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mentation of a protool development is often inomplete and ambiguous. Therefore theorretness of the protool annot be heked systematially.On the one hand, ambiguous doumentations ause the danger of design errors dueto misunderstandings. This might lead to reworking e�orts, projet delays, and, onse-quently, to higher projet osts. On the other hand, the usage of formal tehniques inprotool design auses signi�ant expense, too. While sometimes the appliation of thesetehniques an be supported by tools (e.g., speial editors, interpreters, ompilers, andveri�ation tools; f. [3, 4, 9, 12, 13, 14, 29, 33, 40℄), formal models and formal desriptionsof protools have to be developed in a reative manner. Due to the omplexity of modernhigh-speed protool systems this task an be quite expensive. Furthermore, the devel-opment of formal desriptions is prone to errors and, similar to program development, along debugging phase may be neessary before ompleting the veri�ation suessfully.The transfer protool framework [21, 22℄ failitates the development of formal spei�a-tions similarly to program development support by libraries of reusable program modules.The framework ontains spei�ation modules whih an be instantiated and ombinedto a protool or servie spei�ation. A protool spei�ation onsists of a set of mod-ules, eah modeling a single protool mehanism (e.g., sequene numbering of protooldata units, repeat request, time out). The developer does not need to reate a protoolmehanism desription from srath. Instead, he uses a module of the framework andonentrates on suitable instantiations of parameters and on the ombination of di�erentmodules. Thus, he models the logial struture of the protool diretly, failitating theunderstanding of the protool omponent o-operation. Furthermore, the developer re-ates a servie spei�ation as well. This task is supported by the framework, too, whihontains spei�ation modules modeling single onstraints of servies (e.g., no orruptionsof transfered data, liveness of transfered data, no phantoms). The developer parametrizesand ombines these modules to a servie spei�ation desribing the properties of theservie to be provided by the protool.The transfer protool framework supplies a omprehensive olletion of spei�ationmodules. It omprises eah typial funtional property of data transfer servies as well asall of the protool mehanisms we found in present data transfer protools (f. [8, 35℄).Moreover, it is based on few basi assumptions only. Therefore the framework support isvery general and it an omplement other approahes whih fous diretly on problem-oriented design, onstrution, and modular implementation of new transfer protools. So,modern high-speed data transfer protools like XTP [44℄ and MSP [36℄ an eÆiently bespei�ed by means of the framework [24, 27℄. Moreover, the framework may be used forthe formal modeling and analysis of those protool on�gurations whih are in the rangeof urrent dynami ommuniation system on�guration approahes like DaCapo [41℄,F-CCS [45℄, and AVOCA [39℄. Due to the general orientation of the framework, it shouldeven over the formal modeling of most future transfer protools. Nevertheless exten-sions are possible and an easily be introdued by addition of new modules. Furthermore,the exibility of the spei�ation modules ontributes to the broad appliability of theframework. Eah module orresponds to a generi behaviour type where generi moduleparameters support the adaption of module instanes to speial ontexts and require-ments. With respet to this, spei�ation modules may be viewed as behaviour patterns.Relations exist to approahes whih expliitly transpose the notions of design and software2



patterns (f. [11℄) to the development of formal spei�ations (e.g., [15, 38℄). Addition-ally, there is further work foussing on the pattern-based and tool-assisted re�nement ofabstrat TLA spei�ations into detailed software spei�ations [37℄ and orrespondingimplementation-oriented framework extensions may be of interest. In the sequel, how-ever, we do not want to stress this point in order to onentrate on pratial aspets offramework-based protool spei�ation and veri�ation.Formal protool veri�ation is based on separate spei�ations of the protool and theservie to be provided. It proves that the protool atually provides the servie and isan e�etive means for the detetion of design errors. It an be performed mehaniallyby tools based on reahability graph analysis (e.g., state spae exploration [28℄, modelheking [6, 7, 10, 16, 20, 29℄) if the number of reahable system states of the protoolmodel is relatively small. However, the state spae of most protools relevant in pratieexeeds the limitations of automated tools. Thus, either the protool spei�ation has tobe simpli�ed, or the veri�ation has to be performed by symboli logial reasoning. Both,the design of suitable simpli�ations as well as the user-guided omputation of logialproofs, inrease the protool development osts signi�antly.With respet to this, the veri�ation an be failitated substantially by the frameworktheorems taking into onsideration that both the servie and the protool spei�ationsonsist of existing framework modules. Usually, eah servie onstraint is implementedby a speial protool subsystem ombining those protool mehanisms whih ensure thatthe protool exeution omplies with the servie onstraint. For eah possible pair ofa servie onstraint and protool subsystem we veri�ed a theorem stating that the pro-tool subsystem implies the servie onstraint. Therefore, a subsystem of the protoolspei�ation as well as a orresponding theorem exists for eah onstraint of the serviespei�ation. Thus, the protool veri�ation an be aomplished by identifying suitable\servie onstraint { protool subsystem { theorem" triples. Additionally, the developerhas to hek that the protool mehanism spei�ations of the subsystem and the servieonstraint spei�ation are parametrized in a suitable and onsistent way. By this methodeven omplex transfer protools an be veri�ed quite easily [24℄. Moreover, this veri�-ation method emphasizes the logial relations between protool subsystems and servieomponents supporting the understanding of the designed protool.Thus, framework-based protool veri�ations are relatively easily to develop althoughthey rely on formal proofs. Nevertheless, we have presently to point to some reservationsonerning the stringeny of veri�ations. They result from the way, the framework theo-rems were proved. We used the TLA-tool T [26℄ to ompute the proess ompositionsof the theorems. Then we designed the neessary re�nement mappings and invariants inorder to prepare the manual TLA-based proofs, whih | due to the high e�orts needed| were not all performed in full formal detail. So, omplete proof doumentations existonly for some theorems (see [17℄). Moreover we did not hek the proofs by means oftheorem prover tools. Therefore we do not reommmend the use of the theorems for highrisk appliations though we are onvined of the over-all validity of the theorems.For the proofs of the framework theorems high e�orts were needed and they wouldsubstantially pro�t from the use of theorem prover tools. The framework appliation,however, is based on the design of suitable theorem instanes whih is aompanied byrelatively simple parameter heks. Consequently, we made the experiene that the trans-3



