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Abstract

The notion of specification frameworks transposes the framework approach from
software development to the level of formal modeling and analysis. A specifica-
tion framework is devoted to a special application domain. It supplies re-usable
specification modules and guides the construction of specifications. Moreover, it
provides theorems to be used as building blocks of verifications. By means of a suit-
able framework, specification and verification tasks can be reduced to the selection,
parametrization and combination of framework elements resulting in a substantial
support which opens formal analysis even for real-sized problems. The transfer pro-
tocol framework addressed here is devoted to the design of data transfer protocols.
Specifications of used and provided communication services as well as protocol spec-
ifications can be composed from its specification modules. The theorems correspond
to the relations between protocol mechanism combinations and those properties of
the provided service which are implemented by them. This article centers on the
application of this framework which is discussed with the help of the specification
of a sliding window protocol. Moreover the structure of its verification is described.
The specification and verification technique applied is based on L. Lamport’s Tem-
poral Logic of Actions (TLA). We use the variant cTLA which particularly supports
the modeling of process systems.

Keywords: Protocol specification, Protocol verification, Temporal logic, Frame-
work, Protocol composition

1 Introduction

Due to recent developments in the field of high-speed and multimedia communication
many new data transfer protocols and protocol variants are designed. Although stan-
dardized formal description techniques (i.e., ISO/OSI: Estelle [30] and Lotos [31], ITU:
SDL [32]) are available, the protocols are developed frequently without any formal sup-
port. Furthermore, abstract service specifications, describing the relevant properties of
the communication service provided by a protocol, are often omitted. Thus, the docu-



mentation of a protocol development is often incomplete and ambiguous. Therefore the
correctness of the protocol cannot be checked systematically.

On the one hand, ambiguous documentations cause the danger of design errors due
to misunderstandings. This might lead to reworking efforts, project delays, and, conse-
quently, to higher project costs. On the other hand, the usage of formal techniques in
protocol design causes significant expense, too. While sometimes the application of these
techniques can be supported by tools (e.g., special editors, interpreters, compilers, and
verification tools; cf. [3, 4, 9, 12, 13, 14, 29, 33, 40]), formal models and formal descriptions
of protocols have to be developed in a creative manner. Due to the complexity of modern
high-speed protocol systems this task can be quite expensive. Furthermore, the devel-
opment of formal descriptions is prone to errors and, similar to program development, a
long debugging phase may be necessary before completing the verification successfully.

The transfer protocol framework [21, 22] facilitates the development of formal specifica-
tions similarly to program development support by libraries of reusable program modules.
The framework contains specification modules which can be instantiated and combined
to a protocol or service specification. A protocol specification consists of a set of mod-
ules, each modeling a single protocol mechanism (e.g., sequence numbering of protocol
data units, repeat request, time out). The developer does not need to create a protocol
mechanism description from scratch. Instead, he uses a module of the framework and
concentrates on suitable instantiations of parameters and on the combination of different
modules. Thus, he models the logical structure of the protocol directly, facilitating the
understanding of the protocol component co-operation. Furthermore, the developer cre-
ates a service specification as well. This task is supported by the framework, too, which
contains specification modules modeling single constraints of services (e.g., no corruptions
of transfered data, liveness of transfered data, no phantoms). The developer parametrizes
and combines these modules to a service specification describing the properties of the
service to be provided by the protocol.

The transfer protocol framework supplies a comprehensive collection of specification
modules. It comprises each typical functional property of data transfer services as well as
all of the protocol mechanisms we found in present data transfer protocols (cf. [8, 35]).
Moreover, it is based on few basic assumptions only. Therefore the framework support is
very general and it can complement other approaches which focus directly on problem-
oriented design, construction, and modular implementation of new transfer protocols. So,
modern high-speed data transfer protocols like XTP [44] and MSP [36] can efficiently be
specified by means of the framework [24, 27]. Moreover, the framework may be used for
the formal modeling and analysis of those protocol configurations which are in the range
of current dynamic communication system configuration approaches like DaCapo [41],
F-CCS [45], and AVOCA [39]. Due to the general orientation of the framework, it should
even cover the formal modeling of most future transfer protocols. Nevertheless exten-
sions are possible and can easily be introduced by addition of new modules. Furthermore,
the flexibility of the specification modules contributes to the broad applicability of the
framework. Each module corresponds to a generic behaviour type where generic module
parameters support the adaption of module instances to special contexts and require-
ments. With respect to this, specification modules may be viewed as behaviour patterns.
Relations exist to approaches which explicitly transpose the notions of design and software



patterns (cf. [11]) to the development of formal specifications (e.g., [15, 38]). Addition-
ally, there is further work focussing on the pattern-based and tool-assisted refinement of
abstract ¢TLA specifications into detailed software specifications [37] and corresponding
implementation-oriented framework extensions may be of interest. In the sequel, how-
ever, we do not want to stress this point in order to concentrate on practical aspects of
framework-based protocol specification and verification.

Formal protocol verification is based on separate specifications of the protocol and the
service to be provided. It proves that the protocol actually provides the service and is
an effective means for the detection of design errors. It can be performed mechanically
by tools based on reachability graph analysis (e.g., state space exploration [28], model
checking [6, 7, 10, 16, 20, 29]) if the number of reachable system states of the protocol
model is relatively small. However, the state space of most protocols relevant in practice
exceeds the limitations of automated tools. Thus, either the protocol specification has to
be simplified, or the verification has to be performed by symbolic logical reasoning. Both,
the design of suitable simplifications as well as the user-guided computation of logical
proofs, increase the protocol development costs significantly.

With respect to this, the verification can be facilitated substantially by the framework
theorems taking into consideration that both the service and the protocol specifications
consist of existing framework modules. Usually, each service constraint is implemented
by a special protocol subsystem combining those protocol mechanisms which ensure that
the protocol execution complies with the service constraint. For each possible pair of
a service constraint and protocol subsystem we verified a theorem stating that the pro-
tocol subsystem implies the service constraint. Therefore, a subsystem of the protocol
specification as well as a corresponding theorem exists for each constraint of the service
specification. Thus, the protocol verification can be accomplished by identifying suitable
“service constraint — protocol subsystem — theorem” triples. Additionally, the developer
has to check that the protocol mechanism specifications of the subsystem and the service
constraint specification are parametrized in a suitable and consistent way. By this method
even complex transfer protocols can be verified quite easily [24]. Moreover, this verifi-
cation method emphasizes the logical relations between protocol subsystems and service
components supporting the understanding of the designed protocol.

Thus, framework-based protocol verifications are relatively easily to develop although
they rely on formal proofs. Nevertheless, we have presently to point to some reservations
concerning the stringency of verifications. They result from the way, the framework theo-
rems were proved. We used the ¢cTLA-tool ¢Tc [26] to compute the process compositions
of the theorems. Then we designed the necessary refinement mappings and invariants in
order to prepare the manual TLA-based proofs, which — due to the high efforts needed
— were not all performed in full formal detail. So, complete proof documentations exist
only for some theorems (see [17]). Moreover we did not check the proofs by means of
theorem prover tools. Therefore we do not recommmend the use of the theorems for high
risk applications though we are convinced of the over-all validity of the theorems.

