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tThe notion of spe
i�
ation frameworks transposes the framework approa
h fromsoftware development to the level of formal modeling and analysis. A spe
i�
a-tion framework is devoted to a spe
ial appli
ation domain. It supplies re-usablespe
i�
ation modules and guides the 
onstru
tion of spe
i�
ations. Moreover, itprovides theorems to be used as building blo
ks of veri�
ations. By means of a suit-able framework, spe
i�
ation and veri�
ation tasks 
an be redu
ed to the sele
tion,parametrization and 
ombination of framework elements resulting in a substantialsupport whi
h opens formal analysis even for real-sized problems. The transfer pro-to
ol framework addressed here is devoted to the design of data transfer proto
ols.Spe
i�
ations of used and provided 
ommuni
ation servi
es as well as proto
ol spe
-i�
ations 
an be 
omposed from its spe
i�
ation modules. The theorems 
orrespondto the relations between proto
ol me
hanism 
ombinations and those properties ofthe provided servi
e whi
h are implemented by them. This arti
le 
enters on theappli
ation of this framework whi
h is dis
ussed with the help of the spe
i�
ationof a sliding window proto
ol. Moreover the stru
ture of its veri�
ation is des
ribed.The spe
i�
ation and veri�
ation te
hnique applied is based on L. Lamport's Tem-poral Logi
 of A
tions (TLA). We use the variant 
TLA whi
h parti
ularly supportsthe modeling of pro
ess systems.Keywords: Proto
ol spe
i�
ation, Proto
ol veri�
ation, Temporal logi
, Frame-work, Proto
ol 
omposition1 Introdu
tionDue to re
ent developments in the �eld of high-speed and multimedia 
ommuni
ationmany new data transfer proto
ols and proto
ol variants are designed. Although stan-dardized formal des
ription te
hniques (i.e., ISO/OSI: Estelle [30℄ and Lotos [31℄, ITU:SDL [32℄) are available, the proto
ols are developed frequently without any formal sup-port. Furthermore, abstra
t servi
e spe
i�
ations, des
ribing the relevant properties ofthe 
ommuni
ation servi
e provided by a proto
ol, are often omitted. Thus, the do
u-1



mentation of a proto
ol development is often in
omplete and ambiguous. Therefore the
orre
tness of the proto
ol 
annot be 
he
ked systemati
ally.On the one hand, ambiguous do
umentations 
ause the danger of design errors dueto misunderstandings. This might lead to reworking e�orts, proje
t delays, and, 
onse-quently, to higher proje
t 
osts. On the other hand, the usage of formal te
hniques inproto
ol design 
auses signi�
ant expense, too. While sometimes the appli
ation of thesete
hniques 
an be supported by tools (e.g., spe
ial editors, interpreters, 
ompilers, andveri�
ation tools; 
f. [3, 4, 9, 12, 13, 14, 29, 33, 40℄), formal models and formal des
riptionsof proto
ols have to be developed in a 
reative manner. Due to the 
omplexity of modernhigh-speed proto
ol systems this task 
an be quite expensive. Furthermore, the devel-opment of formal des
riptions is prone to errors and, similar to program development, along debugging phase may be ne
essary before 
ompleting the veri�
ation su

essfully.The transfer proto
ol framework [21, 22℄ fa
ilitates the development of formal spe
i�
a-tions similarly to program development support by libraries of reusable program modules.The framework 
ontains spe
i�
ation modules whi
h 
an be instantiated and 
ombinedto a proto
ol or servi
e spe
i�
ation. A proto
ol spe
i�
ation 
onsists of a set of mod-ules, ea
h modeling a single proto
ol me
hanism (e.g., sequen
e numbering of proto
oldata units, repeat request, time out). The developer does not need to 
reate a proto
olme
hanism des
ription from s
rat
h. Instead, he uses a module of the framework and
on
entrates on suitable instantiations of parameters and on the 
ombination of di�erentmodules. Thus, he models the logi
al stru
ture of the proto
ol dire
tly, fa
ilitating theunderstanding of the proto
ol 
omponent 
o-operation. Furthermore, the developer 
re-ates a servi
e spe
i�
ation as well. This task is supported by the framework, too, whi
h
ontains spe
i�
ation modules modeling single 
onstraints of servi
es (e.g., no 
orruptionsof transfered data, liveness of transfered data, no phantoms). The developer parametrizesand 
ombines these modules to a servi
e spe
i�
ation des
ribing the properties of theservi
e to be provided by the proto
ol.The transfer proto
ol framework supplies a 
omprehensive 
olle
tion of spe
i�
ationmodules. It 
omprises ea
h typi
al fun
tional property of data transfer servi
es as well asall of the proto
ol me
hanisms we found in present data transfer proto
ols (
f. [8, 35℄).Moreover, it is based on few basi
 assumptions only. Therefore the framework support isvery general and it 
an 
omplement other approa
hes whi
h fo
us dire
tly on problem-oriented design, 
onstru
tion, and modular implementation of new transfer proto
ols. So,modern high-speed data transfer proto
ols like XTP [44℄ and MSP [36℄ 
an eÆ
iently bespe
i�ed by means of the framework [24, 27℄. Moreover, the framework may be used forthe formal modeling and analysis of those proto
ol 
on�gurations whi
h are in the rangeof 
urrent dynami
 
ommuni
ation system 
on�guration approa
hes like DaCapo [41℄,F-CCS [45℄, and AVOCA [39℄. Due to the general orientation of the framework, it shouldeven 
over the formal modeling of most future transfer proto
ols. Nevertheless exten-sions are possible and 
an easily be introdu
ed by addition of new modules. Furthermore,the 
exibility of the spe
i�
ation modules 
ontributes to the broad appli
ability of theframework. Ea
h module 
orresponds to a generi
 behaviour type where generi
 moduleparameters support the adaption of module instan
es to spe
ial 
ontexts and require-ments. With respe
t to this, spe
i�
ation modules may be viewed as behaviour patterns.Relations exist to approa
hes whi
h expli
itly transpose the notions of design and software2



patterns (
f. [11℄) to the development of formal spe
i�
ations (e.g., [15, 38℄). Addition-ally, there is further work fo
ussing on the pattern-based and tool-assisted re�nement ofabstra
t 
TLA spe
i�
ations into detailed software spe
i�
ations [37℄ and 
orrespondingimplementation-oriented framework extensions may be of interest. In the sequel, how-ever, we do not want to stress this point in order to 
on
entrate on pra
ti
al aspe
ts offramework-based proto
ol spe
i�
ation and veri�
ation.Formal proto
ol veri�
ation is based on separate spe
i�
ations of the proto
ol and theservi
e to be provided. It proves that the proto
ol a
tually provides the servi
e and isan e�e
tive means for the dete
tion of design errors. It 
an be performed me
hani
allyby tools based on rea
hability graph analysis (e.g., state spa
e exploration [28℄, model
he
king [6, 7, 10, 16, 20, 29℄) if the number of rea
hable system states of the proto
olmodel is relatively small. However, the state spa
e of most proto
ols relevant in pra
ti
eex
eeds the limitations of automated tools. Thus, either the proto
ol spe
i�
ation has tobe simpli�ed, or the veri�
ation has to be performed by symboli
 logi
al reasoning. Both,the design of suitable simpli�
ations as well as the user-guided 
omputation of logi
alproofs, in
rease the proto
ol development 
osts signi�
antly.With respe
t to this, the veri�
ation 
an be fa
ilitated substantially by the frameworktheorems taking into 
onsideration that both the servi
e and the proto
ol spe
i�
ations
onsist of existing framework modules. Usually, ea
h servi
e 
onstraint is implementedby a spe
ial proto
ol subsystem 
ombining those proto
ol me
hanisms whi
h ensure thatthe proto
ol exe
ution 
omplies with the servi
e 
onstraint. For ea
h possible pair ofa servi
e 
onstraint and proto
ol subsystem we veri�ed a theorem stating that the pro-to
ol subsystem implies the servi
e 
onstraint. Therefore, a subsystem of the proto
olspe
i�
ation as well as a 
orresponding theorem exists for ea
h 
onstraint of the servi
espe
i�
ation. Thus, the proto
ol veri�
ation 
an be a

omplished by identifying suitable\servi
e 
onstraint { proto
ol subsystem { theorem" triples. Additionally, the developerhas to 
he
k that the proto
ol me
hanism spe
i�
ations of the subsystem and the servi
e
onstraint spe
i�
ation are parametrized in a suitable and 
onsistent way. By this methodeven 
omplex transfer proto
ols 
an be veri�ed quite easily [24℄. Moreover, this veri�-
ation method emphasizes the logi
al relations between proto
ol subsystems and servi
e
omponents supporting the understanding of the designed proto
ol.Thus, framework-based proto
ol veri�
ations are relatively easily to develop althoughthey rely on formal proofs. Nevertheless, we have presently to point to some reservations
on
erning the stringen
y of veri�
ations. They result from the way, the framework theo-rems were proved. We used the 
TLA-tool 
T
 [26℄ to 
ompute the pro
ess 
ompositionsof the theorems. Then we designed the ne
essary re�nement mappings and invariants inorder to prepare the manual TLA-based proofs, whi
h | due to the high e�orts needed| were not all performed in full formal detail. So, 
omplete proof do
umentations existonly for some theorems (see [17℄). Moreover we did not 
he
k the proofs by means oftheorem prover tools. Therefore we do not re
ommmend the use of the theorems for highrisk appli
ations though we are 
onvin
ed of the over-all validity of the theorems.For the proofs of the framework theorems high e�orts were needed and they wouldsubstantially pro�t from the use of theorem prover tools. The framework appli
ation,however, is based on the design of suitable theorem instan
es whi
h is a