fer protool framework an suessfully be applied without speial tool-assistane. Nev-ertheless, one an provide tool-support onentrating on the analysis of ompositionalspei�ation strutures, the searh of appropriate theorems, the proposal of theorem in-stanes, and the preparation of prediate logi based parameter heks. A orrespondingtool was developed and is desribed in [18℄.Sine a large number of theorems would be neessary to link all suitable protoolmehanism ombinations with servie onstraints, the framework supports protool proofswhih are performed in two steps. Therefore, it provides a third olletion of spei�a-tion modules in addition to servie onstraints and protool mehanisms. These modules,alled abstrat protool mehanisms, support spei�ations whih are on an intermedi-ate abstration level between protool spei�ations and servie spei�ations. Conse-quently, the theorems do not state diretly that protool mehanisms implement servieonstraints. Instead, the framework ontains two olletions of theorems. The theoremsof one olletion state that protool mehanism ombinations implement abstrat protoolmehanisms. The other theorems express that abstrat protool mehanism ombinationsimplement servie onstraints.The redution of protool veri�ations into a series of subsystem proofs is based on aspeial form of ompositionality, the superposition. It guarantees that a relevant propertyof a subsystem is also a property of the system as a whole. Superposition was introduedin [5℄ as a helpful means for the formal design of systems. Likewise, [2℄ proposed a tran-sition system based spei�ation tehnique supporting the formal design of distributedsystems by superposition. Our approah applies the spei�ation tehnique TLA [21, 37℄whih is based on TLA (Temporal Logi of Ations, [34℄). TLA supports the modularde�nition of generi proess types and the omposition of proess systems. Similarlyto the standardized formal desription tehnique Lotos [31℄ (and similarly to [2℄), theproesses of a TLA system interat via synhronous joint ations. The proess omposi-tion operation of TLA orresponds to the logial onjuntion of proesses. Therefore, itovers superposition with respet to all relevant safety and liveness properties. The pro-esses of a TLA system an model logial behaviour onstraints as well as omponents ofimplementations (f. onstraint-oriented and ressoure-oriented spei�ation styles [43℄).In the sequel we onentrate on the pratial appliation of the framework. Therefore,we outline TLA, its semantis, and the transfer protool framework onisely. Thereafter,an example appliation shall larify the utilization of the framework in more detail. Wedesribe the development of the servie and protool spei�ations for a well known slidingwindow protool (from [42℄). Moreover, we disuss the veri�ation of this protool andpoint out how the struture of the spei�ations guides the veri�ation.2 TLATLA systems are omposed of proesses. A proess is modeled by a state transitionsystem whose struture is de�ned by a proess type in a programming language-likesyntax. As an example we outline the de�nition of the proess type Corruptions in Fig. 1.The header onsists of the keyword PROCESS, the proess type name Corruptions, and alist of generi parameters (i.e., the symbols usd and t). usd models the set of data units4



PROCESS Corruptions ( usd : Any ; ! usd : set of user data transferedt : SUBSET(usd � usd) )! t : relation of tolerated orruptionsIMPORT Symbols;BODYVARIABLESbuf : SUBSET(key � usd); ! Buffer of all data units ever sentINIT �= buf = ;;ACTIONSRq (krq : key; d : usd) �= ! Transmission of user data d with seq. no. krqbuf 0 = buf [ {(krq,d)} ;In (krq : key; d : usd) �= ! Delivery of user data d with seq. no. krq( krq = "notsent" _! Servie provider markeda phantom with a speial key "notsent"8 e 2 usd :: ((krq,e) =2 buf) _! Phantoms may be delivered without speial mark9 e 2 usd :: ((krq,e) 2 buf ^ (e,d) 2 t ) ) ^! Submitted data may only be delivered if it is orrupted! within limitations set by tbuf 0 = buf ;END Figure 1: TLA safety proess type Corruptionstransfered between two servie users while the relation t desribes a set of orruptionswhih an be tolerated. In proess instanes speifying that orruptions are not toleratedat all, t is instantiated with the identity relation. The onstrut IMPORT refers to theinlusion of other modules ontaining de�nitions of symbols (�., data types, funtions,and onstants). We assume that the symbol key, whih spei�es the set of sequenenumbers for data units, is de�ned in the module Symbols. The state spae of a proess ismodeled by variables delared in the setion VARIABLES. In the proess type Corruptionsbuf is the only variable. It desribes a set of pairs of a sequene number and a userdata unit. A prediate headed by the keyword INIT spei�es the set of initial states ofa proess. In Corruptions the variable buf equals to the empty set in the initial state.The ation de�nition part is headed by the keyword ACTIONS. An ation is a prediateabout a pair of a urrent state and a next state, modeling a set of state transitions.The urrent state is referened by variables (�. buf) while the next state is referenedby so-alled primed variables (�. buf'). Eah pair of a urrent state and a next statesatisfying the prediate is a state transition orresponding to an ourrene of the ation.Ation de�nitions an ontain data parameters. In the example the ation Rq(2,"data")applies to all transitions in whih the variable buf in the next state is equal to buf inthe urrent state extended by the pair (2,"data"). The variables, INIT, and the ationsof a proess de�ne a state transition system desribing a set of state sequenes. A statesequene models a possible behaviour of the proess if the �rst state ful�lls INIT and eahstate transition orresponds to an ation of the proess.5



The example proess is a servie spei�ation module of the framework modeling theonstraint that the servie transmits data without orruptions. The ation Rq spei�esthe submission of data to the servie and the ation In the delivery of transmitted data tothe servie user. The variable buf orresponds to the set of all data units ever submitted.Thus, the term 9 e 2 usd :: ((krq;e) 2 buf _ (e;d) 2 t) in the de�nition of theation In models that a data unit submitted before (ation Rq) may only be deliveredto the servie user (ation In) if it was orrupted only within the limits de�ned by therelation t. Aording to the distintion between safety and liveness properties (f. [1℄),the proess type Corruptions spei�es only safety properties. Therefore Corruptions doesnot rule out state sequenes whih ontain only a �nite number of state hanges (i.e.,proesses terminating eventually are tolerated).PROCESS LiveInNoAttrIMPORT Symbols;BODYVARIABLESRq : key ; ! Sequene number of next data unit to be sentmaxIn : key ; ! Sequene number of next data unit to be deliveredINIT �= Rq = 0 ^ maxIn = 0 ;ACTIONSRq �= ! Transmission of user dataRq 0 = Rq + 1 ^ maxIn 0 = maxIn;fIn ( krq : key ) �= ! Delivery of user data with seq. no. krq! Weak fairness assumedkrq 6= "notsent" ^ krq = maxIn ^ maxIn < Rq ^maxIn 0 = maxIn + 1 ^ Rq 0 = Rq;nIn ( krq : key ) �= ! Delivery of user data with seq. no. krq! No fairness assumednot (krq 6= "notsent" ^ krq = maxIn ^ maxIn < Rq) ^maxIn 0 = IF (krq = "notsent") THEN maxIn ELSE max(maxIn,krq + 1) ^Rq 0 = Rq;WF: fIn;END Figure 2: TLA liveness proess type LiveInNoAttrThe proess type LiveInNoAttr in Fig. 2 is an example of a framework module modelinga liveness property. In omparison to the proess type Corruptions, listed in Fig. 1,LiveInNoAttr ontains a new onstrut WF. While the other parts of LiveInNoAttr de�nea state transition system again, WF desribes that the ation fIn has to be performed\weak-fairly". Similarily, by the onstrut SF one an delare an ation to be performed\strong-fairly". A weak fair ation must be performed eventually if otherwise it wouldbe enabled ontinuously for an in�nite period of time. A strong-fair ation has to beperformed even if the ation is disabled from time to time. Weak and strong fair ationswere introdued in [1℄. In ontrast to diret liveness properties these fairness assumptionsdo not model impliit safety properties whih might be in ontrast to the (expliit) safetyproperties of the proess. Therefore in TLA [34℄ and TLA | espeially in the transfer6