For the proofs of the framework theorems high efforts were needed and they would
substantially profit from the use of theorem prover tools. The framework application,
however, is based on the design of suitable theorem instances which is accompanied by
relatively simple parameter checks. Consequently, we made the experience that the trans-



fer protocol framework can successfully be applied without special tool-assistance. Nev-
ertheless, one can provide tool-support concentrating on the analysis of compositional
specification structures, the search of appropriate theorems, the proposal of theorem in-
stances, and the preparation of predicate logic based parameter checks. A corresponding
tool was developed and is described in [18].

Since a large number of theorems would be necessary to link all suitable protocol
mechanism combinations with service constraints, the framework supports protocol proofs
which are performed in two steps. Therefore, it provides a third collection of specifica-
tion modules in addition to service constraints and protocol mechanisms. These modules,
called abstract protocol mechanisms, support specifications which are on an intermedi-
ate abstraction level between protocol specifications and service specifications. Conse-
quently, the theorems do not state directly that protocol mechanisms implement service
constraints. Instead, the framework contains two collections of theorems. The theorems
of one collection state that protocol mechanism combinations implement abstract protocol
mechanisms. The other theorems express that abstract protocol mechanism combinations
implement service constraints.

The reduction of protocol verifications into a series of subsystem proofs is based on a
special form of compositionality, the superposition. It guarantees that a relevant property
of a subsystem is also a property of the system as a whole. Superposition was introduced
in [5] as a helpful means for the formal design of systems. Likewise, [2] proposed a tran-
sition system based specification technique supporting the formal design of distributed
systems by superposition. Our approach applies the specification technique ¢cTLA [21, 37]
which is based on TLA (Temporal Logic of Actions, [34]). ¢TLA supports the modular
definition of generic process types and the composition of process systems. Similarly
to the standardized formal description technique Lotos [31] (and similarly to [2]), the
processes of a ¢TLA system interact via synchronous joint actions. The process composi-
tion operation of ¢TLA corresponds to the logical conjunction of processes. Therefore, it
covers superposition with respect to all relevant safety and liveness properties. The pro-
cesses of a cTLA system can model logical behaviour constraints as well as components of
implementations (cf. constraint-oriented and ressource-oriented specification styles [43]).

In the sequel we concentrate on the practical application of the framework. Therefore,
we outline ¢TLA, its semantics, and the transfer protocol framework concisely. Thereafter,
an example application shall clarify the utilization of the framework in more detail. We
describe the development of the service and protocol specifications for a well known sliding
window protocol (from [42]). Moreover, we discuss the verification of this protocol and
point out how the structure of the specifications guides the verification.

2 cTLA

c¢TLA systems are composed of processes. A process is modeled by a state transition
system whose structure is defined by a process type in a programming language-like
syntax. As an example we outline the definition of the process type Corruptionsin Fig. 1.
The header consists of the keyword PROCESS, the process type name Corruptions, and a
list of generic parameters (i.e., the symbols usd and tc). usd models the set of data units



PROCESS Corruptions ( usd : Any ; ! usd : set of user data transfered
tc : SUBSET(usd X usd) )
! tc : relation of tolerated corruptions
IMPORT Symbols;

BODY
VARIABLES
buf : SUBSET(key X usd); ! Buffer of all data units ever sent
INIT £ buf = 0;
ACTIONS
Rq (krq : key; 4 : usd) £ | Transmission of user data d with seq. no. krq

buf’ = buf U {(krq,d)} ;
In (krq : key; d : usd) S Delivery of user data d with seq. no. krq
( krq = "notsent" V
! Service provider markeda phantom with a special key '"notsent'
V e € usd :: ((krq,e) ¢ buf) V
! Phantoms may be delivered without special mark
Je € usd :: ((krqg,e) € buf A (e,d) € tc ) ) A
! Submitted data may only be delivered if it is corrupted
! within limitations set by tc
buf’ = buf ;
END

Figure 1: ¢TLA safety process type Corruptions

transfered between two service users while the relation tc describes a set of corruptions
which can be tolerated. In process instances specifying that corruptions are not tolerated
at all, tc is instantiated with the identity relation. The construct IMPORT refers to the
inclusion of other modules containing definitions of symbols (fi., data types, functions,
and constants). We assume that the symbol key, which specifies the set of sequence
numbers for data units, is defined in the module Symbols. The state space of a process is
modeled by variables declared in the section VARIABLES. In the process type Corruptions
buf is the only variable. It describes a set of pairs of a sequence number and a user
data unit. A predicate headed by the keyword INIT specifies the set of initial states of
a process. In Corruptions the variable buf equals to the empty set in the initial state.
The action definition part is headed by the keyword ACTIONS. An action is a predicate
about a pair of a current state and a next state, modeling a set of state transitions.
The current state is referenced by variables (fi. buf) while the next state is referenced
by so-called primed variables (fi. buf’). Each pair of a current state and a next state
satisfying the predicate is a state transition corresponding to an occurrence of the action.
Action definitions can contain data parameters. In the example the action Rq(2,"data")
applies to all transitions in which the variable buf in the next state is equal to buf in
the current state extended by the pair (2,"data"). The variables, INIT, and the actions
of a process define a state transition system describing a set of state sequences. A state
sequence models a possible behaviour of the process if the first state fulfills INIT and each
state transition corresponds to an action of the process.



The example process is a service specification module of the framework modeling the
constraint that the service transmits data without corruptions. The action Rq specifies
the submission of data to the service and the action In the delivery of transmitted data to
the service user. The variable buf corresponds to the set of all data units ever submitted.
Thus, the term 3 e € usd :: ((krq,e) € buf V (e,d) € tc) in the definition of the
action In models that a data unit submitted before (action Rq) may only be delivered
to the service user (action In) if it was corrupted only within the limits defined by the
relation tc. According to the distinction between safety and liveness properties (cf. [1]),
the process type Corruptions specifies only safety properties. Therefore Corruptions does
not rule out state sequences which contain only a finite number of state changes (i.e.,
processes terminating eventually are tolerated).

PROCESS LiveInNoAttr
IMPORT Symbols;

BODY
VARIABLES
cRq : key ; I Sequence number of next data unit to be sent
maxIn : key ; ! Sequence number of next data unit to be delivered
INIT = cRq=0 A maxIn =0 ;
ACTIONS |
Rq = ! Transmission of user data

cRq’ = cRq + 1 A maxIn’ = maxIn;
fIn ( krq : key ) = Delivery of user data with seq. no. krq
! Weak fairness assumed
krq # "notsent" A krq = maxIn A maxIn < cRq A
maxIn’ = maxIn + 1 A cRq’ = cRq;
nIn ( krq : key ) = Delivery of user data with seq. no. krq
! No fairness assumed
not (krq # "notsent" A krq = maxIn A maxIn < cRq) A
maxIn’ = IF (krq = "notsent") THEN maxIn ELSE max(maxIn,krq + 1) A
cRq’ = cRq;

WF: fIn;
END

Figure 2: ¢TLA liveness process type LiveInNoAttr

The process type LiveInNoAttrin Fig. 2 is an example of a framework module modeling
a liveness property. In comparison to the process type Corruptions, listed in Fig. 1,
LivelInNoAttr contains a new construct WF. While the other parts of LiveInNoAttr define
a state transition system again, WF describes that the action fIn has to be performed
“weak-fairly”. Similarily, by the construct SF one can declare an action to be performed
“strong-fairly”. A weak fair action must be performed eventually if otherwise it would
be enabled continuously for an infinite period of time. A strong-fair action has to be
performed even if the action is disabled from time to time. Weak and strong fair actions
were introduced in [1]. In contrast to direct liveness properties these fairness assumptions
do not model implicit safety properties which might be in contrast to the (explicit) safety
properties of the process. Therefore in TLA [34] and ¢TLA — especially in the transfer



protocol framework — liveness properties are modeled by weak and strong fair actions
only.