ompanied byrelatively simple parameter 
he
ks. Consequently, we made the experien
e that the trans-3



fer proto
ol framework 
an su

essfully be applied without spe
ial tool-assistan
e. Nev-ertheless, one 
an provide tool-support 
on
entrating on the analysis of 
ompositionalspe
i�
ation stru
tures, the sear
h of appropriate theorems, the proposal of theorem in-stan
es, and the preparation of predi
ate logi
 based parameter 
he
ks. A 
orrespondingtool was developed and is des
ribed in [18℄.Sin
e a large number of theorems would be ne
essary to link all suitable proto
olme
hanism 
ombinations with servi
e 
onstraints, the framework supports proto
ol proofswhi
h are performed in two steps. Therefore, it provides a third 
olle
tion of spe
i�
a-tion modules in addition to servi
e 
onstraints and proto
ol me
hanisms. These modules,
alled abstra
t proto
ol me
hanisms, support spe
i�
ations whi
h are on an intermedi-ate abstra
tion level between proto
ol spe
i�
ations and servi
e spe
i�
ations. Conse-quently, the theorems do not state dire
tly that proto
ol me
hanisms implement servi
e
onstraints. Instead, the framework 
ontains two 
olle
tions of theorems. The theoremsof one 
olle
tion state that proto
ol me
hanism 
ombinations implement abstra
t proto
olme
hanisms. The other theorems express that abstra
t proto
ol me
hanism 
ombinationsimplement servi
e 
onstraints.The redu
tion of proto
ol veri�
ations into a series of subsystem proofs is based on aspe
ial form of 
ompositionality, the superposition. It guarantees that a relevant propertyof a subsystem is also a property of the system as a whole. Superposition was introdu
edin [5℄ as a helpful means for the formal design of systems. Likewise, [2℄ proposed a tran-sition system based spe
i�
ation te
hnique supporting the formal design of distributedsystems by superposition. Our approa
h applies the spe
i�
ation te
hnique 
TLA [21, 37℄whi
h is based on TLA (Temporal Logi
 of A
tions, [34℄). 
TLA supports the modularde�nition of generi
 pro
ess types and the 
omposition of pro
ess systems. Similarlyto the standardized formal des
ription te
hnique Lotos [31℄ (and similarly to [2℄), thepro
esses of a 
TLA system intera
t via syn
hronous joint a
tions. The pro
ess 
omposi-tion operation of 
TLA 
orresponds to the logi
al 
onjun
tion of pro
esses. Therefore, it
overs superposition with respe
t to all relevant safety and liveness properties. The pro-
esses of a 
TLA system 
an model logi
al behaviour 
onstraints as well as 
omponents ofimplementations (
f. 
onstraint-oriented and ressour
e-oriented spe
i�
ation styles [43℄).In the sequel we 
on
entrate on the pra
ti
al appli
ation of the framework. Therefore,we outline 
TLA, its semanti
s, and the transfer proto
ol framework 
on
isely. Thereafter,an example appli
ation shall 
larify the utilization of the framework in more detail. Wedes
ribe the development of the servi
e and proto
ol spe
i�
ations for a well known slidingwindow proto
ol (from [42℄). Moreover, we dis
uss the veri�
ation of this proto
ol andpoint out how the stru
ture of the spe
i�
ations guides the veri�
ation.2 
TLA
TLA systems are 
omposed of pro
esses. A pro
ess is modeled by a state transitionsystem whose stru
ture is de�ned by a pro
ess type in a programming language-likesyntax. As an example we outline the de�nition of the pro
ess type Corruptions in Fig. 1.The header 
onsists of the keyword PROCESS, the pro
ess type name Corruptions, and alist of generi
 parameters (i.e., the symbols usd and t
). usd models the set of data units4



PROCESS Corruptions ( usd : Any ; ! usd : set of user data transferedt
 : SUBSET(usd � usd) )! t
 : relation of tolerated 
orruptionsIMPORT Symbols;BODYVARIABLESbuf : SUBSET(key � usd); ! Buffer of all data units ever sentINIT �= buf = ;;ACTIONSRq (krq : key; d : usd) �= ! Transmission of user data d with seq. no. krqbuf 0 = buf [ {(krq,d)} ;In (krq : key; d : usd) �= ! Delivery of user data d with seq. no. krq( krq = "notsent" _! Servi
e provider markeda phantom with a spe
ial key "notsent"8 e 2 usd :: ((krq,e) =2 buf) _! Phantoms may be delivered without spe
ial mark9 e 2 usd :: ((krq,e) 2 buf ^ (e,d) 2 t
 ) ) ^! Submitted data may only be delivered if it is 
orrupted! within limitations set by t
buf 0 = buf ;END Figure 1: 
TLA safety pro
ess type Corruptionstransfered between two servi
e users while the relation t
 des
ribes a set of 
orruptionswhi
h 
an be tolerated. In pro
ess instan
es spe
ifying that 
orruptions are not toleratedat all, t
 is instantiated with the identity relation. The 
onstru
t IMPORT refers to thein
lusion of other modules 
ontaining de�nitions of symbols (�., data types, fun
tions,and 
onstants). We assume that the symbol key, whi
h spe
i�es the set of sequen
enumbers for data units, is de�ned in the module Symbols. The state spa
e of a pro
ess ismodeled by variables de
lared in the se
tion VARIABLES. In the pro
ess type Corruptionsbuf is the only variable. It des
ribes a set of pairs of a sequen
e number and a userdata unit. A predi
ate headed by the keyword INIT spe
i�es the set of initial states ofa pro
ess. In Corruptions the variable buf equals to the empty set in the initial state.The a
tion de�nition part is headed by the keyword ACTIONS. An a
tion is a predi
ateabout a pair of a 
urrent state and a next state, modeling a set of state transitions.The 
urrent state is referen
ed by variables (�. buf) while the next state is referen
edby so-
alled primed variables (�. buf'). Ea
h pair of a 
urrent state and a next statesatisfying the predi
ate is a state transition 
orresponding to an o

urren
e of the a
tion.A
tion de�nitions 
an 
ontain data parameters. In the example the a
tion Rq(2,"data")applies to all transitions in whi
h the variable buf in the next state is equal to buf inthe 
urrent state extended by the pair (2,"data"). The variables, INIT, and the a
tionsof a pro
ess de�ne a state transition system des
ribing a set of state sequen
es. A statesequen
e models a possible behaviour of the pro
ess if the �rst state ful�lls INIT and ea
hstate transition 
orresponds to an a
tion of the pro
ess.5



The example pro
ess is a servi
e spe
i�
ation module of the framework modeling the
onstraint that the servi
e transmits data without 
orruptions. The a
tion Rq spe
i�esthe submission of data to the servi
e and the a
tion In the delivery of transmitted data tothe servi
e user. The variable buf 
orresponds to the set of all data units ever submitted.Thus, the term 9 e 2 usd :: ((krq;e) 2 buf _ (e;d) 2 t
) in the de�nition of thea
tion In models that a data unit submitted before (a
tion Rq) may only be deliveredto the servi
e user (a
tion In) if it was 
orrupted only within the limits de�ned by therelation t
. A

ording to the distin
tion between safety and liveness properties (
f. [1℄),the pro
ess type Corruptions spe
i�es only safety properties. Therefore Corruptions doesnot rule out state sequen
es whi
h 
ontain only a �nite number of state 
hanges (i.e.,pro
esses terminating eventually are tolerated).PROCESS LiveInNoAttrIMPORT Symbols;BODYVARIABLES
Rq : key ; ! Sequen
e number of next data unit to be sentmaxIn : key ; ! Sequen
e number of next data unit to be deliveredINIT �= 
Rq = 0 ^ maxIn = 0 ;ACTIONSRq �= ! Transmission of user data
Rq 0 = 
Rq + 1 ^ maxIn 0 = maxIn;fIn ( krq : key ) �= ! Delivery of user data with seq. no. krq! Weak fairness assumedkrq 6= "notsent" ^ krq = maxIn ^ maxIn < 
Rq ^maxIn 0 = maxIn + 1 ^ 
Rq 0 = 
Rq;nIn ( krq : key ) �= ! Delivery of user data with seq. no. krq! No fairness assumednot (krq 6= "notsent" ^ krq = maxIn ^ maxIn < 
Rq) ^maxIn 0 = IF (krq = "notsent") THEN maxIn ELSE max(maxIn,krq + 1) ^
Rq 0 = 
Rq;WF: fIn;END Figure 2: 
TLA liveness pro
ess type LiveInNoAttrThe pro
ess type LiveInNoAttr in Fig. 2 is an example of a framework module modelinga liveness property. In 
omparison to the pro
ess type Corruptions, listed in Fig. 1,LiveInNoAttr 
ontains a new 
onstru
t WF. While the other parts of LiveInNoAttr de�nea state transition system again, WF des
ribes that the a
tion fIn has to be performed\weak-fairly". Similarily, by the 
onstru
t SF one 
an de
lare an a
tion to be performed\strong-fairly". A weak fair a
tion must be performed eventually if otherwise it wouldbe enabled 
ontinuously for an in�nite period of time. A strong-fair a
tion has to beperformed even if the a
tion is disabled from time to time. Weak and strong fair a
tionswere introdu
ed in [1℄. In 
ontrast to dire
t liveness properties these fairness assumptionsdo not model impli
it safety properties whi
h might be in 
ontrast to the (expli
it) safetyproperties of the pro
ess. Therefore in TLA [34℄ and 
TLA | espe
ially in the transfer6