protool framework | liveness properties are modeled by weak and strong fair ationsonly.To support the modularity of the transfer protool framework, the fairness assumptionsshould be as weak as possible. Therefore ations are split into two ations, of whih one isfair (e.g., fIn in proess type LiveInNoAttr). The other ation (e.g., nIn in LiveInNoAttr)is not fair. Both fIn and nIn in LiveInNoAttr model the delivery of transfered user data(ompare ation In in proess type Corruptions). The fair ation fIn spei�es that thedata unit expeted next in the order of transfered data will be delivered lively. Sine theproess type LiveInNoAttr shall onentrate on liveness and therefore must not onstrainthe delivery of data in general, it ontains another ation nIn tolerating the delivery ofother data units.PROCESS SlidWindServie (usd : any ) ! usd : set of user data transferedPROCESSESId : SDUId; ! Assignment of unambiguous sequene numbersC : Corruptions (usd,{ (k,k) | k 2 usd });! No Corruptions of transfered dataG : Gaps (0); ! No Gaps in transfered data streamR : Reorderings (0); ! No reorderings in transfered data streamD : Dupliates (0); ! No dupliations of transfered dataP : Phantoms (usd, usd); ! No phantomsCap : Capaity (8); ! Servie apaity of eight data unitsLIn : LiveInNoAttr; ! Data Units are delivered livelyACTIONSRq (krq : key; d : usd) �= ! Transmission of user data d with seq. no. krqId.Rq(krq) ^ C.Rq(krq,d) ^ G.stutter ^ R.stutter ^ D.stutter ^P.stutter ^ Cap.Rq(krq) ^ LIn.Rq;fIn (krq : key; d : usd) �= ! Delivery of user data d with seq. no. krq! Weak fairness assumedId.In(krq) ^ C.In(krq,d) ^ G.In(krq) ^ R.In(krq) ^ D.In(krq) ^P.In(krq,d) ^ Cap.In(krq) ^ LIn.fIn(krq);nIn (krq : key; d : usd) �= ! Delivery of user data d with seq. no. krq! No fairness assumedId.In(krq) ^ C.In(krq,d) ^ G.In(krq) ^ R.In(krq) ^ D.In(krq) ^P.In(krq,d) ^ Cap.In(krq) ^ LIn.nIn(krq);END Figure 3: Servie spei�ation SlidWindServieSimilarly to Lotos [31℄, TLA supports the omposition of systems from proesses. Theproesses interat via synhronous joint ations. Ation parameters model the ommuni-ation of data. The variables of a proess are private and therefore annot be aessedby other proesses. Like eah proess, the system as a whole is a state transition system.The vetor of all variables of all proesses forms the system state. A system behaviour is7



a sequene of system states where the state hanges orrespond to system ations. Eahsystem ation is de�ned by the logial onjuntion of proess ations. In this onjun-tion, eah proess is represented either by a true proess ation or by the pseudo ation\stutter" denoting that the proess does not perform a state hange in this system ation.The spei�ation SlidWindServie, listed in Fig. 3, models suh a system omposedof proesses. In the part headed by PROCESSES the proesses of the system are delared.For example, the proess Id is an instane of the proess type SDUId and the proessC is an instane of the proess type Corruptions, desribed above, with the parametersetting (usd; f(k; k)jk 2 usdg). In the ACTIONS part the system ations are delared byonjuntions of proess ations. For instane, the loal proess ations Rq of the proessesId, C, Cap, and LIn are oupled to the system ation Rq while the proesses G, R, D, andP partiipate by stuttering steps only.The spei�ation tehnique TLA supports superposition (f. [2, 5℄) whih guaranteesthat a property ful�lled by a proess or subsystem is also a property of eah systemontaining this proess or subsystem. It is essential for the oneption of the frameworkand, partiularly, for struturing the veri�ation into subsystem impliations. With regardto the safety properties, whih onstrain initial states and state transitions of systems only,superposition an be guaranteed quite easily. Sine a system state is modeled by a vetorof proess states whih are de�ned by private variables only, properties onstraining thestates of a single proess also onstrain the states of the whole system.With respet to liveness properties, however, superposition is more subtle. In a system,a proess ation an be oupled with ations of other proesses. Thus, the environmentof a proess an blok the proess ation, and due to the bloking the fairness assumptionof this proess ation may be violated. In ontrast to TLA, whih adopts the fairnessassumptions introdued in [1℄ diretly, TLA therefore uses onditional fairness assump-tions only. The WF/SF onstruts of TLA refer to periods of time where a proessation is enabled as well as the ation is not bloked by the environment of the proess.For instane, the proess LIn : LiveInNoAttr (Fig. 2) only has the liveness property thatdata submitted (ation Rq) will be eventually delivered (ations fIn or nIn) if the proessation fIn is not bloked by the environment of Lin too often.On the one hand, this restrition of liveness properties to onditional fairness diretlysupports superposition. On the other hand, however, onditional fairness assumptionsare not able to express absolute liveness properties whih are of partiular interest forthe system design. Nevertheless, one an speify absolute liveness properties by meansof an additional ondition preventing the proess environment to blok fair ations toooften. If one an prove the safety property that the fair proess ation fIn is toleratedby the proess environment whenever it is enabled due to the loal proess states inLiveInNoAttr, the onditional fairness orresponds to the unonditional fairness aordingto [1℄. All modules of the framework, whih desribe liveness properties orrespond to thepattern of the example module LiveInNoAttr and desribe fairness assumptions as weakas possible. They separate fair subations (e.g., fIn) and are designed to express absoluteliveness properties under the assumption that the fair subations are only bloked bythe environment in system states where they are disabled at all. Indeed, the modulesof the framework are designed under onsideration of eah other in order to ful�ll thisassumption. 8