To support the modularity of the transfer protocol framework, the fairness assumptions
should be as weak as possible. Therefore actions are split into two actions, of which one is
fair (e.g., £In in process type LiveInNoAttr). The other action (e.g., nIn in LiveInNoAttr)
is not fair. Both £In and nIn in LiveInNoAttr model the delivery of transfered user data
(compare action In in process type Corruptions). The fair action £In specifies that the
data unit expected next in the order of transfered data will be delivered lively. Since the
process type LiveInNoAttr shall concentrate on liveness and therefore must not constrain
the delivery of data in general, it contains another action nln tolerating the delivery of
other data units.

PROCESS SlidWindService (usd : any ) ! usd : set of user data transfered
PROCESSES
Id : SDUId; ! Assignment of unambiguous sequence numbers
C : Corruptions (usd,{ (k,k) | k € usd });

! No Corruptions of transfered data
: Gaps (0); ! No Gaps in transfered data stream
: Reorderings (0); ! No reorderings in transfered data stream
: Duplicates (0); ! No duplications of transfered data
!
[
!

O 3@

: Phantoms (usd, usd); No phantoms
Cap : Capacity (8); Service capacity of eight data units
LIn : LiveInNoAttr; Data Units are delivered lively

ACTIONS
Rq (krq : key; d : usd) £ | Transmission of user data d with seq. no. krq
Id.Rq(krq) A C.Rq(krq,d) A G.stutter A R.stutter A D.stutter A
P.stutter A Cap.Rq(krq) A LIn.Rq;
fIn (krq : key; d : usd) = Delivery of user data d with seq. no. krq
! Weak fairness assumed
Id.In(krq) A C.In(krq,d) A G.In(krg) A R.In(krg) A D.In(krg) A
P.In(krq,d) A Cap.In(krgq) A LIn.fIn(krq);
nIn (krq : key; d : usd) = Delivery of user data d with seq. no. krq
! No fairness assumed
Id.In(krq) A C.In(krq,d) A G.In(krg) A R.In(krg) A D.In(krg) A
P.In(krq,d) A Cap.In(krgq) A LIn.nIn(krq);

END

Figure 3: Service specification Slid WindService

Similarly to Lotos [31], cTLA supports the composition of systems from processes. The
processes interact via synchronous joint actions. Action parameters model the communi-
cation of data. The variables of a process are private and therefore cannot be accessed
by other processes. Like each process, the system as a whole is a state transition system.
The vector of all variables of all processes forms the system state. A system behaviour is



a sequence of system states where the state changes correspond to system actions. Each
system action is defined by the logical conjunction of process actions. In this conjunc-
tion, each process is represented either by a true process action or by the pseudo action
“stutter” denoting that the process does not perform a state change in this system action.

The specification Slid WindService, listed in Fig. 3, models such a system composed
of processes. In the part headed by PROCESSES the processes of the system are declared.
For example, the process Id is an instance of the process type SDUId and the process
C'is an instance of the process type Corruptions, described above, with the parameter
setting (usd, {(k,k)|k € usd}). In the ACTIONS part the system actions are declared by
conjunctions of process actions. For instance, the local process actions Rq of the processes
Id, C; Cap, and LIn are coupled to the system action Rq while the processes G, R, D, and
P participate by stuttering steps only.

The specification technique ¢TLA supports superposition (cf. [2, 5]) which guarantees
that a property fulfilled by a process or subsystem is also a property of each system
containing this process or subsystem. It is essential for the conception of the framework
and, particularly, for structuring the verification into subsystem implications. With regard
to the safety properties, which constrain initial states and state transitions of systems only,
superposition can be guaranteed quite easily. Since a system state is modeled by a vector
of process states which are defined by private variables only, properties constraining the
states of a single process also constrain the states of the whole system.

With respect to liveness properties, however, superposition is more subtle. In a system,
a process action can be coupled with actions of other processes. Thus, the environment
of a process can block the process action, and due to the blocking the fairness assumption
of this process action may be violated. In contrast to TLA, which adopts the fairness
assumptions introduced in [1] directly, cTLA therefore uses conditional fairness assump-
tions only. The WF/SF constructs of ¢cTLA refer to periods of time where a process
action is enabled as well as the action is not blocked by the environment of the process.
For instance, the process LIn : LivelnNoAttr (Fig. 2) only has the liveness property that
data submitted (action Rq) will be eventually delivered (actions £In or nIn) if the process
action fIn is not blocked by the environment of Lin too often.

On the one hand, this restriction of liveness properties to conditional fairness directly
supports superposition. On the other hand, however, conditional fairness assumptions
are not able to express absolute liveness properties which are of particular interest for
the system design. Nevertheless, one can specify absolute liveness properties by means
of an additional condition preventing the process environment to block fair actions too
often. If one can prove the safety property that the fair process action fIn is tolerated
by the process environment whenever it is enabled due to the local process states in
LiveInNoAttr, the conditional fairness corresponds to the unconditional fairness according
to [1]. All modules of the framework, which describe liveness properties correspond to the
pattern of the example module LiveInNoAttr and describe fairness assumptions as weak
as possible. They separate fair subactions (e.g., fIn) and are designed to express absolute
liveness properties under the assumption that the fair subactions are only blocked by
the environment in system states where they are disabled at all. Indeed, the modules
of the framework are designed under consideration of each other in order to fulfill this
assumption.



3 Formal Semantics

The language cTLA supports the modular formal specification of distributed systems and
applies state transition system based modeling like the standard languages Estelle [30]
and SDL [32]. Nevertheless, these standard languages mainly concentrate on the struc-
tured and easy-to-read formal description of systems and accordingly provide a rich set of
language constructs. Formal verifications, however, need additional means since the lan-
guages do not directly support formal reasoning. In contrast to these standard languages
c¢TLA has been designed under the objective of explicit verification support. Therefore it
is directly based on L. Lamports temporal logic of actions TLA [34]. Thus, each ¢TLA
process instance corresponds to a TLA formula. This correspondence defines the formal
semantics of cTLA. Moreover, it enables TLA-based verification.

In TLA canonical formulas describe the safety and liveness properties of state tran-
sition systems in accordance to [1]. Inference rules support the syntactical deduction of
valid formulas. Moreover, there is an interesting conception of refinement. A more de-
tailed specification Im correctly refines a more abstract specification Sp if the implication
Im = Sp is a valid TLA-formula where Sp is the specification Sp under substitution of its
free state variable occurrences by functions of the state variables of Im. These functions
form the so-called refinement mapping. Due to the correct refinement Im implements
Sp in the practically relevant sense that Im meets the safety and liveness requirements
expressed by Sp. ¢TLA adopts these notions and techniques of TLA. It is an extension
of TLA adding explicit notions of processes, process types, and process composition (as
mentioned, the superposition character of composition is of particular interest). Further-
more, there is a different look of ¢TLA specifications since in ¢TLA canonical parts of
formulas are not explicitly written down.