proto
ol framework | liveness properties are modeled by weak and strong fair a
tionsonly.To support the modularity of the transfer proto
ol framework, the fairness assumptionsshould be as weak as possible. Therefore a
tions are split into two a
tions, of whi
h one isfair (e.g., fIn in pro
ess type LiveInNoAttr). The other a
tion (e.g., nIn in LiveInNoAttr)is not fair. Both fIn and nIn in LiveInNoAttr model the delivery of transfered user data(
ompare a
tion In in pro
ess type Corruptions). The fair a
tion fIn spe
i�es that thedata unit expe
ted next in the order of transfered data will be delivered lively. Sin
e thepro
ess type LiveInNoAttr shall 
on
entrate on liveness and therefore must not 
onstrainthe delivery of data in general, it 
ontains another a
tion nIn tolerating the delivery ofother data units.PROCESS SlidWindServi
e (usd : any ) ! usd : set of user data transferedPROCESSESId : SDUId; ! Assignment of unambiguous sequen
e numbersC : Corruptions (usd,{ (k,k) | k 2 usd });! No Corruptions of transfered dataG : Gaps (0); ! No Gaps in transfered data streamR : Reorderings (0); ! No reorderings in transfered data streamD : Dupli
ates (0); ! No dupli
ations of transfered dataP : Phantoms (usd, usd); ! No phantomsCap : Capa
ity (8); ! Servi
e 
apa
ity of eight data unitsLIn : LiveInNoAttr; ! Data Units are delivered livelyACTIONSRq (krq : key; d : usd) �= ! Transmission of user data d with seq. no. krqId.Rq(krq) ^ C.Rq(krq,d) ^ G.stutter ^ R.stutter ^ D.stutter ^P.stutter ^ Cap.Rq(krq) ^ LIn.Rq;fIn (krq : key; d : usd) �= ! Delivery of user data d with seq. no. krq! Weak fairness assumedId.In(krq) ^ C.In(krq,d) ^ G.In(krq) ^ R.In(krq) ^ D.In(krq) ^P.In(krq,d) ^ Cap.In(krq) ^ LIn.fIn(krq);nIn (krq : key; d : usd) �= ! Delivery of user data d with seq. no. krq! No fairness assumedId.In(krq) ^ C.In(krq,d) ^ G.In(krq) ^ R.In(krq) ^ D.In(krq) ^P.In(krq,d) ^ Cap.In(krq) ^ LIn.nIn(krq);END Figure 3: Servi
e spe
i�
ation SlidWindServi
eSimilarly to Lotos [31℄, 
TLA supports the 
omposition of systems from pro
esses. Thepro
esses intera
t via syn
hronous joint a
tions. A
tion parameters model the 
ommuni-
ation of data. The variables of a pro
ess are private and therefore 
annot be a

essedby other pro
esses. Like ea
h pro
ess, the system as a whole is a state transition system.The ve
tor of all variables of all pro
esses forms the system state. A system behaviour is7



a sequen
e of system states where the state 
hanges 
orrespond to system a
tions. Ea
hsystem a
tion is de�ned by the logi
al 
onjun
tion of pro
ess a
tions. In this 
onjun
-tion, ea
h pro
ess is represented either by a true pro
ess a
tion or by the pseudo a
tion\stutter" denoting that the pro
ess does not perform a state 
hange in this system a
tion.The spe
i�
ation SlidWindServi
e, listed in Fig. 3, models su
h a system 
omposedof pro
esses. In the part headed by PROCESSES the pro
esses of the system are de
lared.For example, the pro
ess Id is an instan
e of the pro
ess type SDUId and the pro
essC is an instan
e of the pro
ess type Corruptions, des
ribed above, with the parametersetting (usd; f(k; k)jk 2 usdg). In the ACTIONS part the system a
tions are de
lared by
onjun
tions of pro
ess a
tions. For instan
e, the lo
al pro
ess a
tions Rq of the pro
essesId, C, Cap, and LIn are 
oupled to the system a
tion Rq while the pro
esses G, R, D, andP parti
ipate by stuttering steps only.The spe
i�
ation te
hnique 
TLA supports superposition (
f. [2, 5℄) whi
h guaranteesthat a property ful�lled by a pro
ess or subsystem is also a property of ea
h system
ontaining this pro
ess or subsystem. It is essential for the 
on
eption of the frameworkand, parti
ularly, for stru
turing the veri�
ation into subsystem impli
ations. With regardto the safety properties, whi
h 
onstrain initial states and state transitions of systems only,superposition 
an be guaranteed quite easily. Sin
e a system state is modeled by a ve
torof pro
ess states whi
h are de�ned by private variables only, properties 
onstraining thestates of a single pro
ess also 
onstrain the states of the whole system.With respe
t to liveness properties, however, superposition is more subtle. In a system,a pro
ess a
tion 
an be 
oupled with a
tions of other pro
esses. Thus, the environmentof a pro
ess 
an blo
k the pro
ess a
tion, and due to the blo
king the fairness assumptionof this pro
ess a
tion may be violated. In 
ontrast to TLA, whi
h adopts the fairnessassumptions introdu
ed in [1℄ dire
tly, 
TLA therefore uses 
onditional fairness assump-tions only. The WF/SF 
onstru
ts of 
TLA refer to periods of time where a pro
essa
tion is enabled as well as the a
tion is not blo
ked by the environment of the pro
ess.For instan
e, the pro
ess LIn : LiveInNoAttr (Fig. 2) only has the liveness property thatdata submitted (a
tion Rq) will be eventually delivered (a
tions fIn or nIn) if the pro
essa
tion fIn is not blo
ked by the environment of Lin too often.On the one hand, this restri
tion of liveness properties to 
onditional fairness dire
tlysupports superposition. On the other hand, however, 
onditional fairness assumptionsare not able to express absolute liveness properties whi
h are of parti
ular interest forthe system design. Nevertheless, one 
an spe
ify absolute liveness properties by meansof an additional 
ondition preventing the pro
ess environment to blo
k fair a
tions toooften. If one 
an prove the safety property that the fair pro
ess a
tion fIn is toleratedby the pro
ess environment whenever it is enabled due to the lo
al pro
ess states inLiveInNoAttr, the 
onditional fairness 
orresponds to the un
onditional fairness a

ordingto [1℄. All modules of the framework, whi
h des
ribe liveness properties 
orrespond to thepattern of the example module LiveInNoAttr and des
ribe fairness assumptions as weakas possible. They separate fair suba
tions (e.g., fIn) and are designed to express absoluteliveness properties under the assumption that the fair suba
tions are only blo
ked bythe environment in system states where they are disabled at all. Indeed, the modulesof the framework are designed under 
onsideration of ea
h other in order to ful�ll thisassumption. 8



