an action) or stuttering
steps (i.e., it does not change its state while the environ-
ment performs a state transition).

According to [l], real-time is represented by means of
a real-valued state variable now which is incremented lively

PROCESS ReactOnAlarm

BODY
(i n i t i a l s t a t e : {"ready", "alarm"))

VARIABLES
vastate : {"ready", "alarm"); current alarm state

INIT vastate = i n i t i a l s t a t e ;
ACTIONS

alarm A signal alarm

switch A react by switching an actor
vastate ' = "alarm";

vastate = "alarm" A vastate ' = "ready";
END

PROCESS ReactMaxTime (maxtime : r e a l)
BODY

ACTIONS

V MAX TIME switch : maxtime;
switch;

END

PROCESS VesselVolume (capacity : r e a l ;

BODY
initvolume : r e a l)

VARIABLES
vvolume : r e a l ; current volume

INIT A vvolume = initvolume;
ACTIONS

CONT (INPUT inf low, outflow : r e a l ;
OUTPUT volume, room : r e a l)

vvolume ' =
Max(Min((inf1ow - outflow) . (now' - now)

+ vvolume, capacity),O) A
volume = vvolume A
room = Max (0,capacity - vvolume) ;

END

Figure 3: Process Types ReactOnAlarm, ReactMaxTime,
and Vessel Volume

by a clock action t i c k . Unlike other variables, which are
private in exactly one process, now can be read by all pro-
cesses of a system. Additional real-time constructs describe
activity retarding and activity forcing real-time constraints.
In accordance to [13], one can specify minimum waiting
times and maximum reaction times for actions. Moreover,
one may refer to volatile and to persistent enabling peri-
ods of an action. The maximum reaction time construct
is conditional in order to ensure the consistency of process
compositions. I t forces an action only with respect to peri-
ods where the action is enabled and the environment does
not block it. For instance, the center of Fig. 3 shows the
process type ReactMaxTime. It declares an action switch
with a volatile maximum reaction time. In our example, an
instance of this process type is used to model the maximum
reaction time of the controller LS-A-207.

Continuous properties of a process are expressed by
means of an action with the special name CONT. All CONT-
actions of all processes of a system and the tick-action of the
clock are assumed to occur simultaneously. Thus, the series
of CONT-steps of the system approximates the continuous
behaviour (cf. [13]). Usually, the CONT-actions contain dif-
ference equations for continuous state variables. The time
difference modeled by an execution of CONT is expressed by
the difference now'-now. The inputs and outputs of con-

definition. Thus, one can specify all relevant properties of
a hybrid system component by one process. However, to
support a fine-grained constraint-oriented system structure
(cf. Sec. 2), we mainly use process types which concentrate

Vesselvol : VesselVolume(CapC1. InitVolC1); on properties of a single sort.
Systems and subsystems are described as compositions volume of liquid in the reactor C1

of concurrent processes. Each process encapsulates its vari- Vaporization : VesselVaporize(Liquiddense,

ables and can change its state by atomic executions of its
actions. The system state is the vector of the state vari- amount of liquid vaporized in C1

ables of the processes. State transitions of the system cor- Heater : Heating(MaxPouC1, IncratePouCI,

respond to simultaneous process actions and process stut-
tering steps. Each process performs either exactly one ac- heating of the reactor C1

tion or an stuttering step. Thus, the system actions can SensorAlarm : SenseMin(SenseVo1);

be defined by conjunctions of process actions and process sensor: liquid volume in C1 falls below SenseVol

stuttering steps. Consequently, concurrency is modeled by SensorAlarmTime : SenseMaxTime(Sensetime1;

interleaving while the coupling of processes corresponds to time constraint for sensor

joint actions. Fig. 4 shows an example of a system specifica- SensorRelease : SenseMax(SenseVo1);

tion. The process type SwitchOffHeatingDueToLow Volume sensor: liquid volume in C1 exceeds SenseVol