The TLA formula which corresponds to a process instance depends on the parameter
settings of the instantiation and on the definition of the process type. Process type
parameters are generic. As usual, we assume that the text strings of actual parameters
replace the formal parameter occurrences in the process type definitions. With respect
to the process type definitions, there are two forms, one for simple processes and one for
systems. In both cases, the TLA formulas of process instances are in canonical form and
refer directly to predicate and action definitions of the process type.

For clarification of simple processes let LIn : LiveInNoAttr be a process instance of
process type LiveInNoAttr listed in Fig. 2. LIn corresponds to following TLA formula
LIn where the symbols INIT, Rq, fIn, and nIn represent the initial state predicate and
actions of the process type LiveInNoAttr:

LIn £ INITA
O[RqV
dkrq € key :: fIn(krq)V
Jkrq € key :: nIn(krq)] cRqmaxIn)/
Vkrq € key :: WF cRqmaxIn) (£In(krq) A krq € efrn)

LIn is an usual canonical TLA formula describing the safety and liveness properties of
a state transition system with the two state variables cRq and maxIn. The first four
lines are devoted to safety properties and define the initial states and the next state



relation of the state transition system. The last line addresses liveness and adds fairness
assumptions on subrelations of the next state relation. There is only one particularity in
formula LIn. While usually fairness operators refer directly to actions of the next state
relation, here the weak fairness is not applied to the action fIn but to a subaction of
it, namely to the conditional action fIn(krq) A krq € efr,, where an additional state
variable e, is addressed. We assume that for each fair action of a process a corresponding
environment readiness variable like e, exists. The variable is shared between the process
and its environment. It is written by the environment and read by the process. It acts
as an abstraction of the process environment and indicates the current readiness of the
environment for the action. The value of the variable is the set of those action parameter
values for which the environment currently does not block occurrences of the action. For
instance, when ey, is empty, the environment is assumed to block the action £In under
each possible parametrization. In contrast, the TLA formula LIn A Oefrn = key where
key denotes the set of all possible values for the action parameter krq describes a state
transition system modeling the process LIn in an environment which always tolerates
state transitions according to fIn.

The TLA formula of systems shall be explained by an extension of the example. We
refer to the process type Slid WindService which is defined in Fig. 3. As explained in Sec. 2,
instances of this type are systems which are composed from eight process instances Id,
..., LIn. Since all other processes besides LIn do not express liveness properties, fairness
assumptions only apply to actions of LIn (as shown in Fig. 2 the action LIn.fIn is
accompanied by a fairness statement). Let SWS : Slid WindService(usd) be an instance
of this system type. It corresponds to following canonical TLA formula SWS:

SWS 2 I4.INITAC.INITAG.INIT AR.INIT A
D.INIT AP.INIT A Cap.INIT A LIn.INIT A
O krq € key, d € usd :: Rq(krq, d)V
Jkrq € key,d € usd :: £In(krq,d)V
Jkrq € key.d € usd :: nIn(krq, d)]14. cRq,C.buf,..LIn.cRq.LIn.maxIn)/
Vkrq € key
WF1d.cRq,C.buf,. LIn.maxIn)(3d € usd :: £In(krq,d) A krq € segy)

The formula SW S refers to the definitions of the initial predicates of the process instances.
Thus, LIn.INIT stands for the initial predicate of LIn. Moreover, SW S refers to the action
definitions of process type Slid WindService which are conjunctions of process actions. For
instance, as listed in Fig. 3, fIn(krq,d) is defined as Id.In(krq) A...A LIn.fIn(krq).
Since the action £In of SWS contains the fair process action LIn.fIn, it also is accom-
panied by a fairness statement. The last line of SWS states a corresponding fairness
assumption for the system action fIn. As in simple processes the fairness assumption
is conditional and the symbol se;r, denotes the corresponding environment readiness
variable for the system action fIn.

__For the reasoning on process compositions not only TLA formulas of the form of
SW S are used. Moreover a compositional form exists which is a conjunction of the TLA
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formulas of the constituting processes. Thus, the compositional formula SWS of SWS is:

SWS2TAACA...ALIn A SCCA
O(LIn.efr, = {krq € key|3d € usd :: krq € sepr, A Enabled(1d.In(krq))
A...NA Enabled(Cap.In(krq))})

In addition to the formulas of the constituting processes the compositional formula SWS
conjoins two invariants. The so-called coupling constraint SC'C' expresses the safety con-
ditions which result from the special action coupling of a system, e.g., it states with
respect to the action LIn.fIn(krq) that this action has to occur in combination with
simultaneous occurrences of the actions Id.In(krq), C.In(krq,d), ..., Cap.In(krq).
The last invariant defines the environment readiness variable LIn.esp, of process Lin as
state function: The action fIn of process LIn is tolerated by LIn’s environment for a
parameter value krq, exactly if the environment of SWS tolerates the system action £In
and all these actions of the other processes of SWS are enabled which are coupled with
LIn.fIn within the system action fIn.

Besides of the syntax and the TLA transformation rules outlined above, the ¢TLA
language definition contains few conditions restricting the content of system action def-
initions especially in context with the occurrence of fair actions. In the main, these
conditions express the assumption, that fair process actions are disjoint and that for each
fair process action there is exactly one containing system action. Under these conditions
one can prove that the compositional TLA formula of a system instance is equivalent to
the direct canonical TLA formula of this system instance (the proof is described in [17]).
In the example this means that SWS < SW S is valid.

From the equivalence of the compositional formula with the direct canonical formula of
a system instance we can infer that the compositional formula is free from contradiction.
In combination with the form of the compositional formula which conjoins the formulas
of the constituting processes, we can infer that process composition implies the consis-
tent logical conjunction of processes. Therefore a system formula implies the formula of
each constituting process. This means, that process composition has ideal superposition
character because the safety and liveness properties of processes are also properties of
containing systems. Moreover, since logical conjunction is commutative and associative,
superposition applies not only to processes but also to subsystems of a system.

Superposition facilitates the formal verification of system properties. In order to prove
that a system S has the properties expressed by a TLA formula P, it is sufficient to find
a subsystem Sys of S for which the TLA formula Sys = P can be proven. This supports
the broad applicability of the theorems supplied by the transfer protocol framework.
Theorems have the form of TLA implications from a parameter condition Pars, a protocol
mechanism subsystem Sys, and an environment condition invariant EnvCond to a service
property specification (e.g., Pars A Sys A OEnvCond = LiveInNoAttr, cf. Fig. 8 in
Sec. 7). The subsystems Sys of the theorems are relatively small and really concentrate on
these protocol mechanisms which are necessary for the implementation of certain service
properties. Besides of few parameter and non-blocking conditions the theorems do not
refer to the environment of Sys. Therefore, a relatively small number of theorems can cover
the relevant relations between protocol mechanisms and service properties. In practical
proofs that a specific protocol implements a service with special functional properties,
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therefore there is a very high probability that one finds suitable instances of framework
theorems and consequently does not need to perform original proofs.