3 Formal Semanti
sThe language 
TLA supports the modular formal spe
i�
ation of distributed systems andapplies state transition system based modeling like the standard languages Estelle [30℄and SDL [32℄. Nevertheless, these standard languages mainly 
on
entrate on the stru
-tured and easy-to-read formal des
ription of systems and a

ordingly provide a ri
h set oflanguage 
onstru
ts. Formal veri�
ations, however, need additional means sin
e the lan-guages do not dire
tly support formal reasoning. In 
ontrast to these standard languages
TLA has been designed under the obje
tive of expli
it veri�
ation support. Therefore itis dire
tly based on L. Lamports temporal logi
 of a
tions TLA [34℄. Thus, ea
h 
TLApro
ess instan
e 
orresponds to a TLA formula. This 
orresponden
e de�nes the formalsemanti
s of 
TLA. Moreover, it enables TLA-based veri�
ation.In TLA 
anoni
al formulas des
ribe the safety and liveness properties of state tran-sition systems in a

ordan
e to [1℄. Inferen
e rules support the synta
ti
al dedu
tion ofvalid formulas. Moreover, there is an interesting 
on
eption of re�nement. A more de-tailed spe
i�
ation Im 
orre
tly re�nes a more abstra
t spe
i�
ation Sp if the impli
ationIm) Sp is a valid TLA-formula where Sp is the spe
i�
ation Sp under substitution of itsfree state variable o

urren
es by fun
tions of the state variables of Im. These fun
tionsform the so-
alled re�nement mapping. Due to the 
orre
t re�nement Im implementsSp in the pra
ti
ally relevant sense that Im meets the safety and liveness requirementsexpressed by Sp. 
TLA adopts these notions and te
hniques of TLA. It is an extensionof TLA adding expli
it notions of pro
esses, pro
ess types, and pro
ess 
omposition (asmentioned, the superposition 
hara
ter of 
omposition is of parti
ular interest). Further-more, there is a di�erent look of 
TLA spe
i�
ations sin
e in 
TLA 
anoni
al parts offormulas are not expli
itly written down.The TLA formula whi
h 
orresponds to a pro
ess instan
e depends on the parametersettings of the instantiation and on the de�nition of the pro
ess type. Pro
ess typeparameters are generi
. As usual, we assume that the text strings of a
tual parametersrepla
e the formal parameter o

urren
es in the pro
ess type de�nitions. With respe
tto the pro
ess type de�nitions, there are two forms, one for simple pro
esses and one forsystems. In both 
ases, the TLA formulas of pro
ess instan
es are in 
anoni
al form andrefer dire
tly to predi
ate and a
tion de�nitions of the pro
ess type.For 
lari�
ation of simple pro
esses let LIn : LiveInNoAttr be a pro
ess instan
e ofpro
ess type LiveInNoAttr listed in Fig. 2. LIn 
orresponds to following TLA formuladLIn where the symbols INIT, Rq, fIn, and nIn represent the initial state predi
ate anda
tions of the pro
ess type LiveInNoAttr:dLIn �= INIT^2[ Rq_9krq 2 key :: fIn(krq)_9krq 2 key :: nIn(krq)℄(
Rq;maxIn)^8krq 2 key :: WF(
Rq;maxIn)(fIn(krq) ^ krq 2 efIn)dLIn is an usual 
anoni
al TLA formula des
ribing the safety and liveness properties ofa state transition system with the two state variables 
Rq and maxIn. The �rst fourlines are devoted to safety properties and de�ne the initial states and the next state9



relation of the state transition system. The last line addresses liveness and adds fairnessassumptions on subrelations of the next state relation. There is only one parti
ularity informula dLIn. While usually fairness operators refer dire
tly to a
tions of the next staterelation, here the weak fairness is not applied to the a
tion fIn but to a suba
tion ofit, namely to the 
onditional a
tion fIn(krq) ^ krq 2 efIn, where an additional statevariable efIn is addressed. We assume that for ea
h fair a
tion of a pro
ess a 
orrespondingenvironment readiness variable like efIn exists. The variable is shared between the pro
essand its environment. It is written by the environment and read by the pro
ess. It a
tsas an abstra
tion of the pro
ess environment and indi
ates the 
urrent readiness of theenvironment for the a
tion. The value of the variable is the set of those a
tion parametervalues for whi
h the environment 
urrently does not blo
k o

urren
es of the a
tion. Forinstan
e, when efIn is empty, the environment is assumed to blo
k the a
tion fIn underea
h possible parametrization. In 
ontrast, the TLA formula dLIn ^ 2efIn = key wherekey denotes the set of all possible values for the a
tion parameter krq des
ribes a statetransition system modeling the pro
ess LIn in an environment whi
h always toleratesstate transitions a

ording to fIn.The TLA formula of systems shall be explained by an extension of the example. Werefer to the pro
ess type SlidWindServi
e whi
h is de�ned in Fig. 3. As explained in Se
. 2,instan
es of this type are systems whi
h are 
omposed from eight pro
ess instan
es Id,: : :, LIn. Sin
e all other pro
esses besides LIn do not express liveness properties, fairnessassumptions only apply to a
tions of LIn (as shown in Fig. 2 the a
tion LIn.fIn isa

ompanied by a fairness statement). Let SWS : SlidWindServi
e(usd) be an instan
eof this system type. It 
orresponds to following 
anoni
al TLA formula dSWS:dSWS �= Id.INIT ^ C.INIT ^ G.INIT ^ R.INIT ^D.INIT ^ P.INIT ^ Cap.INIT ^ LIn.INIT ^2[ 9krq 2 key; d 2 usd :: Rq(krq; d)_9krq 2 key; d 2 usd :: fIn(krq; d)_9krq 2 key; d 2 usd :: nIn(krq; d)℄(Id.
Rq;C.buf;:::;LIn.
Rq;LIn.maxIn)^8krq 2 key ::WF(Id.
Rq;C.buf;:::;LIn.maxIn)(9d 2 usd :: fIn(krq; d) ^ krq 2 sefIn)The formula dSWS refers to the de�nitions of the initial predi
ates of the pro
ess instan
es.Thus, LIn.INIT stands for the initial predi
ate of LIn. Moreover, dSWS refers to the a
tionde�nitions of pro
ess type SlidWindServi
e whi
h are 
onjun
tions of pro
ess a
tions. Forinstan
e, as listed in Fig. 3, fIn(krq,d) is de�ned as Id.In(krq) ^ : : :^ LIn.fIn(krq).Sin
e the a
tion fIn of SWS 
ontains the fair pro
ess a
tion LIn.fIn, it also is a

om-panied by a fairness statement. The last line of dSWS states a 
orresponding fairnessassumption for the system a
tion fIn. As in simple pro
esses the fairness assumptionis 
onditional and the symbol sefIn denotes the 
orresponding environment readinessvariable for the system a
tion fIn.For the reasoning on pro
ess 
ompositions not only TLA formulas of the form ofdSWS are used. Moreover a 
ompositional form exists whi
h is a 
onjun
tion of the TLA
10



formulas of the 
onstituting pro
esses. Thus, the 
ompositional formula gSWS of SWS is:gSWS �= 
Id ^ bC ^ : : : ^ dLIn ^ SCC^2(LIn:efIn = fkrq 2 keyj9d 2 usd :: krq 2 sefIn ^ Enabled(Id.In(krq))^ : : : ^ Enabled(Cap.In(krq))g)In addition to the formulas of the 
onstituting pro
esses the 
ompositional formula gSWS
onjoins two invariants. The so-
alled 
oupling 
onstraint SCC expresses the safety 
on-ditions whi
h result from the spe
ial a
tion 
oupling of a system, e.g., it states withrespe
t to the a
tion LIn.fIn(krq) that this a
tion has to o

ur in 
ombination withsimultaneous o

urren
es of the a
tions Id.In(krq), C.In(krq,d), : : :, Cap.In(krq).The last invariant de�nes the environment readiness variable LIn:efIn of pro
ess LIn asstate fun
tion: The a
tion fIn of pro
ess LIn is tolerated by LIn's environment for aparameter value krq, exa
tly if the environment of SWS tolerates the system a
tion fInand all these a
tions of the other pro
esses of SWS are enabled whi
h are 
oupled withLIn.fIn within the system a
tion fIn.Besides of the syntax and the TLA transformation rules outlined above, the 
TLAlanguage de�nition 
ontains few 
onditions restri
ting the 
ontent of system a
tion def-initions espe
ially in 
ontext with the o

urren
e of fair a
tions. In the main, these
onditions express the assumption, that fair pro
ess a
tions are disjoint and that for ea
hfair pro
ess a
tion there is exa
tly one 
ontaining system a
tion. Under these 
onditionsone 
an prove that the 
ompositional TLA formula of a system instan
e is equivalent tothe dire
t 
anoni
al TLA formula of this system instan
e (the proof is des
ribed in [17℄).In the example this means that dSWS , gSWS is valid.From the equivalen
e of the 
ompositional formula with the dire
t 
anoni
al formula ofa system instan
e we 
an infer that the 
ompositional formula is free from 
ontradi
tion.In 
ombination with the form of the 
ompositional formula whi
h 
onjoins the formulasof the 
onstituting pro
esses, we 
an infer that pro
ess 
omposition implies the 
onsis-tent logi
al 
onjun
tion of pro
esses. Therefore a system formula implies the formula ofea
h 
onstituting pro
ess. This means, that pro
ess 
omposition has ideal superposition
hara
ter be
ause the safety and liveness properties of pro
esses are also properties of
ontaining systems. Moreover, sin
e logi
al 
onjun
tion is 
ommutative and asso
iative,superposition applies not only to pro
esses but also to subsystems of a system.Superposition fa
ilitates the formal veri�
ation of system properties. In order to provethat a system S has the properties expressed by a TLA formula P , it is suÆ
ient to �nda subsystem Sys of S for whi
h the TLA formula dSys) P 
an be proven. This supportsthe broad appli
ability of the theorems supplied by the transfer proto
ol framework.Theorems have the form of TLA impli
ations from a parameter 
ondition Pars, a proto
olme
hanism subsystem Sys, and an environment 
ondition invariant EnvCond to a servi
eproperty spe
i�
ation (e.g., Pars ^ Sys ^ 2EnvCond ) LiveInNoAttr, 
f. Fig. 8 inSe
. 7). The subsystems Sys of the theorems are relatively small and really 
on
entrate onthese proto
ol me
hanisms whi
h are ne
essary for the implementation of 
ertain servi
eproperties. Besides of few parameter and non-blo
king 
onditions the theorems do notrefer to the environment of Sys. Therefore, a relatively small number of theorems 
an 
overthe relevant relations between proto
ol me
hanisms and servi
e properties. In pra
ti
alproofs that a spe
i�
 proto
ol implements a servi
e with spe
ial fun
tional properties,11