3 Formal SemantisThe language TLA supports the modular formal spei�ation of distributed systems andapplies state transition system based modeling like the standard languages Estelle [30℄and SDL [32℄. Nevertheless, these standard languages mainly onentrate on the stru-tured and easy-to-read formal desription of systems and aordingly provide a rih set oflanguage onstruts. Formal veri�ations, however, need additional means sine the lan-guages do not diretly support formal reasoning. In ontrast to these standard languagesTLA has been designed under the objetive of expliit veri�ation support. Therefore itis diretly based on L. Lamports temporal logi of ations TLA [34℄. Thus, eah TLAproess instane orresponds to a TLA formula. This orrespondene de�nes the formalsemantis of TLA. Moreover, it enables TLA-based veri�ation.In TLA anonial formulas desribe the safety and liveness properties of state tran-sition systems in aordane to [1℄. Inferene rules support the syntatial dedution ofvalid formulas. Moreover, there is an interesting oneption of re�nement. A more de-tailed spei�ation Im orretly re�nes a more abstrat spei�ation Sp if the impliationIm) Sp is a valid TLA-formula where Sp is the spei�ation Sp under substitution of itsfree state variable ourrenes by funtions of the state variables of Im. These funtionsform the so-alled re�nement mapping. Due to the orret re�nement Im implementsSp in the pratially relevant sense that Im meets the safety and liveness requirementsexpressed by Sp. TLA adopts these notions and tehniques of TLA. It is an extensionof TLA adding expliit notions of proesses, proess types, and proess omposition (asmentioned, the superposition harater of omposition is of partiular interest). Further-more, there is a di�erent look of TLA spei�ations sine in TLA anonial parts offormulas are not expliitly written down.The TLA formula whih orresponds to a proess instane depends on the parametersettings of the instantiation and on the de�nition of the proess type. Proess typeparameters are generi. As usual, we assume that the text strings of atual parametersreplae the formal parameter ourrenes in the proess type de�nitions. With respetto the proess type de�nitions, there are two forms, one for simple proesses and one forsystems. In both ases, the TLA formulas of proess instanes are in anonial form andrefer diretly to prediate and ation de�nitions of the proess type.For lari�ation of simple proesses let LIn : LiveInNoAttr be a proess instane ofproess type LiveInNoAttr listed in Fig. 2. LIn orresponds to following TLA formuladLIn where the symbols INIT, Rq, fIn, and nIn represent the initial state prediate andations of the proess type LiveInNoAttr:dLIn �= INIT^2[ Rq_9krq 2 key :: fIn(krq)_9krq 2 key :: nIn(krq)℄(Rq;maxIn)^8krq 2 key :: WF(Rq;maxIn)(fIn(krq) ^ krq 2 efIn)dLIn is an usual anonial TLA formula desribing the safety and liveness properties ofa state transition system with the two state variables Rq and maxIn. The �rst fourlines are devoted to safety properties and de�ne the initial states and the next state9



relation of the state transition system. The last line addresses liveness and adds fairnessassumptions on subrelations of the next state relation. There is only one partiularity informula dLIn. While usually fairness operators refer diretly to ations of the next staterelation, here the weak fairness is not applied to the ation fIn but to a subation ofit, namely to the onditional ation fIn(krq) ^ krq 2 efIn, where an additional statevariable efIn is addressed. We assume that for eah fair ation of a proess a orrespondingenvironment readiness variable like efIn exists. The variable is shared between the proessand its environment. It is written by the environment and read by the proess. It atsas an abstration of the proess environment and indiates the urrent readiness of theenvironment for the ation. The value of the variable is the set of those ation parametervalues for whih the environment urrently does not blok ourrenes of the ation. Forinstane, when efIn is empty, the environment is assumed to blok the ation fIn undereah possible parametrization. In ontrast, the TLA formula dLIn ^ 2efIn = key wherekey denotes the set of all possible values for the ation parameter krq desribes a statetransition system modeling the proess LIn in an environment whih always toleratesstate transitions aording to fIn.The TLA formula of systems shall be explained by an extension of the example. Werefer to the proess type SlidWindServie whih is de�ned in Fig. 3. As explained in Se. 2,instanes of this type are systems whih are omposed from eight proess instanes Id,: : :, LIn. Sine all other proesses besides LIn do not express liveness properties, fairnessassumptions only apply to ations of LIn (as shown in Fig. 2 the ation LIn.fIn isaompanied by a fairness statement). Let SWS : SlidWindServie(usd) be an instaneof this system type. It orresponds to following anonial TLA formula dSWS:dSWS �= Id.INIT ^ C.INIT ^ G.INIT ^ R.INIT ^D.INIT ^ P.INIT ^ Cap.INIT ^ LIn.INIT ^2[ 9krq 2 key; d 2 usd :: Rq(krq; d)_9krq 2 key; d 2 usd :: fIn(krq; d)_9krq 2 key; d 2 usd :: nIn(krq; d)℄(Id.Rq;C.buf;:::;LIn.Rq;LIn.maxIn)^8krq 2 key ::WF(Id.Rq;C.buf;:::;LIn.maxIn)(9d 2 usd :: fIn(krq; d) ^ krq 2 sefIn)The formula dSWS refers to the de�nitions of the initial prediates of the proess instanes.Thus, LIn.INIT stands for the initial prediate of LIn. Moreover, dSWS refers to the ationde�nitions of proess type SlidWindServie whih are onjuntions of proess ations. Forinstane, as listed in Fig. 3, fIn(krq,d) is de�ned as Id.In(krq) ^ : : :^ LIn.fIn(krq).Sine the ation fIn of SWS ontains the fair proess ation LIn.fIn, it also is aom-panied by a fairness statement. The last line of dSWS states a orresponding fairnessassumption for the system ation fIn. As in simple proesses the fairness assumptionis onditional and the symbol sefIn denotes the orresponding environment readinessvariable for the system ation fIn.For the reasoning on proess ompositions not only TLA formulas of the form ofdSWS are used. Moreover a ompositional form exists whih is a onjuntion of the TLA
10