4 Transfer Protocol Framework

The Transfer Protocol Framework consists of specification modules and of theorems. The
specification modules are ¢ TLA process type declarations which describe protocol mecha-
nisms, constraints of a basic transfer medium, and service constraints. They are structured
into three layers:

e Service-Constraints (SCs):

A service constraint (e.g., an instance of the process type Corruptions in Fig. 1)
models a single property of a communication service. It is instantiated from an SC
module of the framework. Service specifications are combined from SC instances.
The framework contains SCs specifying that transmission errors (i.e., corruptions,
duplicates, reorderings, gaps, phantoms) do not occur, that the service capacity is
limited, and that the service guarantees a live delivery of transmitted user or sig-
nalling data. By other SCs one can model aspects of connection handling, datagram
transfer, and functional quality of service. A third group of SCs allows to model
constraints regarding the coordination of different connections (e.g., limiting the
number of connections currently active in a station).

e Abstract Protocol Mechanisms (APMs) and Abstract Medium Constraints (AMCs):
An abstract protocol specification is modeled by a system composed of APMs and
AMCs. The APMs and AMCs reflect the common scenario of protocol descriptions.
Protocol entities cooperate and communicate by means of a basic medium. With re-
spect to this, the different APMs model single mechanisms of protocol entities and
the AMCs describe properties of the basic medium. The APMs specify abstrac-
tions of protocol mechanisms used in real protocols. They only model the essential
functions of the protocol mechanisms and do not attach importance to details of
efficient implementation. For instance, the APM modeling sequence numbering is
not concerned with the reuse of numbers and therefore is based on an infinite range
of numbers. Besides sequence numbering, the framework contains APMs modeling
protocol mechanisms used by various transfer protocols (cf. [8, 35]). One can specify
the storage of user data, cyclic redundancy checks, segmentation and re-assembly
of user data, as well as the handling of re-ordered and defective data. Moreover,
APMs are available modeling the management of feedback messages (i.e., acknowl-
edgement of data, reject of defective data units, granting new transmission credits),
flow control mechanisms, and the handling of messages to trigger a feedback from
the receiver to the transmitter of user data. Another group of APMs supports the
specification of connection handling, datagram transfer, functional quality of service
management, and mechanisms to coordinate different connections. Since the basic
medium is a service, the AMCs model service contraints similarly to the SCs.

e Finite Abstract Protocol Mechanisms (FAPMs) and Abstract Medium Constraints
(AMCs):

12



A system of FAPMs and AMCs models a transfer protocol in a quite direct manner.
Each protocol mechanism of the protocol is modeled by an FAPM instance. AMC
instances specify the basic medium. A composition of the FAPM instances and
AMC instances forms a structured formal protocol specification. In contrast to the
APMs, the FAPMs use only finite variables. Thus, sequence numbers have to be
reused which corresponds directly to the mechanism employed in sliding window
protocols. Furthermore, connections have to be identified by a finite number of
connection identifiers. Therefore, besides FAPMs similar to the APMs listed above,
the framework contains FAPMs modeling the administration of sequence numbers
and connection identifiers.

The theorems of the framework are logical implications between ¢TLA systems. Due
to the three-layered structure of the specifications patterns two kinds of theorems are
used:

e An SC theorem states that a system modeled by APMs and AMCs implies a service
constraint, i.e., an SC. For some SCs of the framework more than one theorem are
available. That reflects that a service constraint can be realized by different protocol
mechanism combinations.

e The gap between an abstract protocol system modeled by APMs and AMCs and
a direct protocol model consisting of FAPMs and AMCs is bridged by APM and
AMC theorems. A theorem states that a system of FAPMs and AMCs implements
a certain APM or AMC.

The structure of the framework is further refined by distinguishing safety and liveness
properties. Thus, each of the three sorts of specification modules contains two groups of
modules called safety resp. liveness process types. Likewise the theorems are classified into
safety and liveness theorems according to the process at the right side of the implication.
The theorems are logical implications as listed below:

e Safety theorem: Pars A Sys = (Safety)Proc,
e Liveness theorem: Pars A Sys A DEnvCond = (Liveness)Proc.

The system definition Sys, the central part of the left side of an theorem implication,
describes a system composed from process instances. The theorem expresses that this
system implements the process Proc listed on the right side of the implication. The process
instances of Sys are parametrized instantiations of process types. Since process types
must not be parametrized arbitrarily, a predicate logic formula Pars defines a sufficient
condition for correct and consistent process parametrizations. Furthermore, in liveness
theorems the left side of the implication contains an invariant, the so-called environment
condition EnvCond. This condition constrains the behaviour of the environment of the
system Sys. It rules out that fair actions of Sys may be blocked by the environment too
often.

Currently, the transfer protocol framework contains 133 specification patterns (28 SCs,
44 APMs, 14 AMCs, and 47 FAPMs) and 165 theorems (31 SC theorems and 134 APM
theorems).
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Figure 4: Structure of service and protocol specifications
5 Service Specification

Our protocol example shall implement a reliable and live simplex data transfer service
of a fixed capacity. Particularly, data must be transmitted without errors. Thus, the
service has to fulfill five service constraints: transmitted data are not corrupted; the
stream of data delivered to the receiver does not contain gaps; the delivered data are
not reordered; duplicates of data are not delivered; the stream of delivered data does not
contain phantoms. Another service constraint limits the capacity of the service. At the
same time only a certain number of data units — eight in this example — may be sent
and not yet delivered. The last service constraint reflects liveness aspects. The service is
alive if it eventually delivers all transmitted data units to the receiver guaranteeing that
data may not be lost due to inactivity. Furthermore, due to the liveness of the service
the transmitting service user will be able to submit new data units in intervalls since each
data delivery causes the amount of data falling below the capacity limit. Thus, after a
delivery at least one new data unit may be transmitted.

To create a formal specification of this service, at first we design constraint specifi-
cations, each modeling only one of the service constraints listed above (cf. upper part of
Fig. 4). As already mentioned, the constraint specifications are developed parametriz-
ing SCs of the transfer protocol framework. In a second step we compose the constraint
specifications to the service specification.

The specification SlidWindService, listed in Fig. 3, models the service. It contains a
parameter usd defining the set of data units to be transmitted by the service. For instance,
the replacement of usd by the set {0,...,255} specifies a byte oriented data transfer ser-
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vice. The service specification Slid WindService consists of the eight constraints Id, C, G,
R, D, P, Cap, and LIn which will be developed by instantiating the framework SCs SDUId,
Corruptions, Gaps, Reorderings, Duplicates, Phantoms, Capacity, resp. LiveInNoAttr.