models a part of the example plant. In the part PROCESSES Suit chOf f Heat ing : React OnAlarm ("ready") ;

the processes of the system are declared as instantiations control unit LS-A-207 switches heating off
Switchof f HeatingTime : ReactMaxTime (Reacttime) ; of process H ~ ~ ~ , it consists of processes

modeling important properties of the reactor C1 (the vol- time constraint for LS-A-207

ume liquid, the amount of ethyl acetate vaporized within a KeepHeatingOf f : BlockOnAlarm("b1ock") ;
LS-A-207 guarantees that heating is not switched on while time-unit, and the heating), the signalling low vel-

ume in C1, and the controller LS-A-207 which realizes the the amount of liquid is below the minimum

PROCESS SuitchOffHeatingDueToLouVolume
(Capcl : real; . . .)

PROCESSES

Gasdense, Enthalpy)

DecratePouCi) ;

ACTIONS non-listed processes perform stuttering steps

OUTPUT Clvol, Clvapliquid, Clvapgas,
CONT (INPUT BlClvol, B2Clvol.

Clpouer, Cloutflow : real)
continuous volume Aow
VesselVol.CONT (BlClvol + B2Clvol.

Clvapliquid + Cloutflow ;
Clvol) A

Vaporization.CONT (Clvol, Clpouer,

Heater.CONT (; Clpower) A
SensorAlarm.CONT (Clvolume ;) A
SensorRelease.CONT (Clvolume ;) A . . .;

Clvapliquid, Clvapgas) A

switching off of the heating in C1 after the volume falls be-
low a minimum value. Moreover, LS-A-207 guarantees that
the heating remains off until the amount of liquid recovers.
Thereafter, in the part ACTIONS the system specification de-
scribes the coupling of the processes by the definition of the
joint system actions. For instance, the action HeatingOff
models that, if the controller LS-A-207 reacts on a sensor
alarm (action SuitchOffHeating. switch), the heating is
switched off simultaneously (action Heater. off). Further-
more, HeatingOf f must switch within a volatile reaction
time (action SuitchOffHeatingTime. switch). The cTLA
specification of the example plant is available on the inter-
net (ls4-WU. cs . uni-dortmund. de/RVS/P-HYSYS).

Alarm A sensor reports liquid volume below minimum
SensorAlarm.alarm A SensorAlarmTime.alarm A
SuitchOf f Heating. alarm A
KeepHeatingOff .alarm A . . .;

SensorRe1ease.alarm A
KeepHeatingOff .release A . . .;

6 Verification Example

Release E sensor reports liquid volume above minimum Below, we will exemplify the use of the framework by
sketching the formal proof that the heating of the reactor
C1 in our example system (cf. Fig. 2) does only work if the

HeatingOff A LS-A-207 switches the heating off
Heater.off A SuitchOffHeating.suitch A
Suitch0ffHeatingTime.suitch A . . .; PROCESS VesselMinVolumeOrNoPower

BODY
(minvolume : real)

HeatingOn 4 switch on heating only if i t is not blocked
Heater. on A KeepHeatingOff .switch A . . .;

Figure 4: Subsystem SwitchOffHeatingDueToLow Volume

tinuous processes are modeled by action parameters. As an
example, the bottom of Fig. 3 depicts the process VesselVol-
ume which is used in the example plant to model the volume
of liquids in the reactor C1. The process declares a contin-
uous real-valued state variable vvolume. The CONT-action
declares the continuous inflows and outflows of liquids and
lists the difference equation for vvolume.