formulas of the onstituting proesses. Thus, the ompositional formula gSWS of SWS is:gSWS �= Id ^ bC ^ : : : ^ dLIn ^ SCC^2(LIn:efIn = fkrq 2 keyj9d 2 usd :: krq 2 sefIn ^ Enabled(Id.In(krq))^ : : : ^ Enabled(Cap.In(krq))g)In addition to the formulas of the onstituting proesses the ompositional formula gSWSonjoins two invariants. The so-alled oupling onstraint SCC expresses the safety on-ditions whih result from the speial ation oupling of a system, e.g., it states withrespet to the ation LIn.fIn(krq) that this ation has to our in ombination withsimultaneous ourrenes of the ations Id.In(krq), C.In(krq,d), : : :, Cap.In(krq).The last invariant de�nes the environment readiness variable LIn:efIn of proess LIn asstate funtion: The ation fIn of proess LIn is tolerated by LIn's environment for aparameter value krq, exatly if the environment of SWS tolerates the system ation fInand all these ations of the other proesses of SWS are enabled whih are oupled withLIn.fIn within the system ation fIn.Besides of the syntax and the TLA transformation rules outlined above, the TLAlanguage de�nition ontains few onditions restriting the ontent of system ation def-initions espeially in ontext with the ourrene of fair ations. In the main, theseonditions express the assumption, that fair proess ations are disjoint and that for eahfair proess ation there is exatly one ontaining system ation. Under these onditionsone an prove that the ompositional TLA formula of a system instane is equivalent tothe diret anonial TLA formula of this system instane (the proof is desribed in [17℄).In the example this means that dSWS , gSWS is valid.From the equivalene of the ompositional formula with the diret anonial formula ofa system instane we an infer that the ompositional formula is free from ontradition.In ombination with the form of the ompositional formula whih onjoins the formulasof the onstituting proesses, we an infer that proess omposition implies the onsis-tent logial onjuntion of proesses. Therefore a system formula implies the formula ofeah onstituting proess. This means, that proess omposition has ideal superpositionharater beause the safety and liveness properties of proesses are also properties ofontaining systems. Moreover, sine logial onjuntion is ommutative and assoiative,superposition applies not only to proesses but also to subsystems of a system.Superposition failitates the formal veri�ation of system properties. In order to provethat a system S has the properties expressed by a TLA formula P , it is suÆient to �nda subsystem Sys of S for whih the TLA formula dSys) P an be proven. This supportsthe broad appliability of the theorems supplied by the transfer protool framework.Theorems have the form of TLA impliations from a parameter ondition Pars, a protoolmehanism subsystem Sys, and an environment ondition invariant EnvCond to a servieproperty spei�ation (e.g., Pars ^ Sys ^ 2EnvCond ) LiveInNoAttr, f. Fig. 8 inSe. 7). The subsystems Sys of the theorems are relatively small and really onentrate onthese protool mehanisms whih are neessary for the implementation of ertain servieproperties. Besides of few parameter and non-bloking onditions the theorems do notrefer to the environment of Sys. Therefore, a relatively small number of theorems an overthe relevant relations between protool mehanisms and servie properties. In pratialproofs that a spei� protool implements a servie with speial funtional properties,11



therefore there is a very high probability that one �nds suitable instanes of frameworktheorems and onsequently does not need to perform original proofs.4 Transfer Protool FrameworkThe Transfer Protool Framework onsists of spei�ation modules and of theorems. Thespei�ation modules are TLA proess type delarations whih desribe protool meha-nisms, onstraints of a basi transfer medium, and servie onstraints. They are struturedinto three layers:� Servie-Constraints (SCs):A servie onstraint (e.g., an instane of the proess type Corruptions in Fig. 1)models a single property of a ommuniation servie. It is instantiated from an SCmodule of the framework. Servie spei�ations are ombined from SC instanes.The framework ontains SCs speifying that transmission errors (i.e., orruptions,dupliates, reorderings, gaps, phantoms) do not our, that the servie apaity islimited, and that the servie guarantees a live delivery of transmitted user or sig-nalling data. By other SCs one an model aspets of onnetion handling, datagramtransfer, and funtional quality of servie. A third group of SCs allows to modelonstraints regarding the oordination of di�erent onnetions (e.g., limiting thenumber of onnetions urrently ative in a station).� Abstrat Protool Mehanisms (APMs) and Abstrat Medium Constraints (AMCs):An abstrat protool spei�ation is modeled by a system omposed of APMs andAMCs. The APMs and AMCs reet the ommon senario of protool desriptions.Protool entities ooperate and ommuniate by means of a basi medium. With re-spet to this, the di�erent APMs model single mehanisms of protool entities andthe AMCs desribe properties of the basi medium. The APMs speify abstra-tions of protool mehanisms used in real protools. They only model the essentialfuntions of the protool mehanisms and do not attah importane to details ofeÆient implementation. For instane, the APM modeling sequene numbering isnot onerned with the reuse of numbers and therefore is based on an in�nite rangeof numbers. Besides sequene numbering, the framework ontains APMs modelingprotool mehanisms used by various transfer protools (f. [8, 35℄). One an speifythe storage of user data, yli redundany heks, segmentation and re-assemblyof user data, as well as the handling of re-ordered and defetive data. Moreover,APMs are available modeling the management of feedbak messages (i.e., aknowl-edgement of data, rejet of defetive data units, granting new transmission redits),ow ontrol mehanisms, and the handling of messages to trigger a feedbak fromthe reeiver to the transmitter of user data. Another group of APMs supports thespei�ation of onnetion handling, datagram transfer, funtional quality of serviemanagement, and mehanisms to oordinate di�erent onnetions. Sine the basimedium is a servie, the AMCs model servie ontraints similarly to the SCs.� Finite Abstrat Protool Mehanisms (FAPMs) and Abstrat Medium Constraints(AMCs): 12