Id is a special constraint which models the assignment of an unambiguous and ordered
sequence number to each data unit submitted. These sequence numbers are necessary
to detect transmission errors. The other seven constraints processes specify the seven
service constraints mentioned above. For example, the constraint C' models that only
data which are not corrupted during the transmission may be delivered to the service
user. It is an instantiation of the SC Corruptions, listed in Fig. 1, which uses the process
parameter usd and tc. usd corresponds to the global parameters usd in the process
SlidWindService. By the relation tc we can fix, if and to which degree corruptions of data
may be tolerated. For instance, if one models byte oriented data transfer, the replacement
of tc by {(k, 2-(k div 2)) }U{(k, 2-(k div 2+41))} specifies that one tolerates the corruption
of the lowest priority bit. Since in our example corruptions must not occur, we replace
tc by the identity relation { (k,k) | k € usd }. The constraint process G models the
service constraint that the stream of delivered data has no gaps. G is instantiated from
the SC Gaps, the parameter tg of which describes the maximum size of gaps. We replace it
by the value 0. The Constraints R, D, and P model the service constraints which exclude
reoderings, duplicates, and phantoms in the stream of delivered data. The capacity of
the service is modeled by the constraint Cap while the liveness constraint process LIn of
type LiveInNoAttr (Fig. 2) specifies that the service must be alive.

The actions Rq, £In, and nIn are specified in the service specification Slid WindSeruvice.
By Rq the submission of a new data unit d by the transmitting service user is modeled.
During the submission the sequence number krq is assigned to the data unit d. Rq is a
conjunction of the process actions Rq of the process constraints Id, C, Cap, and LIn while
the other processes do not contribute with a process action. ¢TLA, however, demands
that the processes G, R, D, and P perform a local stuttering step during the execution of
Rq. Thus, it models concurrency by interleaving.

The delivery of data units d with sequence numbers krq to the receiving service user
is specified by the actions fIn and nIn. Since the service should be performed lively,
we have to provide the action modeling the data delivery with a fairness assumption. As
described in Sec. 2, we reduce this action to a weak fair action £In and to a complementary
non-fair action nIn. In both actions the constraint processes Id, C, G, R, D, P, and Cap
participate with their process actions In. From the process LIn the process action fIn
is coupled to the system action fIn and the process action nIn to nIn. fIn models the
delivery of data essential for the progress of the transmission. For instance, the delivery
of a data unit which was sent but not yet delivered is modeled by fIn. In contrast, nIn
specifies the delivery of data not important for the progress of the transmission (fi., the
delivery of duplicates). Since in our example all data deliveries are essential, the action
nln is never enabled. Thus, we can omit it in a simplified description.

The action fIn of system SlidWindService is weak fair since it contains the process
action £In of the process LIn which is weak fair as well (cf. Fig. 2). Therefore, if £In is
continuously enabled, it will eventually be selected for execution.
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6 Protocol Specification

The sliding window protocol [42] shall implement the data transfer service introduced
above. The protocol consists of a transmitter entity S at the station of the data transmitter
and a receiver entity R at the receiver site which communicate by means of a full duplex
basic service (cf. lower part of Fig. 4). The basic service is modeled by two simplex data
channels M and A. It is less reliable than the service to be provided and we assume that
it guarantees only that corruptions, reorderings, and phantoms do not occur during the
transmission. Thus, data losses and duplicates are possible. We model the basic service
composing the following service constraints: data units are not corrupted; data units are
delivered in correct order; the stream of delivered data does not contain phantoms. This
kind of data transfer quality is quite realistic. It exists if the point-to-point data transfer
used is protected against corruptions but not against data losses due to buffer overflows
in transit nodes. Duplicates may occur due to incorrect copying of data in the transit
nodes. Furthermore, we demand that the basic service guarantees the following liveness
assumption: If the user of the basic service repeatedly sends data units with a certain
attribute, eventually one of these data units will be delivered to its peer. Without this
liveness assumption, data units essential for the transmission might be lost again and
again leading to livelocks.

The main task of the protocol entities S and R of the sliding window protocol is to
detect and to remedy data losses and duplicates. Furthermore, the capacity and liveness
of the service provided by the protocol have to be guaranteed. The protocol uses a set
of protocol functions customary for most modern data transfer protocols (cf. [8, 35]).
Data losses and duplicates are detected by means of sequence numbers. Each new data
unit submitted to the protocol entity S is assigned a sequence number. The data unit
and its sequence number are transmitted together in a protocol data packet, a so-called
protocol data unit (PDU). Due to the order of the sequence numbers the receiver entity
R detects duplications and gaps. Duplicated data will be ignored while gaps are remedied
by selective retransmission. The protocol applies the method “Positive Acknowledgement
with Retransmission” (PAR). In intervalls S retransmits data units which are still not
confirmed. To confirm data units, R transmits confirmation PDUs to S which contain the
sequence number sack of the data unit delivered last to the service user. By this PDU
all data units are confirmed, of which the sequence numbers are lower or equal to sack.
S guarantees the finite capacity of the service provided since it does only accept a new
data unit for transmission if less than eight data units are currently not confirmed. The
liveness of the service is guaranteed since on the one hand S transmits new data units and
retransmits unconfirmed data units to R in intervalls. On the other hand R delivers all
correct data units to the service user and repeatedly transmits confirmation PDUs to S.

The specification Slid WindProtocol of the sliding window protocol (Fig. 5 and Fig. 6)
is designed by parametrizing and composing processes of the framework!. Like the ser-
vice specification, Slid WindProtocol contains a parameter usd denoting the set of data
units transfered by the protocol. The parameter replacements of the process instances

'Due to the size of the specification we abstain from listing most process parameters in the PROCESSES
part. In the ACTIONS part most system actions are listed without action parameters and local process
actions.
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! Specification of the Sliding-Window-Protocol
PROCESS SlidWindProtocol (usd : any) ! usd : set of user data transfered
IMPORT SWParameters(usd);

PROCESSES
! FAPMs : Modeling transmitter entity S
SBK : SBufferKey ! Sequence number handler of the transmitter entity

(swpdu, swpci, usd, swpdu, swspci, swskey, 1, swskk, swskn,
swskm, swusdsize, 1, 16, 8);

SBU : SBufferUsd(...); ! User data storage handler of the transmitter entity
SAck : SAcknowledge(...); ! Data acknowledge mechanism of the transm. entity
SCap : SCapacity(...); ! Preventing data unit overflow in the transm. entity

SLMRq : SLiveMRq(...); ! Liveness of the transmitter entity guaranteeing the

! transmission and retransmission of data
! FAPMs : Modeling receiver entity R
RBK : RBufferKey(...); ! Sequence number handler of the receiver entity
RBU : RBufferUsd(...); ! User data storage handler of the receiver entity
RG : RGaps(...); ! No gaps of delivered data

RR : RReorderings(...); ! Delivered data is not reordered

RD : RDuplicates(...); ! No duplications in delivered data

RP : RPhantoms(...); ! no phantoms delivered by the receiver entity

RAck : RAcknowledge(...); ! Data acknowledge mechanism of the rec. entity

RLARg : RLiveARq(...); ! Liveness of the receiver entity guaranteeing the
! transmission of acknowledgement data

RLIn : RLiveIn(...); ! Liveness of the receiver entity guaranteeing the

! delivery of received data to the service user

! AMCs : Constraints of the basic service channel M

MS : MSDUId; ! Ordered assignment of sequence numbers

MC : MCorruptions(...); ! No corruptions during data transfer on channel M
MR : MReorderings(...); ! No reorderings during data transfer on channel M
MP : MPhantoms(...); ! No phantoms generated on channel M