Several constructs stating safety, real-time, and contin-
uous properties may be contained in the same process type

VARIABLES
vvolume : real; current volume
vpouer : real; current power

A INIT = vpouer = 0;
ACTIONS

CONT (OUTPUT volume, power : real) 4
IF (vvolume < minvolume)
THEN vpower' = 0 ELSE vpouer' 2 0 A
power = vpouer A
volume = vvolume;

END

Figure 5: Safety Constraint VesselMin VolumeOrNoPower

39

amount of liquid in C1 exceeds a minimum value. Thus, we
e heating pipes are covered with liquid if
nd therefore cannot run too hot. In Fig. 5

we sketch the process VesselMan VolumeOrNoPower which
models the safety constraint we want to prove. It contains a
process parameter minvolume indicating the minimum vol-
ume of liquid below which no power must be supplied. The
volume of liquid in the reactor is modeled by the variable
vvolume while vpower describes the amount of power sup-
plied by the heating. Initially, no power is supplied at all.
The state.transitions in this process type are modeled by the
continuous action CONT stating that power may be supplied
only (vpower' 2 0) if the volume of liquid in the reactor is
greater or equal to minvolume.

To prove that our example plant fulfills this safety spec-
ification, we use the framework theorem VesselManOrNo-
Power listed in Fig. 6'. A framework theorem states that
a subsystem specification Sys implies a safety constraint
(e.g., VesselManVolumeOrNoPower) if the conditions Pars
and EnvCond hold. Similarly to cTLA system processes, Sys
contains a part PROCESSES listing the processes, the subsys-
tem is composed from, and a part ACTIONS describing the
coupling of the process actions to joint subsystem actions.
The subsystem Sys is composed from the instance sohdtlv
of the subsystem process SwatchOffHeatangDueToLow Vol-
ume (cf. Fig. 4) and the instance MaxDraining of the safety
process type LzneMaxFlow. sohdtlv describes the subsys-
tem of the plant specification which realizes the safety con-
straint (i.e., the reactor volume, the amount of liquid vapor-
ized, the heater, the sensor, and the controller LS-A-207).
The safety constraint MaxDraining models that the envi-
ronment of the reactor guarantees that at most an amount
of Maxoutflow liquid drains from the reactor per time unit.
The validity of MaxDraining is proven separately by another
framework theorem.

The condition Pars states that the parameters of the
processes listed in Sys and the safety constraint to be proven
are instantiated consistently. Here, Pars states that the sen-
sor reacts early in order to guarantee that the heating stops
running before the volume of liquid falls below the minimum
value Minvolume. Pars considers the reaction times of the
sensor and controller as well as the time the heating needs
to cool down. It states that the parameter SenseVolume,
which indicates the volume of liquid triggering a sensor sig-
nal, is greater than the sum of minvolume, the amount of
liquid vaporized until the sensor and controller react, the
amount of liquid vaporized while the heating cools down,
and the amount of liquid draining from the reactor until
the sensor and controller react and the heating needs to
cool down.

By the environment condition EnvCond we prove that
the processes of the plant specification not listed in Sys do
not block relevant actions of Sys. Here, EnvCond guaran-
tees that the environment of Sys does not block the actions
A l a r m and HeatingOf f . Without fulfilling this condition,
the environment may prevent the sensor to signal low vol-
ume and the controller to switch off the heating spoiling the
safety constraint VesselMan VolumeOrNoPower.

'Fig. 6 shows a shortened form of the theorem. In long form,
Sys consists directly of the processes listed in SvtitchOflHeating-
DueToLow Volume and MaxDraining.

THEOREM VesselMinVolumeOrNoPower
LET P a r s 4
SenseVol > Minvolume +

(MaxPowCl / (Liquiddense . Enthalpy))
. (Sensetime + Reacttime) +
MaxPowCl' / (2 . DecratePowCl .