A system of FAPMs and AMCs models a transfer protool in a quite diret manner.Eah protool mehanism of the protool is modeled by an FAPM instane. AMCinstanes speify the basi medium. A omposition of the FAPM instanes andAMC instanes forms a strutured formal protool spei�ation. In ontrast to theAPMs, the FAPMs use only �nite variables. Thus, sequene numbers have to bereused whih orresponds diretly to the mehanism employed in sliding windowprotools. Furthermore, onnetions have to be identi�ed by a �nite number ofonnetion identi�ers. Therefore, besides FAPMs similar to the APMs listed above,the framework ontains FAPMs modeling the administration of sequene numbersand onnetion identi�ers.The theorems of the framework are logial impliations between TLA systems. Dueto the three-layered struture of the spei�ations patterns two kinds of theorems areused:� An SC theorem states that a system modeled by APMs and AMCs implies a servieonstraint, i.e., an SC. For some SCs of the framework more than one theorem areavailable. That reets that a servie onstraint an be realized by di�erent protoolmehanism ombinations.� The gap between an abstrat protool system modeled by APMs and AMCs anda diret protool model onsisting of FAPMs and AMCs is bridged by APM andAMC theorems. A theorem states that a system of FAPMs and AMCs implementsa ertain APM or AMC.The struture of the framework is further re�ned by distinguishing safety and livenessproperties. Thus, eah of the three sorts of spei�ation modules ontains two groups ofmodules alled safety resp. liveness proess types. Likewise the theorems are lassi�ed intosafety and liveness theorems aording to the proess at the right side of the impliation.The theorems are logial impliations as listed below:� Safety theorem: Pars ^ Sys) (Safety)Pro,� Liveness theorem: Pars ^ Sys ^ 2EnvCond ) (Liveness)Pro.The system de�nition Sys, the entral part of the left side of an theorem impliation,desribes a system omposed from proess instanes. The theorem expresses that thissystem implements the proess Pro listed on the right side of the impliation. The proessinstanes of Sys are parametrized instantiations of proess types. Sine proess typesmust not be parametrized arbitrarily, a prediate logi formula Pars de�nes a suÆientondition for orret and onsistent proess parametrizations. Furthermore, in livenesstheorems the left side of the impliation ontains an invariant, the so-alled environmentondition EnvCond. This ondition onstrains the behaviour of the environment of thesystem Sys. It rules out that fair ations of Sys may be bloked by the environment toooften.Currently, the transfer protool framework ontains 133 spei�ation patterns (28 SCs,44 APMs, 14 AMCs, and 47 FAPMs) and 165 theorems (31 SC theorems and 134 APMtheorems). 13
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Protocol SpecificationFigure 4: Struture of servie and protool spei�ations5 Servie Spei�ationOur protool example shall implement a reliable and live simplex data transfer servieof a �xed apaity. Partiularly, data must be transmitted without errors. Thus, theservie has to ful�ll �ve servie onstraints: transmitted data are not orrupted; thestream of data delivered to the reeiver does not ontain gaps; the delivered data arenot reordered; dupliates of data are not delivered; the stream of delivered data does notontain phantoms. Another servie onstraint limits the apaity of the servie. At thesame time only a ertain number of data units | eight in this example | may be sentand not yet delivered. The last servie onstraint reets liveness aspets. The servie isalive if it eventually delivers all transmitted data units to the reeiver guaranteeing thatdata may not be lost due to inativity. Furthermore, due to the liveness of the serviethe transmitting servie user will be able to submit new data units in intervalls sine eahdata delivery auses the amount of data falling below the apaity limit. Thus, after adelivery at least one new data unit may be transmitted.To reate a formal spei�ation of this servie, at �rst we design onstraint spei�-ations, eah modeling only one of the servie onstraints listed above (f. upper part ofFig. 4). As already mentioned, the onstraint spei�ations are developed parametriz-ing SCs of the transfer protool framework. In a seond step we ompose the onstraintspei�ations to the servie spei�ation.The spei�ation SlidWindServie, listed in Fig. 3, models the servie. It ontains aparameter usd de�ning the set of data units to be transmitted by the servie. For instane,the replaement of usd by the set f0; : : : ; 255g spei�es a byte oriented data transfer ser-14



vie. The servie spei�ation SlidWindServie onsists of the eight onstraints Id, C, G,R, D, P, Cap, and LIn whih will be developed by instantiating the framework SCs SDUId,Corruptions, Gaps, Reorderings, Dupliates, Phantoms, Capaity, resp. LiveInNoAttr.Id is a speial onstraint whih models the assignment of an unambiguous and orderedsequene number to eah data unit submitted. These sequene numbers are neessaryto detet transmission errors. The other seven onstraints proesses speify the sevenservie onstraints mentioned above. For example, the onstraint C models that onlydata whih are not orrupted during the transmission may be delivered to the servieuser. It is an instantiation of the SC Corruptions, listed in Fig. 1, whih uses the proessparameter usd and t. usd orresponds to the global parameters usd in the proessSlidWindServie. By the relation t we an �x, if and to whih degree orruptions of datamay be tolerated. For instane, if one models byte oriented data transfer, the replaementof t by f(k; 2�(k div 2))g[f(k; 2�(k div 2+1))g spei�es that one tolerates the orruptionof the lowest priority bit. Sine in our example orruptions must not our, we replaet by the identity relation { (k,k) | k 2 usd }. The onstraint proess G models theservie onstraint that the stream of delivered data has no gaps. G is instantiated fromthe SC Gaps, the parameter tg of whih desribes the maximum size of gaps. We replae itby the value 0. The Constraints R, D, and P model the servie onstraints whih exludereoderings, dupliates, and phantoms in the stream of delivered data. The apaity ofthe servie is modeled by the onstraint Cap while the liveness onstraint proess LIn oftype LiveInNoAttr (Fig. 2) spei�es that the servie must be alive.The ations Rq, fIn, and nIn are spei�ed in the servie spei�ation SlidWindServie.By Rq the submission of a new data unit d by the transmitting servie user is modeled.During the submission the sequene number krq is assigned to the data unit d. Rq is aonjuntion of the proess ations Rq of the proess onstraints Id, C, Cap, and LIn whilethe other proesses do not ontribute with a proess ation. TLA, however, demandsthat the proesses G, R, D, and P perform a loal stuttering step during the exeution ofRq. Thus, it models onurreny by interleaving.The delivery of data units d with sequene numbers krq to the reeiving servie useris spei�ed by the ations fIn and nIn. Sine the servie should be performed lively,we have to provide the ation modeling the data delivery with a fairness assumption. Asdesribed in Se. 2, we redue this ation to a weak fair ation fIn and to a omplementarynon-fair ation nIn. In both ations the onstraint proesses Id, C, G, R, D, P, and Cappartiipate with their proess ations In. From the proess LIn the proess ation fInis oupled to the system ation fIn and the proess ation nIn to nIn. fIn models thedelivery of data essential for the progress of the transmission. For instane, the deliveryof a data unit whih was sent but not yet delivered is modeled by fIn. In ontrast, nInspei�es the delivery of data not important for the progress of the transmission (�., thedelivery of dupliates). Sine in our example all data deliveries are essential, the ationnIn is never enabled. Thus, we an omit it in a simpli�ed desription.The ation fIn of system SlidWindServie is weak fair sine it ontains the proessation fIn of the proess LIn whih is weak fair as well (f. Fig. 2). Therefore, if fIn isontinuously enabled, it will eventually be seleted for exeution.
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6 Protool Spei�ationThe sliding window protool [42℄ shall implement the data transfer servie introduedabove. The protool onsists of a transmitter entity S at the station of the data transmitterand a reeiver entity R at the reeiver site whih ommuniate by means of a full duplexbasi servie (f. lower part of Fig. 4). The basi servie is modeled by two simplex datahannels M and A. It is less reliable than the servie to be provided and we assume thatit guarantees only that orruptions, reorderings, and phantoms do not our during thetransmission. Thus, data losses and dupliates are possible. We model the basi servieomposing the following servie onstraints: data units are not orrupted; data units aredelivered in orret order; the stream of delivered data does not ontain phantoms. Thiskind of data transfer quality is quite realisti. It exists if the point-to-point data transferused is proteted against orruptions but not against data losses due to bu�er overowsin transit nodes. Dupliates may our due to inorret opying of data in the transitnodes. Furthermore, we demand that the basi servie guarantees the following livenessassumption: If the user of the basi servie repeatedly sends data units with a ertainattribute, eventually one of these data units will be delivered to its peer. Without thisliveness assumption, data units essential for the transmission might be lost again andagain leading to liveloks.The main task of the protool entities S and R of the sliding window protool is todetet and to remedy data losses and dupliates. Furthermore, the apaity and livenessof the servie provided by the protool have to be guaranteed. The protool uses a setof protool funtions ustomary for most modern data transfer protools (f. [8, 35℄).Data losses and dupliates are deteted by means of sequene numbers. Eah new dataunit submitted to the protool entity S is assigned a sequene number. The data unitand its sequene number are transmitted together in a protool data paket, a so-alledprotool data unit (PDU). Due to the order of the sequene numbers the reeiver entityR detets dupliations and gaps. Dupliated data will be ignored while gaps are remediedby seletive retransmission. The protool applies the method \Positive Aknowledgementwith Retransmission" (PAR). In intervalls S retransmits data units whih are still noton�rmed. To on�rm data units, R transmits on�rmation PDUs to S whih ontain thesequene number sak of the data unit delivered last to the servie user. By this PDUall data units are on�rmed, of whih the sequene numbers are lower or equal to sak.S guarantees the �nite apaity of the servie provided sine it does only aept a newdata unit for transmission if less than eight data units are urrently not on�rmed. Theliveness of the servie is guaranteed sine on the one hand S transmits new data units andretransmits unon�rmed data units to R in intervalls. On the other hand R delivers allorret data units to the servie user and repeatedly transmits on�rmation PDUs to S.The spei�ation SlidWindProtool of the sliding window protool (Fig. 5 and Fig. 6)is designed by parametrizing and omposing proesses of the framework1. Like the ser-vie spei�ation, SlidWindProtool ontains a parameter usd denoting the set of dataunits transfered by the protool. The parameter replaements of the proess instanes1Due to the size of the spei�ation we abstain from listing most proess parameters in the PROCESSESpart. In the ACTIONS part most system ations are listed without ation parameters and loal proessations. 16