therefore there is a very high probability that one �nds suitable instan
es of frameworktheorems and 
onsequently does not need to perform original proofs.4 Transfer Proto
ol FrameworkThe Transfer Proto
ol Framework 
onsists of spe
i�
ation modules and of theorems. Thespe
i�
ation modules are 
TLA pro
ess type de
larations whi
h des
ribe proto
ol me
ha-nisms, 
onstraints of a basi
 transfer medium, and servi
e 
onstraints. They are stru
turedinto three layers:� Servi
e-Constraints (SCs):A servi
e 
onstraint (e.g., an instan
e of the pro
ess type Corruptions in Fig. 1)models a single property of a 
ommuni
ation servi
e. It is instantiated from an SCmodule of the framework. Servi
e spe
i�
ations are 
ombined from SC instan
es.The framework 
ontains SCs spe
ifying that transmission errors (i.e., 
orruptions,dupli
ates, reorderings, gaps, phantoms) do not o

ur, that the servi
e 
apa
ity islimited, and that the servi
e guarantees a live delivery of transmitted user or sig-nalling data. By other SCs one 
an model aspe
ts of 
onne
tion handling, datagramtransfer, and fun
tional quality of servi
e. A third group of SCs allows to model
onstraints regarding the 
oordination of di�erent 
onne
tions (e.g., limiting thenumber of 
onne
tions 
urrently a
tive in a station).� Abstra
t Proto
ol Me
hanisms (APMs) and Abstra
t Medium Constraints (AMCs):An abstra
t proto
ol spe
i�
ation is modeled by a system 
omposed of APMs andAMCs. The APMs and AMCs re
e
t the 
ommon s
enario of proto
ol des
riptions.Proto
ol entities 
ooperate and 
ommuni
ate by means of a basi
 medium. With re-spe
t to this, the di�erent APMs model single me
hanisms of proto
ol entities andthe AMCs des
ribe properties of the basi
 medium. The APMs spe
ify abstra
-tions of proto
ol me
hanisms used in real proto
ols. They only model the essentialfun
tions of the proto
ol me
hanisms and do not atta
h importan
e to details ofeÆ
ient implementation. For instan
e, the APM modeling sequen
e numbering isnot 
on
erned with the reuse of numbers and therefore is based on an in�nite rangeof numbers. Besides sequen
e numbering, the framework 
ontains APMs modelingproto
ol me
hanisms used by various transfer proto
ols (
f. [8, 35℄). One 
an spe
ifythe storage of user data, 
y
li
 redundan
y 
he
ks, segmentation and re-assemblyof user data, as well as the handling of re-ordered and defe
tive data. Moreover,APMs are available modeling the management of feedba
k messages (i.e., a
knowl-edgement of data, reje
t of defe
tive data units, granting new transmission 
redits),
ow 
ontrol me
hanisms, and the handling of messages to trigger a feedba
k fromthe re
eiver to the transmitter of user data. Another group of APMs supports thespe
i�
ation of 
onne
tion handling, datagram transfer, fun
tional quality of servi
emanagement, and me
hanisms to 
oordinate di�erent 
onne
tions. Sin
e the basi
medium is a servi
e, the AMCs model servi
e 
ontraints similarly to the SCs.� Finite Abstra
t Proto
ol Me
hanisms (FAPMs) and Abstra
t Medium Constraints(AMCs): 12



A system of FAPMs and AMCs models a transfer proto
ol in a quite dire
t manner.Ea
h proto
ol me
hanism of the proto
ol is modeled by an FAPM instan
e. AMCinstan
es spe
ify the basi
 medium. A 
omposition of the FAPM instan
es andAMC instan
es forms a stru
tured formal proto
ol spe
i�
ation. In 
ontrast to theAPMs, the FAPMs use only �nite variables. Thus, sequen
e numbers have to bereused whi
h 
orresponds dire
tly to the me
hanism employed in sliding windowproto
ols. Furthermore, 
onne
tions have to be identi�ed by a �nite number of
onne
tion identi�ers. Therefore, besides FAPMs similar to the APMs listed above,the framework 
ontains FAPMs modeling the administration of sequen
e numbersand 
onne
tion identi�ers.The theorems of the framework are logi
al impli
ations between 
TLA systems. Dueto the three-layered stru
ture of the spe
i�
ations patterns two kinds of theorems areused:� An SC theorem states that a system modeled by APMs and AMCs implies a servi
e
onstraint, i.e., an SC. For some SCs of the framework more than one theorem areavailable. That re
e
ts that a servi
e 
onstraint 
an be realized by di�erent proto
olme
hanism 
ombinations.� The gap between an abstra
t proto
ol system modeled by APMs and AMCs anda dire
t proto
ol model 
onsisting of FAPMs and AMCs is bridged by APM andAMC theorems. A theorem states that a system of FAPMs and AMCs implementsa 
ertain APM or AMC.The stru
ture of the framework is further re�ned by distinguishing safety and livenessproperties. Thus, ea
h of the three sorts of spe
i�
ation modules 
ontains two groups ofmodules 
alled safety resp. liveness pro
ess types. Likewise the theorems are 
lassi�ed intosafety and liveness theorems a

ording to the pro
ess at the right side of the impli
ation.The theorems are logi
al impli
ations as listed below:� Safety theorem: Pars ^ Sys) (Safety)Pro
,� Liveness theorem: Pars ^ Sys ^ 2EnvCond ) (Liveness)Pro
.The system de�nition Sys, the 
entral part of the left side of an theorem impli
ation,des
ribes a system 
omposed from pro
ess instan
es. The theorem expresses that thissystem implements the pro
ess Pro
 listed on the right side of the impli
ation. The pro
essinstan
es of Sys are parametrized instantiations of pro
ess types. Sin
e pro
ess typesmust not be parametrized arbitrarily, a predi
ate logi
 formula Pars de�nes a suÆ
ient
ondition for 
orre
t and 
onsistent pro
ess parametrizations. Furthermore, in livenesstheorems the left side of the impli
ation 
ontains an invariant, the so-
alled environment
ondition EnvCond. This 
ondition 
onstrains the behaviour of the environment of thesystem Sys. It rules out that fair a
tions of Sys may be blo
ked by the environment toooften.Currently, the transfer proto
ol framework 
ontains 133 spe
i�
ation patterns (28 SCs,44 APMs, 14 AMCs, and 47 FAPMs) and 165 theorems (31 SC theorems and 134 APMtheorems). 13
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ture of servi
e and proto
ol spe
i�
ations5 Servi
e Spe
i�
ationOur proto
ol example shall implement a reliable and live simplex data transfer servi
eof a �xed 
apa
ity. Parti
ularly, data must be transmitted without errors. Thus, theservi
e has to ful�ll �ve servi
e 
onstraints: transmitted data are not 
orrupted; thestream of data delivered to the re
eiver does not 
ontain gaps; the delivered data arenot reordered; dupli
ates of data are not delivered; the stream of delivered data does not
ontain phantoms. Another servi
e 
onstraint limits the 
apa
ity of the servi
e. At thesame time only a 
ertain number of data units | eight in this example | may be sentand not yet delivered. The last servi
e 
onstraint re
e
ts liveness aspe
ts. The servi
e isalive if it eventually delivers all transmitted data units to the re
eiver guaranteeing thatdata may not be lost due to ina
tivity. Furthermore, due to the liveness of the servi
ethe transmitting servi
e user will be able to submit new data units in intervalls sin
e ea
hdata delivery 
auses the amount of data falling below the 
apa
ity limit. Thus, after adelivery at least one new data unit may be transmitted.To 
reate a formal spe
i�
ation of this servi
e, at �rst we design 
onstraint spe
i�-
ations, ea
h modeling only one of the servi
e 
onstraints listed above (
f. upper part ofFig. 4). As already mentioned, the 
onstraint spe
i�
ations are developed parametriz-ing SCs of the transfer proto
ol framework. In a se
ond step we 
ompose the 
onstraintspe
i�
ations to the servi
e spe
i�
ation.The spe
i�
ation SlidWindServi
e, listed in Fig. 3, models the servi
e. It 
ontains aparameter usd de�ning the set of data units to be transmitted by the servi
e. For instan
e,the repla
ement of usd by the set f0; : : : ; 255g spe
i�es a byte oriented data transfer ser-14