((MaxPowC1 / DecratePowCl + Sensetime
Liquiddense . Enthalpy) +

+ Reacttime) . Maxoutflow)
sensor sensitivity guarantees that heating power supply is
stopped before the vessel volume falls below the critical limit

PROCESSES Subsystem
sys A

sohdtlv : SwitchOffHeatingDueToLowVolume
(Capcl, InitVolCl, Liquiddense,
Gasdense, Enthalpy, MaxPowCl.
IncratePowCl. DecratePowCl,
SenseVol, Sensetime, Reacttime) ;

subsystem of plant containing relevant processes to switch
o f f heating due to low volume
MaxDraining : LineMaxFlow (Maxoutflow);
maximum flow of fluid out of the vessel

ACTIONS
CONT (OUTPUT Clvol. Clvapliquid, Clvapgas,

Civappower, Cloutflow : r e a l 2
continuous volume flow

sohdtlv.CONT
(CHOOSE x : x 2 0. CHOOSE x : x 2 0 ;
no draining through inflow lines from B1 and B2
Clvol, Clvapliquid, Clvapgas, Clvappower,
Cloutflow) A

MaxDraining.CONT (; boutflow) ;

sohdtlv.Alarm A MaxDraining.stutter;

sohdtlv.Release A MaxDraining.stutter;
HeatingOff LS-A-207 switches the heating off

sohdtlv.Heating0ff A MaxDraining.stutter;
HeatingOn A switching on heating if it is not blocked

sohdtlv.Heating0n A MaxDrainjng.stutter;

A Alarm = sensor reports liquid volume below minimum

Release sensor reports liquid volume above minimum

EnvCond A
Enabled(sohdtlv.Alarm) + Sys.eAlam # {I A
Enabled(sohdtlv.Heating0ff) +

SF. eHeatingOf f # {I ;
I N Pars A Sys A OEnvCond +

VesselMinVolumeOrNoPower (Minvolume);

Figure 6: Theorem VesselMin VolumeOrNoPower

In order to prove VesselMinVolumeOrNoPower, we re-
place the process parameters in the theorem by their cur-
rent values. For example, since both the sensor and the
controller react within 0.1 seconds, we instantiate the pa-
rameters Sensetime and Reacttime with 0.1. Afterwards,
we check five conditions of the theorem. At first, we have
to check that the processes listed in Sys (i.e., sohdtlv) are
also contained in the plant model. Secondly, we check that
the safety specifications of Sys (i.e., MaxDraining) are al-
ready proven by means of other theorems. Thirdly, we check
that the action coupling of Sys is consistent to the action

40

coupling of the plant model. For instance, the condition
on the f i s t parameter of the action sohdtlv.CONT in Sys
models that no liquid may drain through the pipe linking
the reactor C1 with the vessel B1. In the plant specifi-
cation the process modeling the pump P1 guarantees this
assumption. Fourthly, we have to prove that the condi-
tion Pars hold. Due to the replacements of the process
parameters this proof is performed by simple mathemati-
cal transformations. Finally, we check that the invariant
EnvCond holds. Since in the plant specification the enabling
conditions of the actions Alarm and HeatingOff only de-
pend on processes in sohdtlv, this condition holds, too.
One verifies other safety properties in the same manner by
choosing suitable framework theorems and performing the
five condition checks as described above.

7 Concluding remarks

We introduced the notion of frameworks for the mod-
eling and verification of technical systems and outlined a
corresponding framework for the hazard analysis of chemi-
cal plants. The framework was successfully applied to the
example system (Sec. 3) and other chemical plants. While
the general framework approach does not depend on specific
specification languages, we profit from the special features
of cTLA. It supports the description of hybrid systems. Be-
sides of safety and liveness properties of event-discrete pro-
cesses, it can express real-time properties and properties of
continuous processes. Therefore, integral models compris-
ing plants as well as control hardware and software can be
described. This gives - in connection with the superpo-
sition property of cTLA's process composition - a very
good basis for frameworks in real-time and hybrid system
application domains.

References

[l] M. Abadi and L. Lamport. An old-fashioned recipe
for real time. In J. W. de Bakker et al., editors, Real-Time:
Theory in Practice. LNCS 600, Springer-Verlag, 1991.

[2] R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic
Symbolic Verification of Embedded Systems. IEEE Trans-
actions on Software Engineering 22:181-201, 1996.