! Speifiation of the Sliding-Window-ProtoolPROCESS SlidWindProtool (usd : any) ! usd : set of user data transferedIMPORT SWParameters(usd);PROCESSES! FAPMs : Modeling transmitter entity SSBK : SBufferKey ! Sequene number handler of the transmitter entity(swpdu, swpi, usd, swpdu, swspi, swskey, 1, swskk, swskn,swskm, swusdsize, 1, 16, 8);SBU : SBufferUsd(: : :); ! User data storage handler of the transmitter entitySAk : SAknowledge(: : :); ! Data aknowledge mehanism of the transm. entitySCap : SCapaity(: : :); ! Preventing data unit overflow in the transm. entitySLMRq : SLiveMRq(: : :); ! Liveness of the transmitter entity guaranteeing the! transmission and retransmission of data! FAPMs : Modeling reeiver entity RRBK : RBufferKey(: : :); ! Sequene number handler of the reeiver entityRBU : RBufferUsd(: : :); ! User data storage handler of the reeiver entityRG : RGaps(: : :); ! No gaps of delivered dataRR : RReorderings(: : :); ! Delivered data is not reorderedRD : RDupliates(: : :); ! No dupliations in delivered dataRP : RPhantoms(: : :); ! no phantoms delivered by the reeiver entityRAk : RAknowledge(: : :); ! Data aknowledge mehanism of the re. entityRLARq : RLiveARq(: : :); ! Liveness of the reeiver entity guaranteeing the! transmission of aknowledgement dataRLIn : RLiveIn(: : :); ! Liveness of the reeiver entity guaranteeing the! delivery of reeived data to the servie user! AMCs : Constraints of the basi servie hannel MMS : MSDUId; ! Ordered assignment of sequene numbersMC : MCorruptions(: : :); ! No orruptions during data transfer on hannel MMR : MReorderings(: : :); ! No reorderings during data transfer on hannel MMP : MPhantoms(: : :); ! No phantoms generated on hannel MMLI : MLiveIn(: : :); ! Liveness of hannel M guaranteeing that eah pdu! sent in intervalls will be eventually delivered! AMCs : Constraints of the basi servie hannel AAS : ASDUId; ! Ordered assignment of sequene numbersAC : ACorruptions(: : :); ! No orruptions during data transfer on hannel AAR : AReorderings(: : :); ! No reorderings during data transfer on hannel AAP : APhantoms(: : :); ! No phantoms generated on hannel AALI : ALiveIn(: : :); ! Liveness of hannel A guaranteeing that eah pdu! sent in intervalls will be eventually deliveredACTIONS: : :;END Figure 5: Protool Spei�ation SlidWindProtool (PROCESSES-part)17



PROCESS SlidWindProtool (usd : any) ! usd : set of user data transferedIMPORT SWParameters(usd);PROCESSES: : :;ACTIONSRq (krq : fkey; d : usd) �=! Submission of user data d with sequene number krqSBK.Rq (krq,d) ^ SBU.Rq (krq,d) ^ SAk.Rq (krq) ^ SCap.Rq (krq) ^SLMRq.Rq (krq,d) ^ : : :;fIn (krq : fkey; d : usd) �= : : :; nIn (krq : fkey; d : usd) �= : : :;! Delivery of user data d with sequene number krq to the! servie user (Weak fairness in fIn)fMRq ( : : : ) �= : : :; nMRq ( : : : ) �= : : :;! Submission of a pdu to hannel M (Strong fairness in fMRq)fMIn ( : : : ) �= : : :; nMIn ( : : : ) �= : : :;! Delivery of a pdu inluding data units sent via hannel M to the! reeiver entity (Weak fairness in fMIn)fARq ( : : : ) �= : : :; nARq ( : : : ) �= : : :;! Submission of a pdu inluding aknowledgements of data! units to hannel A. (Strong fairness in fARq)fAIn ( : : : ) �= : : :; nAIn ( : : : ) �= : : :;! Delivery of a pdu inluding aknowledgements of data units! sent via hannel A (Weak fairness in fAIn)MTik �= MLI.MTik ^ : : :; ATik �= ALI.ATik ^ : : :;! Internal ations indiating the loss of a pdu in M resp. AfMNoTik (p : [info : usd; seq : key [ {"<< >>"}; ak : key℄) �= : : :;fANoTik (p : [info : usd; seq : key [ {"<< >>"}; ak : key℄) �= : : :;! Internal ations of M resp. A guaranteeing the delivery of p if! pdus ontaining the same data unit are sent often. (Strong F.)END Figure 6: Protool Spei�ation SlidWindProtool (ACTIONS-part)are de�ned in a separate proess SWParameters listed below. In the PROCESSES part ofthe spei�ation (f. Fig. 5) the proesses modeling the entities and the basi hannels arelisted. The transmitter protool entity S is spei�ed by the proesses SBK, SBU, SAk,SCap, and SLMRq instantiated from FAPMs of the framework. They model protoolmehanisms to maintain sequene numbers as well as data units, to handle on�rma-tion PDUs, to limit the size of the transmitter bu�er, and to guarantee the liveness bytransmitting data units in intervalls.The reeiver protool entity is modeled by the proesses RBK, RBU, RG, RR, RD,RP, RAk, RLARq, and RLIn whih are also instantiated from FAPMs. These proessesspeify the protool mehanisms to maintain sequene numbers as well as data units,to deliver data to the servie users in the orret order, and to on�rm delivered data.18