vi
e. The servi
e spe
i�
ation SlidWindServi
e 
onsists of the eight 
onstraints Id, C, G,R, D, P, Cap, and LIn whi
h will be developed by instantiating the framework SCs SDUId,Corruptions, Gaps, Reorderings, Dupli
ates, Phantoms, Capa
ity, resp. LiveInNoAttr.Id is a spe
ial 
onstraint whi
h models the assignment of an unambiguous and orderedsequen
e number to ea
h data unit submitted. These sequen
e numbers are ne
essaryto dete
t transmission errors. The other seven 
onstraints pro
esses spe
ify the sevenservi
e 
onstraints mentioned above. For example, the 
onstraint C models that onlydata whi
h are not 
orrupted during the transmission may be delivered to the servi
euser. It is an instantiation of the SC Corruptions, listed in Fig. 1, whi
h uses the pro
essparameter usd and t
. usd 
orresponds to the global parameters usd in the pro
essSlidWindServi
e. By the relation t
 we 
an �x, if and to whi
h degree 
orruptions of datamay be tolerated. For instan
e, if one models byte oriented data transfer, the repla
ementof t
 by f(k; 2�(k div 2))g[f(k; 2�(k div 2+1))g spe
i�es that one tolerates the 
orruptionof the lowest priority bit. Sin
e in our example 
orruptions must not o

ur, we repla
et
 by the identity relation { (k,k) | k 2 usd }. The 
onstraint pro
ess G models theservi
e 
onstraint that the stream of delivered data has no gaps. G is instantiated fromthe SC Gaps, the parameter tg of whi
h des
ribes the maximum size of gaps. We repla
e itby the value 0. The Constraints R, D, and P model the servi
e 
onstraints whi
h ex
ludereoderings, dupli
ates, and phantoms in the stream of delivered data. The 
apa
ity ofthe servi
e is modeled by the 
onstraint Cap while the liveness 
onstraint pro
ess LIn oftype LiveInNoAttr (Fig. 2) spe
i�es that the servi
e must be alive.The a
tions Rq, fIn, and nIn are spe
i�ed in the servi
e spe
i�
ation SlidWindServi
e.By Rq the submission of a new data unit d by the transmitting servi
e user is modeled.During the submission the sequen
e number krq is assigned to the data unit d. Rq is a
onjun
tion of the pro
ess a
tions Rq of the pro
ess 
onstraints Id, C, Cap, and LIn whilethe other pro
esses do not 
ontribute with a pro
ess a
tion. 
TLA, however, demandsthat the pro
esses G, R, D, and P perform a lo
al stuttering step during the exe
ution ofRq. Thus, it models 
on
urren
y by interleaving.The delivery of data units d with sequen
e numbers krq to the re
eiving servi
e useris spe
i�ed by the a
tions fIn and nIn. Sin
e the servi
e should be performed lively,we have to provide the a
tion modeling the data delivery with a fairness assumption. Asdes
ribed in Se
. 2, we redu
e this a
tion to a weak fair a
tion fIn and to a 
omplementarynon-fair a
tion nIn. In both a
tions the 
onstraint pro
esses Id, C, G, R, D, P, and Capparti
ipate with their pro
ess a
tions In. From the pro
ess LIn the pro
ess a
tion fInis 
oupled to the system a
tion fIn and the pro
ess a
tion nIn to nIn. fIn models thedelivery of data essential for the progress of the transmission. For instan
e, the deliveryof a data unit whi
h was sent but not yet delivered is modeled by fIn. In 
ontrast, nInspe
i�es the delivery of data not important for the progress of the transmission (�., thedelivery of dupli
ates). Sin
e in our example all data deliveries are essential, the a
tionnIn is never enabled. Thus, we 
an omit it in a simpli�ed des
ription.The a
tion fIn of system SlidWindServi
e is weak fair sin
e it 
ontains the pro
essa
tion fIn of the pro
ess LIn whi
h is weak fair as well (
f. Fig. 2). Therefore, if fIn is
ontinuously enabled, it will eventually be sele
ted for exe
ution.
15



6 Proto
ol Spe
i�
ationThe sliding window proto
ol [42℄ shall implement the data transfer servi
e introdu
edabove. The proto
ol 
onsists of a transmitter entity S at the station of the data transmitterand a re
eiver entity R at the re
eiver site whi
h 
ommuni
ate by means of a full duplexbasi
 servi
e (
f. lower part of Fig. 4). The basi
 servi
e is modeled by two simplex data
hannels M and A. It is less reliable than the servi
e to be provided and we assume thatit guarantees only that 
orruptions, reorderings, and phantoms do not o

ur during thetransmission. Thus, data losses and dupli
ates are possible. We model the basi
 servi
e
omposing the following servi
e 
onstraints: data units are not 
orrupted; data units aredelivered in 
orre
t order; the stream of delivered data does not 
ontain phantoms. Thiskind of data transfer quality is quite realisti
. It exists if the point-to-point data transferused is prote
ted against 
orruptions but not against data losses due to bu�er over
owsin transit nodes. Dupli
ates may o

ur due to in
orre
t 
opying of data in the transitnodes. Furthermore, we demand that the basi
 servi
e guarantees the following livenessassumption: If the user of the basi
 servi
e repeatedly sends data units with a 
ertainattribute, eventually one of these data units will be delivered to its peer. Without thisliveness assumption, data units essential for the transmission might be lost again andagain leading to livelo
ks.The main task of the proto
ol entities S and R of the sliding window proto
ol is todete
t and to remedy data losses and dupli
ates. Furthermore, the 
apa
ity and livenessof the servi
e provided by the proto
ol have to be guaranteed. The proto
ol uses a setof proto
ol fun
tions 
ustomary for most modern data transfer proto
ols (
f. [8, 35℄).Data losses and dupli
ates are dete
ted by means of sequen
e numbers. Ea
h new dataunit submitted to the proto
ol entity S is assigned a sequen
e number. The data unitand its sequen
e number are transmitted together in a proto
ol data pa
ket, a so-
alledproto
ol data unit (PDU). Due to the order of the sequen
e numbers the re
eiver entityR dete
ts dupli
ations and gaps. Dupli
ated data will be ignored while gaps are remediedby sele
tive retransmission. The proto
ol applies the method \Positive A
knowledgementwith Retransmission" (PAR). In intervalls S retransmits data units whi
h are still not
on�rmed. To 
on�rm data units, R transmits 
on�rmation PDUs to S whi
h 
ontain thesequen
e number sa
k of the data unit delivered last to the servi
e user. By this PDUall data units are 
on�rmed, of whi
h the sequen
e numbers are lower or equal to sa
k.S guarantees the �nite 
apa
ity of the servi
e provided sin
e it does only a

ept a newdata unit for transmission if less than eight data units are 
urrently not 
on�rmed. Theliveness of the servi
e is guaranteed sin
e on the one hand S transmits new data units andretransmits un
on�rmed data units to R in intervalls. On the other hand R delivers all
orre
t data units to the servi
e user and repeatedly transmits 
on�rmation PDUs to S.The spe
i�
ation SlidWindProto
ol of the sliding window proto
ol (Fig. 5 and Fig. 6)is designed by parametrizing and 
omposing pro
esses of the framework1. Like the ser-vi
e spe
i�
ation, SlidWindProto
ol 
ontains a parameter usd denoting the set of dataunits transfered by the proto
ol. The parameter repla
ements of the pro
ess instan
es1Due to the size of the spe
i�
ation we abstain from listing most pro
ess parameters in the PROCESSESpart. In the ACTIONS part most system a
tions are listed without a
tion parameters and lo
al pro
essa
tions. 16