MLI : MLiveIn(...); ! Liveness of channel M guaranteeing that each pdu

| sent in intervalls will be eventually delivered
! AMCs : Constraints of the basic service channel A

AS : ASDUId; ! Ordered assignment of sequence numbers

AC : ACorruptions(...); ! No corruptions during data transfer on channel A
AR : AReorderings(...); ! No reorderings during data transfer on channel A
AP : APhantoms(...); ! No phantoms generated on channel A

ALT : ALivelIn(...); ! Liveness of channel A guaranteeing that each pdu

| sent in intervalls will be eventually delivered

ACTIONS

ey

END

Figure 5: Protocol Specification Slid WindProtocol (PROCESSES-part)
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PROCESS SlidWindProtocol (usd : any) ! usd : set of user data transfered
IMPORT SWParameters(usd);

PROCESSES

ey

ACTIONS
Rq (krq : fkey; d : usd) 2
! Submission of user data d with sequence number krq
SBK.Rq (krq,d) A SBU.Rq (krq,d) A SAck.Rq (krq) A SCap.Rq (krq) A
SLMRg.Rq (krqg,d) A ...;
fIn (krq : fkey; d : usd) = ... nIn (krq : fkey; d : usd) = ...;
I Delivery of user data d with sequence number krq to the
! service user (Weak fairness in fIn)

fMRq (... ) = .. nMRq ( ... ) = ..
! Submission of a pdu to channel M (Strong fairness in fMRQ)
fMIn (... ) 2 - nMIn ( ...) 2 e

! Delivery of a pdu including data units sent via channel M to the

! receiver entity (Weak fairness in fMIn)
A A

fARq (...) = .. nARq ( ... ) = ..
! Submission of a pdu including acknowledgements of data

! units to channel A. (Strong fairness in fARQ)
A A

fAIn (... ) = ... nAIn (... ) = ...;
! Delivery of a pdu including acknowledgements of data units
! sent via channel A (Weak fairmess in fAIn)
MTick = MLI.MTick A ...;  ATick = ALI.ATick A ...;
! Internal actions indicating the loss of a pdu in M resp. A
fMNoTick (p : [info : usd; seq : key U {"«»"}; ack : keyl) o
fANoTick (p : [info : usd; seq : key U {"«»"}; ack : keyl) ce
! Internal actions of M resp. A guaranteeing the delivery of p if
! pdus containing the same data unit are sent often. (Strong F.)

e 1>

END

Figure 6: Protocol Specification Slid WindProtocol (ACTIONS-part)

are defined in a separate process SWParameters listed below. In the PROCESSES part of
the specification (cf. Fig. 5) the processes modeling the entities and the basic channels are
listed. The transmitter protocol entity S is specified by the processes SBK, SBU, SAck,
SCap, and SLMRq instantiated from FAPMs of the framework. They model protocol
mechanisms to maintain sequence numbers as well as data units, to handle confirma-
tion PDUs, to limit the size of the transmitter buffer, and to guarantee the liveness by
transmitting data units in intervalls.

The receiver protocol entity is modeled by the processes RBK, RBU, RG, RR, RD,
RP, RAck, RLARq, and RLIn which are also instantiated from FAPMs. These processes
specify the protocol mechanisms to maintain sequence numbers as well as data units,
to deliver data to the service users in the correct order, and to confirm delivered data.

18



! Parameters of the Specification of the Sliding-Window-Protocol
CONSTANT MODULE SWParameters (usd : any) ! usd : set of user data transfered

CONSTANTS
! Used in FAPMs and AMCs
swpdu 2 [info : usd; seq : fkey U {"« »"}; ack : fkeyl;
! Abstract PDU format
swpci = [seq : fkey U {"«>»"}; ack : fkeyl;
! Protocol Control Information (PCI)
swspci 2 [ x € [info : usd; seq : fkey U {"«»"}; ack : fkey]
— [ seq — x.seq; ack — x.ack ] ]1;
! Pointer to the PCI of a PDU
! Used in AMCs
swtc = { (k,k) | k € [info : usd; seq : key U {"«»"}; ack : keyl };
! Relation: identy of PDUs

ey

END

Figure 7: Parameter definitions SWParameters

Furthermore, RLARq and RLIn guarantee the liveness of the entity since confirmation
PDUs and data deliveries are repeatedly triggered.

The basic data channel M models the transfer of user data and so-called protocol con-
trol information (PCI) within PDUs from S to R. We specify it by means of the processes
MId, MC, MR, MP, and MLI which are instantiated from AMCs of the framework. Like
the SC Id, MId is a special constraint modeling the assignment of data units to PDUs to
be transmitted. By MC, MR, and MP we model that transmitted data units are neither
corrupted nor reordered and that phantoms are not delivered. MLI guarantees that, if
PDUs with a certain attribute are sent in intervalls, eventually one of them will be de-
livered to the protocol entity R. The basic data channel A modeling the transfer of PCI
within PDUs from R to S is specified by the processes Ald, AC, AR, AP, and ALI which
correspond to the constraints of channel M.

The coupling of process actions to system actions is described in the part of the
specification headed by ACTIONS (cf. Fig. 6). The actions In, MRq, MIn, ARq, and AIn
are each specified by a fair and a complementary non-fair action. Thus, £MRq specifies
the transmission of PDUs which are essential for the progress of the communication. In
contrast, nMRq models transmissions which are allowed and for the sake of efficiency often
are also desirable but at the present state not important for the liveness of the protocol.
The specification respects the distribution of the protocol entities S and R since either
the processes of S or those of R participate in a system action by stuttering steps only.

The constraints are developed from framework processes by instantiation of process
parameters. In Fig. 7 the specification SWParameters lists the definitions of the actual
parameter types. The identifier swpdu models the format of the PDUs of the sliding
window protocol. It is a record consisting of the three components info, seq, and ack.

19



Data units transmitted in the PDU are stored in the record component info. In the
element seq either the sequence number of a data unit is stored which can be a natural
number or the special symbol "notsent" denoting a phantom (data type key). Or the
special symbol "<<>>" marks that the PDU does not contain a data unit. The sequence
number of the data unit delivered last to the service user is stored in the record component
ack.

The sequence numbers of data units sent resp. confirmed form the protocol control
information (PCI) of a PDU. Thus the identifier spci defines a record consisting only of
the components seq and ack. swspci models a pointer to the PCI of a PDU. It maps a
PDU record to the PCI record, of which the components seq and ack contain the same
values as in the PDU.

As already mentioned in Sec. 4, we specify the sliding window protocol in two steps.
First, we create the detailed protocol specification. In a second step we develop a more
abstract protocol specification which models the distributed functionality of the entities
but contains variables of an infinite range. Thus, we abstract from protocol errors due
to the reuse of sequence numbers and connection identifiers in the abstract specification.
The abstract specification supports the reduction of the protocol verification into two
simpler steps (cf. Sec. 7). In the abstract protocol specification we model the protocol
entities by the constraint processes SBK, RBK, SBU, RBU, RG, RR, RD, SAck, RAck,
SCap, SLMRq, RLARq, and RLIn again which, however, are instantiated from APMs
this time. To model the basic data channels M and A, we use the same AMCs as in the
specification Slid WindProtocol.