[3] C. A. Catino and L. H. Ungar. A model-based
approach to automated hazard identification of chemical
plants. AIChE Journal, 41(3):97-109, 1995.

[4] M. Goring and H. G. Schecker. HAZEXPERT: An
integrated expert system to support hazard analysis in
process plant design. Computers Chemical Engineering,

[5] H. Graf and H. Schmidt-Traub. A Model-Based
Approach to Process Hazard Identification. In 13th In-
ternational Congress of Chemical and Process Engineering
(CHISA), Prague, 1998.

[6] P. Heino, A. Poucet, and J. Soukas. Computer tools
for hazard identification, modelling and analysis. Journal
of Hazardous Materials, 29:445-463, 1992.
[7] P. Herrmann, G. Graw, and H. Krumm. Compo-

17:429-434, 1993.

sitional Specification and Structured Verification of Hy-
brid Systems in cTLA. In 1st IEEE International Sym-
posium on Object-oriented Real-time distributed Computing
(ISORC98), pages 335-340, Kyoto. IEEE Computer Soci-
ety Press, 1998.
[8] P. Herrmann and H. Krumm. Modular Specifica-
tion and Verification of XTP. Telecommunication Systems,

[9] P. Herrmann and H. Krumm. Formal Hazard Anal-
ysis of Hybrid Systems in cTLA. In 18th IEEE Symposium
on Reliable Distributed Systems (SRDS'99), pages 68-77,
Lausanne. IEEE Computer Society Press, 1999.

[lo] P.'Herrmann and H. Krumm. A Framework for Mod-
eling Transfer Protocols. To appear in Computer Networks,
2000.
[ll] R.E. Johnson and B. Foote. Designing reusable
classes. The Journal of Object-Oriented Programming,

[12] R. Kurki-Suonio. Hybrid Models with Fairness and
Distributed Clocks. In R. L. Grossmann et al., editors,
Workshop on Theory of Hybrid Systems, pages 103-120,
Lyngby. LNCS 736, Springer-Verlag, 1993.

[13] L. Lamport. Hybrid Systems in TLA+. In R. L.
Grossmann et al., editors, Workshop on Theory of Hy-
brid Systems, pages 77-102, Lyngby. LNCS 736, Springer-
Verlag, 1993.

[14] L. Lamport. The Temporal Logic of Actions. ACM
Transactions on Programming Languages and Systems,

[15] K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a
Nutshell. Springer International Journal of Software Tools
for Technology Transfer, 1(1+2), 1997.

[16] H. G. Lawley. Operability Studies and Hazard Anal-
ysis. Chemical Engineering Progress, 70(4):45-56, 1974.

[17] N. Leveson. Safeware: System Safety and Computers.
Addison Wesley, 1995.

[18] S. T. Probst. Chemical Process Safety and Operabil-
ity Analysis using Symbolic Model Checking. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA 15213, 1996.

[19] Y . Shimada, K. Suzuki, and H. Sayama. Computer-
aided operability study. Computers Chemical Engineering,

[20] R. Srinivasan and V. Venkatasubramanian. Petri
Net-Digraph models for automating HAZOP analysis of
batch process plants. Computers Chemical Engineering,

[21] 0. Stursberg, H. Graf, S. Engell, and H. Schmidt-
Traub. A concept for safety analyses of chemical plants
based on discrete models with an adapted degree of ab-
straction. In 4th International Workshop on Discrete Event
Systems (WODES), Cagliari, 1998.

[22] R. Vaidhyanathan and V. Venkatasubramanian. Ex-
perience with an expert system for automated HAZOP
analysis. Computers Chemical Engineering, 20:1589-1594,
1996.

[23] A. Waters and J. W. Ponton. Qualitative simulation
and fault propagation in process plants. Chemical Engi-
neering Research Descriptions, 67:407-422, 1989.

9(2):207-221, 1998.

1 (2):22-35, 1988.

16(3):872-923, 1994.

20(6/7):905-913, 1996.

20:719-725, 1996.

41