! Spe
ifi
ation of the Sliding-Window-Proto
olPROCESS SlidWindProto
ol (usd : any) ! usd : set of user data transferedIMPORT SWParameters(usd);PROCESSES! FAPMs : Modeling transmitter entity SSBK : SBufferKey ! Sequen
e number handler of the transmitter entity(swpdu, swp
i, usd, swpdu, swsp
i, swskey, 1, swskk, swskn,swskm, swusdsize, 1, 16, 8);SBU : SBufferUsd(: : :); ! User data storage handler of the transmitter entitySA
k : SA
knowledge(: : :); ! Data a
knowledge me
hanism of the transm. entitySCap : SCapa
ity(: : :); ! Preventing data unit overflow in the transm. entitySLMRq : SLiveMRq(: : :); ! Liveness of the transmitter entity guaranteeing the! transmission and retransmission of data! FAPMs : Modeling re
eiver entity RRBK : RBufferKey(: : :); ! Sequen
e number handler of the re
eiver entityRBU : RBufferUsd(: : :); ! User data storage handler of the re
eiver entityRG : RGaps(: : :); ! No gaps of delivered dataRR : RReorderings(: : :); ! Delivered data is not reorderedRD : RDupli
ates(: : :); ! No dupli
ations in delivered dataRP : RPhantoms(: : :); ! no phantoms delivered by the re
eiver entityRA
k : RA
knowledge(: : :); ! Data a
knowledge me
hanism of the re
. entityRLARq : RLiveARq(: : :); ! Liveness of the re
eiver entity guaranteeing the! transmission of a
knowledgement dataRLIn : RLiveIn(: : :); ! Liveness of the re
eiver entity guaranteeing the! delivery of re
eived data to the servi
e user! AMCs : Constraints of the basi
 servi
e 
hannel MMS : MSDUId; ! Ordered assignment of sequen
e numbersMC : MCorruptions(: : :); ! No 
orruptions during data transfer on 
hannel MMR : MReorderings(: : :); ! No reorderings during data transfer on 
hannel MMP : MPhantoms(: : :); ! No phantoms generated on 
hannel MMLI : MLiveIn(: : :); ! Liveness of 
hannel M guaranteeing that ea
h pdu! sent in intervalls will be eventually delivered! AMCs : Constraints of the basi
 servi
e 
hannel AAS : ASDUId; ! Ordered assignment of sequen
e numbersAC : ACorruptions(: : :); ! No 
orruptions during data transfer on 
hannel AAR : AReorderings(: : :); ! No reorderings during data transfer on 
hannel AAP : APhantoms(: : :); ! No phantoms generated on 
hannel AALI : ALiveIn(: : :); ! Liveness of 
hannel A guaranteeing that ea
h pdu! sent in intervalls will be eventually deliveredACTIONS: : :;END Figure 5: Proto
ol Spe
i�
ation SlidWindProto
ol (PROCESSES-part)17



PROCESS SlidWindProto
ol (usd : any) ! usd : set of user data transferedIMPORT SWParameters(usd);PROCESSES: : :;ACTIONSRq (krq : fkey; d : usd) �=! Submission of user data d with sequen
e number krqSBK.Rq (krq,d) ^ SBU.Rq (krq,d) ^ SA
k.Rq (krq) ^ SCap.Rq (krq) ^SLMRq.Rq (krq,d) ^ : : :;fIn (krq : fkey; d : usd) �= : : :; nIn (krq : fkey; d : usd) �= : : :;! Delivery of user data d with sequen
e number krq to the! servi
e user (Weak fairness in fIn)fMRq ( : : : ) �= : : :; nMRq ( : : : ) �= : : :;! Submission of a pdu to 
hannel M (Strong fairness in fMRq)fMIn ( : : : ) �= : : :; nMIn ( : : : ) �= : : :;! Delivery of a pdu in
luding data units sent via 
hannel M to the! re
eiver entity (Weak fairness in fMIn)fARq ( : : : ) �= : : :; nARq ( : : : ) �= : : :;! Submission of a pdu in
luding a
knowledgements of data! units to 
hannel A. (Strong fairness in fARq)fAIn ( : : : ) �= : : :; nAIn ( : : : ) �= : : :;! Delivery of a pdu in
luding a
knowledgements of data units! sent via 
hannel A (Weak fairness in fAIn)MTi
k �= MLI.MTi
k ^ : : :; ATi
k �= ALI.ATi
k ^ : : :;! Internal a
tions indi
ating the loss of a pdu in M resp. AfMNoTi
k (p : [info : usd; seq : key [ {"<< >>"}; a
k : key℄) �= : : :;fANoTi
k (p : [info : usd; seq : key [ {"<< >>"}; a
k : key℄) �= : : :;! Internal a
tions of M resp. A guaranteeing the delivery of p if! pdus 
ontaining the same data unit are sent often. (Strong F.)END Figure 6: Proto
ol Spe
i�
ation SlidWindProto
ol (ACTIONS-part)are de�ned in a separate pro
ess SWParameters listed below. In the PROCESSES part ofthe spe
i�
ation (
f. Fig. 5) the pro
esses modeling the entities and the basi
 
hannels arelisted. The transmitter proto
ol entity S is spe
i�ed by the pro
esses SBK, SBU, SA
k,SCap, and SLMRq instantiated from FAPMs of the framework. They model proto
olme
hanisms to maintain sequen
e numbers as well as data units, to handle 
on�rma-tion PDUs, to limit the size of the transmitter bu�er, and to guarantee the liveness bytransmitting data units in intervalls.The re
eiver proto
ol entity is modeled by the pro
esses RBK, RBU, RG, RR, RD,RP, RA
k, RLARq, and RLIn whi
h are also instantiated from FAPMs. These pro
essesspe
ify the proto
ol me
hanisms to maintain sequen
e numbers as well as data units,to deliver data to the servi
e users in the 
orre
t order, and to 
on�rm delivered data.18



! Parameters of the Spe
ifi
ation of the Sliding-Window-Proto
olCONSTANT MODULE SWParameters (usd : any) ! usd : set of user data transferedCONSTANTS! Used in FAPMs and AMCsswpdu �= [info : usd; seq : fkey [ {"<< >>"}; a
k : fkey℄;! Abstra
t PDU formatswp
i �= [seq : fkey [ {"<< >>"}; a
k : fkey℄;! Proto
ol Control Information (PCI)swsp
i �= [ x 2 [info : usd; seq : fkey [ {"<< >>"}; a
k : fkey℄7! [ seq 7! x.seq; a
k 7! x.a
k ℄ ℄;! Pointer to the PCI of a PDU: : :;! Used in AMCsswt
 �= { (k,k) | k 2 [info : usd; seq : key [ {"<< >>"}; a
k : key℄ };! Relation: identy of PDUs: : :;END Figure 7: Parameter de�nitions SWParametersFurthermore, RLARq and RLIn guarantee the liveness of the entity sin
e 
on�rmationPDUs and data deliveries are repeatedly triggered.The basi
 data 
hannel M models the transfer of user data and so-
alled proto
ol 
on-trol information (PCI) within PDUs from S to R. We spe
ify it by means of the pro
essesMId, MC, MR, MP, and MLI whi
h are instantiated from AMCs of the framework. Likethe SC Id, MId is a spe
ial 
onstraint modeling the assignment of data units to PDUs tobe transmitted. By MC, MR, and MP we model that transmitted data units are neither
orrupted nor reordered and that phantoms are not delivered. MLI guarantees that, ifPDUs with a 
ertain attribute are sent in intervalls, eventually one of them will be de-livered to the proto
ol entity R. The basi
 data 
hannel A modeling the transfer of PCIwithin PDUs from R to S is spe
i�ed by the pro
esses AId, AC, AR, AP, and ALI whi
h
orrespond to the 
onstraints of 
hannel M.The 
oupling of pro
ess a
tions to system a
tions is des
ribed in the part of thespe
i�
ation headed by ACTIONS (
f. Fig. 6). The a
tions In, MRq, MIn, ARq, and AInare ea
h spe
i�ed by a fair and a 
omplementary non-fair a
tion. Thus, fMRq spe
i�esthe transmission of PDUs whi
h are essential for the progress of the 
ommuni
ation. In
ontrast, nMRq models transmissions whi
h are allowed and for the sake of eÆ
ien
y oftenare also desirable but at the present state not important for the liveness of the proto
ol.The spe
i�
ation respe
ts the distribution of the proto
ol entities S and R sin
e eitherthe pro
esses of S or those of R parti
ipate in a system a
tion by stuttering steps only.The 
onstraints are developed from framework pro
esses by instantiation of pro
essparameters. In Fig. 7 the spe
i�
ation SWParameters lists the de�nitions of the a
tualparameter types. The identi�er swpdu models the format of the PDUs of the slidingwindow proto
ol. It is a re
ord 
onsisting of the three 
omponents info, seq, and a
k.19