7 Verification

The protocol verification guarantees that the communication service specified in Sec. 5 is
implemented by the sliding window protocol described in Sec. 6. Due to the composition-
ality of ¢TLA we can reduce the verification into a series of simpler proof steps. In each
proof step we verify that a single service constraint is realized by a protocol subsystem
consisting of only some protocol mechanisms. FEach proof step corresponds directly to a
framework theorem. We assume that the theorems are correct though we have to refer to
the reservations concerning the stringency of the presently available theorem proofs de-
scribed in the introduction. Therefore, we have to check only if the protocol specification
contains all protocol mechanisms necessary for the service constraint. Furthermore, the
actual parameters of the protocol mechanisms have to be consistent to each other and to
those of the service constraint realized. Thus, we can reduce the protocol verification into
the simple selection and consistency checking of framework theorems.

The protocol verification is reduced to two major steps. First, we prove that the
communication service is fulfilled by the abstract protocol modeled by APMs and AMCs.
Second, we verify that the abstract protocol specification is implemented by the more de-
tailed sliding window protocol specification consisting of FAPMs and AMCs. To perform
the first step, we apply eight framework theorems, each proving one SC of the service
specification. As an example we list the theorem instance verifying an instance of the
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liveness SC LiveInNoAttr? in Fig. 8. The theorem states that an instance of the SC
LiveInNoAttr, i.e., LIn, is implemented by a protocol system which contains the pro-
cesses of Sys as a subsystem if the conditions Pars and OFEnvCond hold. Sys consists
of instances of the APMs SLiweMRq, RLiveARq, RLiveln, and RAcknowledge as well as
instances of the AMCs MSDUId, MCorruptions, MPhantoms, MLiveln, ASDUId, ACor-
ruptions, APhantoms, and ALiveln. It guarantees that user data (SLiveMRq) and confir-
mations (RLiveARq) are transmitted arbitrarily often between the protocol entities, that
correctly transmitted user data are delivered to the service user (RLiveln), and that only
delivered data are confirmed (RAcknowledge). Furthermore the basic data channels are
alive (MLiveln and ALiveln) and do not deliver corrupted data or phantoms (MSDUId,
MCorruptions, MPhantoms, ASDUId, ACorruptions, and APhantoms).

While instantiating the formal parameters of the constraint processes in Sys according

2To reduce the specification size, we omitted the actual parameters of the processes in the protocol
subsystem definition.

LET Pars = {(p,q9)| p, q € [info : usd; seq : key U {"«»"}; ack : key] A
p.seq = q.seq } =
{(p,q)| p.seq = q.seq A
p € [info : usd; seq : key U {"«»"}; ack : key] A
q € [info : usd; seq : key U {"«»"}; ack : key] }

A

{ (k,k) | k € [info : usd; seq : key U {"«>»"}; ack : key] } C

{ (p,@) | q ¢ [info : usd; seq : key U {"«>»"}; ack : key] V
p.seq = q.seq }

A

{ (k,k) | k € [info : usd; seq : key U {"«>»"}; ack : key] } C

{ (p,@)| q ¢ [info : usd; seq : key U {"<«<»"}; ack : key] V

p-ack = g.ack };

Sys = SLiveMRq ([info : usd; seq : key U {"«»"}; ack : keyl, ...) A
RLiveARq (...) A RLiveIn (...) A RAcknowledge (...) A
MSDUId A MCorruptions (...) A MPhantoms (...) A MLivelIn (...) A
ASDUId A ACorruptions (...) A APhantoms (...) A ALiveIn (...) A
CCLiveInNoAttr’

EnvCond 2
V krq,p,kd : Enabled(SLiveMRq.fMRq(krq,p,kd)) =

(krq,p,kd) € Sys.egypq A
V p,kd : Enabled(RLiveARq.fARq(p,kd)) = (p,kd) € Sys.efppq A
V krq,d : Enabled(RLiveIn.fIn(krq,d)) = (krq,d) € Sys.efy, A
V krq : Enabled(MLivelIn.fMIn(krq)) = krq € Sys.egyyp A
V d : Enabled(MLiveIn.fMnoTick(d)) = d € Sys.efmpoTick
V krq : Enabled(ALivelIn.fAIn(krq)) = krq € Sys.egfpypy A
V d : Enabled(ALiveIn.fANoTick(d)) = d € Sys.efpnoTick’
IN Pars A Sys A 0O EnvCond = LiveInNoAttr

Figure 8: Theorem LivelnNoAttr
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to the description in Sec. 6, we adapted the theorem to our example. Since the abstract
protocol specification contains instances of all APMs and AMCs listed in Sys which are
coupled in accordance with the (not explicitely listed) coupling formula CCriyernnoatir,
Sys is a subsystem of the abstract sliding window protocol. The replacements of the
parameters are consistent if the formula Pars holds. The first conjunct of Pars is a
tautology and therefore holds. The other conjuncts express that, if two PDUs p and ¢ are
identical, their record components p.seq and ¢.seq resp. p.ack and g.ack must have equal
values as well. These conjuncts hold trivially since two records are equal per definitionem
if all record components (particularly seq and ack) are equal as well.

The temporal condition OEnvCond guarantees that LiveInNoAttr is implemented not
only by the subsystem Sys but also by the whole abstract sliding window protocol. A
liveness proof might fail if the entire system contains processes weakening the liveness of
the APMs and AMCs in Sys. For instance, if the entire system contains an APM prevent-
ing the delivery of user data at all, Sys could of course not guarantee the liveness of the
SC LiveInNoAttr. During the design of the theorem we verified that except for the APM
DataChanOpenR all APMs and AMCs of the framework fulfill the condition OEnvCond.
DataChanOpenR, however, is not a part of the abstract protocol specification. Thus,
OFnvCond also holds, and we proved that the abstract sliding window protocol imple-
ments the service constraint LIn modeled as an instance of the SC LiveInNoAttr. In the
same way we verify the other seven SCs of the service specification.

Thereafter, the second major proof step verifies that the abstract sliding window
protocol specification is fulfilled by the more detailed one. It is performed accordingly.
By application of 13 framework theorems we prove that the 13 APMs of the abstract
protocol specification are fulfilled. The proof of the AMCs is not necessary since the
basic services used by the entities of the detailed resp. abstract protocol are modeled by
identical AMCs.

8 Conclusion

We outlined the essential features of the transfer protocol framework and its application
to the formal specification and verification of communication protocols with the help of a
sliding window protocol example. Similarly, more complex protocols were examined with
remarkable few expense of work. For instance, the high-speed transfer protocol XTP [44]
was specified and verified within three weeks [24]. The framework can be accessed via
WWW (http://ls4-www.informatik.uni-dortmund.de/RVS/P-TPM).

Currently, we extend the specification technique ¢TLA. Besides the modeling of event-
discrete, not time-valued dynamical behaviours, ¢cTLA can also be used to specify real-
time properties and continuous behaviours [19, 23]. We are going to adapt the framework
approach to the modeling of distributed realtime systems. At the moment we examine
the application field of chemical engineering system control [25]. Furthermore, the ¢cTLA
extension can also be utilized for communication protocols (fi., modeling the transmission
of multimedia data).
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