Data units transmitted in the PDU are stored in the re
ord 
omponent info. In theelement seq either the sequen
e number of a data unit is stored whi
h 
an be a naturalnumber or the spe
ial symbol "notsent" denoting a phantom (data type key). Or thespe
ial symbol "<<>>" marks that the PDU does not 
ontain a data unit. The sequen
enumber of the data unit delivered last to the servi
e user is stored in the re
ord 
omponenta
k.The sequen
e numbers of data units sent resp. 
on�rmed form the proto
ol 
ontrolinformation (PCI) of a PDU. Thus the identi�er sp
i de�nes a re
ord 
onsisting only ofthe 
omponents seq and a
k. swsp
i models a pointer to the PCI of a PDU. It maps aPDU re
ord to the PCI re
ord, of whi
h the 
omponents seq and a
k 
ontain the samevalues as in the PDU.As already mentioned in Se
. 4, we spe
ify the sliding window proto
ol in two steps.First, we 
reate the detailed proto
ol spe
i�
ation. In a se
ond step we develop a moreabstra
t proto
ol spe
i�
ation whi
h models the distributed fun
tionality of the entitiesbut 
ontains variables of an in�nite range. Thus, we abstra
t from proto
ol errors dueto the reuse of sequen
e numbers and 
onne
tion identi�ers in the abstra
t spe
i�
ation.The abstra
t spe
i�
ation supports the redu
tion of the proto
ol veri�
ation into twosimpler steps (
f. Se
. 7). In the abstra
t proto
ol spe
i�
ation we model the proto
olentities by the 
onstraint pro
esses SBK, RBK, SBU, RBU, RG, RR, RD, SA
k, RA
k,SCap, SLMRq, RLARq, and RLIn again whi
h, however, are instantiated from APMsthis time. To model the basi
 data 
hannels M and A, we use the same AMCs as in thespe
i�
ation SlidWindProto
ol.7 Veri�
ationThe proto
ol veri�
ation guarantees that the 
ommuni
ation servi
e spe
i�ed in Se
. 5 isimplemented by the sliding window proto
ol des
ribed in Se
. 6. Due to the 
omposition-ality of 
TLA we 
an redu
e the veri�
ation into a series of simpler proof steps. In ea
hproof step we verify that a single servi
e 
onstraint is realized by a proto
ol subsystem
onsisting of only some proto
ol me
hanisms. Ea
h proof step 
orresponds dire
tly to aframework theorem. We assume that the theorems are 
orre
t though we have to refer tothe reservations 
on
erning the stringen
y of the presently available theorem proofs de-s
ribed in the introdu
tion. Therefore, we have to 
he
k only if the proto
ol spe
i�
ation
ontains all proto
ol me
hanisms ne
essary for the servi
e 
onstraint. Furthermore, thea
tual parameters of the proto
ol me
hanisms have to be 
onsistent to ea
h other and tothose of the servi
e 
onstraint realized. Thus, we 
an redu
e the proto
ol veri�
ation intothe simple sele
tion and 
onsisten
y 
he
king of framework theorems.The proto
ol veri�
ation is redu
ed to two major steps. First, we prove that the
ommuni
ation servi
e is ful�lled by the abstra
t proto
ol modeled by APMs and AMCs.Se
ond, we verify that the abstra
t proto
ol spe
i�
ation is implemented by the more de-tailed sliding window proto
ol spe
i�
ation 
onsisting of FAPMs and AMCs. To performthe �rst step, we apply eight framework theorems, ea
h proving one SC of the servi
espe
i�
ation. As an example we list the theorem instan
e verifying an instan
e of the20



liveness SC LiveInNoAttr2 in Fig. 8. The theorem states that an instan
e of the SCLiveInNoAttr, i.e., LIn, is implemented by a proto
ol system whi
h 
ontains the pro-
esses of Sys as a subsystem if the 
onditions Pars and 2EnvCond hold. Sys 
onsistsof instan
es of the APMs SLiveMRq, RLiveARq, RLiveIn, and RA
knowledge as well asinstan
es of the AMCs MSDUId, MCorruptions, MPhantoms, MLiveIn, ASDUId, ACor-ruptions, APhantoms, and ALiveIn. It guarantees that user data (SLiveMRq) and 
on�r-mations (RLiveARq) are transmitted arbitrarily often between the proto
ol entities, that
orre
tly transmitted user data are delivered to the servi
e user (RLiveIn), and that onlydelivered data are 
on�rmed (RA
knowledge). Furthermore the basi
 data 
hannels arealive (MLiveIn and ALiveIn) and do not deliver 
orrupted data or phantoms (MSDUId,MCorruptions, MPhantoms, ASDUId, ACorruptions, and APhantoms).While instantiating the formal parameters of the 
onstraint pro
esses in Sys a

ording2To redu
e the spe
i�
ation size, we omitted the a
tual parameters of the pro
esses in the proto
olsubsystem de�nition.LET Pars �= {(p,q)| p, q 2 [info : usd; seq : key [ {"<< >>"}; a
k : key℄ ^p.seq = q.seq } ={(p,q)| p.seq = q.seq ^p 2 [info : usd; seq : key [ {"<< >>"}; a
k : key℄ ^q 2 [info : usd; seq : key [ {"<< >>"}; a
k : key℄ }{̂ (k,k) | k 2 [info : usd; seq : key [ {"<< >>"}; a
k : key℄ } �{ (p,q) | q =2 [info : usd; seq : key [ {"<< >>"}; a
k : key℄ _p.seq = q.seq }{̂ (k,k) | k 2 [info : usd; seq : key [ {"<< >>"}; a
k : key℄ } �{ (p,q)| q =2 [info : usd; seq : key [ {"<< >>"}; a
k : key℄ _p.a
k = q.a
k };Sys �= SLiveMRq ([info : usd; seq : key [ {"<< >>"}; a
k : key℄, : : :) ^RLiveARq (: : :) ^ RLiveIn (: : :) ^ RA
knowledge (: : :) ^MSDUId ^ MCorruptions (: : :) ^ MPhantoms (: : :) ^ MLiveIn (: : :) ^ASDUId ^ ACorruptions (: : :) ^ APhantoms (: : :) ^ ALiveIn (: : :) ^CCLiveInNoAttr;EnvCond �=8 krq,p,kd : Enabled(SLiveMRq.fMRq(krq,p,kd)) )(krq,p,kd) 2 Sys.efMRq ^8 p,kd : Enabled(RLiveARq.fARq(p,kd)) ) (p,kd) 2 Sys.efARq ^8 krq,d : Enabled(RLiveIn.fIn(krq,d)) ) (krq,d) 2 Sys.efIn ^8 krq : Enabled(MLiveIn.fMIn(krq)) ) krq 2 Sys.efMIn ^8 d : Enabled(MLiveIn.fMnoTi
k(d)) ) d 2 Sys.efMnoTi
k ^8 krq : Enabled(ALiveIn.fAIn(krq)) ) krq 2 Sys.efAIn ^8 d : Enabled(ALiveIn.fANoTi
k(d)) ) d 2 Sys.efANoTi
k;IN Pars ^ Sys ^ 2 EnvCond ) LiveInNoAttrFigure 8: Theorem LiveInNoAttr21



to the des
ription in Se
. 6, we adapted the theorem to our example. Sin
e the abstra
tproto
ol spe
i�
ation 
ontains instan
es of all APMs and AMCs listed in Sys whi
h are
oupled in a

ordan
e with the (not expli
itely listed) 
oupling formula CCLiveInNoAttr,Sys is a subsystem of the abstra
t sliding window proto
ol. The repla
ements of theparameters are 
onsistent if the formula Pars holds. The �rst 
onjun
t of Pars is atautology and therefore holds. The other 
onjun
ts express that, if two PDUs p and q areidenti
al, their re
ord 
omponents p:seq and q:seq resp. p:a
k and q:a
k must have equalvalues as well. These 
onjun
ts hold trivially sin
e two re
ords are equal per de�nitionemif all re
ord 
omponents (parti
ularly seq and a
k) are equal as well.The temporal 
ondition 2EnvCond guarantees that LiveInNoAttr is implemented notonly by the subsystem Sys but also by the whole abstra
t sliding window proto
ol. Aliveness proof might fail if the entire system 
ontains pro
esses weakening the liveness ofthe APMs and AMCs in Sys. For instan
e, if the entire system 
ontains an APM prevent-ing the delivery of user data at all, Sys 
ould of 
ourse not guarantee the liveness of theSC LiveInNoAttr. During the design of the theorem we veri�ed that ex
ept for the APMDataChanOpenR all APMs and AMCs of the framework ful�ll the 
ondition 2EnvCond.DataChanOpenR, however, is not a part of the abstra
t proto
ol spe
i�
ation. Thus,2EnvCond also holds, and we proved that the abstra
t sliding window proto
ol imple-ments the servi
e 
onstraint LIn modeled as an instan
e of the SC LiveInNoAttr. In thesame way we verify the other seven SCs of the servi
e spe
i�
ation.Thereafter, the se
ond major proof step veri�es that the abstra
t sliding windowproto
ol spe
i�
ation is ful�lled by the more detailed one. It is performed a

ordingly.By appli
ation of 13 framework theorems we prove that the 13 APMs of the abstra
tproto
ol spe
i�
ation are ful�lled. The proof of the AMCs is not ne
essary sin
e thebasi
 servi
es used by the entities of the detailed resp. abstra
t proto
ol are modeled byidenti
al AMCs.8 Con
lusionWe outlined the essential features of the transfer proto
ol framework and its appli
ationto the formal spe
i�
ation and veri�
ation of 
ommuni
ation proto
ols with the help of asliding window proto
ol example. Similarly, more 
omplex proto
ols were examined withremarkable few expense of work. For instan
e, the high-speed transfer proto
ol XTP [44℄was spe
i�ed and veri�ed within three weeks [24℄. The framework 
an be a

essed viaWWW (http://ls4-www.informatik.uni-dortmund.de/RVS/P-TPM).Currently, we extend the spe
i�
ation te
hnique 
TLA. Besides the modeling of event-dis
rete, not time-valued dynami
al behaviours, 
TLA 
an also be used to spe
ify real-time properties and 
ontinuous behaviours [19, 23℄. We are going to adapt the frameworkapproa
h to the modeling of distributed realtime systems. At the moment we examinethe appli
ation �eld of 
hemi
al engineering system 
ontrol [25℄. Furthermore, the 
TLAextension 
an also be utilized for 
ommuni
ation proto
ols (�., modeling the transmissionof multimedia data).
22
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