! Parameters of the Speifiation of the Sliding-Window-ProtoolCONSTANT MODULE SWParameters (usd : any) ! usd : set of user data transferedCONSTANTS! Used in FAPMs and AMCsswpdu �= [info : usd; seq : fkey [ {"<< >>"}; ak : fkey℄;! Abstrat PDU formatswpi �= [seq : fkey [ {"<< >>"}; ak : fkey℄;! Protool Control Information (PCI)swspi �= [ x 2 [info : usd; seq : fkey [ {"<< >>"}; ak : fkey℄7! [ seq 7! x.seq; ak 7! x.ak ℄ ℄;! Pointer to the PCI of a PDU: : :;! Used in AMCsswt �= { (k,k) | k 2 [info : usd; seq : key [ {"<< >>"}; ak : key℄ };! Relation: identy of PDUs: : :;END Figure 7: Parameter de�nitions SWParametersFurthermore, RLARq and RLIn guarantee the liveness of the entity sine on�rmationPDUs and data deliveries are repeatedly triggered.The basi data hannel M models the transfer of user data and so-alled protool on-trol information (PCI) within PDUs from S to R. We speify it by means of the proessesMId, MC, MR, MP, and MLI whih are instantiated from AMCs of the framework. Likethe SC Id, MId is a speial onstraint modeling the assignment of data units to PDUs tobe transmitted. By MC, MR, and MP we model that transmitted data units are neitherorrupted nor reordered and that phantoms are not delivered. MLI guarantees that, ifPDUs with a ertain attribute are sent in intervalls, eventually one of them will be de-livered to the protool entity R. The basi data hannel A modeling the transfer of PCIwithin PDUs from R to S is spei�ed by the proesses AId, AC, AR, AP, and ALI whihorrespond to the onstraints of hannel M.The oupling of proess ations to system ations is desribed in the part of thespei�ation headed by ACTIONS (f. Fig. 6). The ations In, MRq, MIn, ARq, and AInare eah spei�ed by a fair and a omplementary non-fair ation. Thus, fMRq spei�esthe transmission of PDUs whih are essential for the progress of the ommuniation. Inontrast, nMRq models transmissions whih are allowed and for the sake of eÆieny oftenare also desirable but at the present state not important for the liveness of the protool.The spei�ation respets the distribution of the protool entities S and R sine eitherthe proesses of S or those of R partiipate in a system ation by stuttering steps only.The onstraints are developed from framework proesses by instantiation of proessparameters. In Fig. 7 the spei�ation SWParameters lists the de�nitions of the atualparameter types. The identi�er swpdu models the format of the PDUs of the slidingwindow protool. It is a reord onsisting of the three omponents info, seq, and ak.19



Data units transmitted in the PDU are stored in the reord omponent info. In theelement seq either the sequene number of a data unit is stored whih an be a naturalnumber or the speial symbol "notsent" denoting a phantom (data type key). Or thespeial symbol "<<>>" marks that the PDU does not ontain a data unit. The sequenenumber of the data unit delivered last to the servie user is stored in the reord omponentak.The sequene numbers of data units sent resp. on�rmed form the protool ontrolinformation (PCI) of a PDU. Thus the identi�er spi de�nes a reord onsisting only ofthe omponents seq and ak. swspi models a pointer to the PCI of a PDU. It maps aPDU reord to the PCI reord, of whih the omponents seq and ak ontain the samevalues as in the PDU.As already mentioned in Se. 4, we speify the sliding window protool in two steps.First, we reate the detailed protool spei�ation. In a seond step we develop a moreabstrat protool spei�ation whih models the distributed funtionality of the entitiesbut ontains variables of an in�nite range. Thus, we abstrat from protool errors dueto the reuse of sequene numbers and onnetion identi�ers in the abstrat spei�ation.The abstrat spei�ation supports the redution of the protool veri�ation into twosimpler steps (f. Se. 7). In the abstrat protool spei�ation we model the protoolentities by the onstraint proesses SBK, RBK, SBU, RBU, RG, RR, RD, SAk, RAk,SCap, SLMRq, RLARq, and RLIn again whih, however, are instantiated from APMsthis time. To model the basi data hannels M and A, we use the same AMCs as in thespei�ation SlidWindProtool.7 Veri�ationThe protool veri�ation guarantees that the ommuniation servie spei�ed in Se. 5 isimplemented by the sliding window protool desribed in Se. 6. Due to the omposition-ality of TLA we an redue the veri�ation into a series of simpler proof steps. In eahproof step we verify that a single servie onstraint is realized by a protool subsystemonsisting of only some protool mehanisms. Eah proof step orresponds diretly to aframework theorem. We assume that the theorems are orret though we have to refer tothe reservations onerning the stringeny of the presently available theorem proofs de-sribed in the introdution. Therefore, we have to hek only if the protool spei�ationontains all protool mehanisms neessary for the servie onstraint. Furthermore, theatual parameters of the protool mehanisms have to be onsistent to eah other and tothose of the servie onstraint realized. Thus, we an redue the protool veri�ation intothe simple seletion and onsisteny heking of framework theorems.The protool veri�ation is redued to two major steps. First, we prove that theommuniation servie is ful�lled by the abstrat protool modeled by APMs and AMCs.Seond, we verify that the abstrat protool spei�ation is implemented by the more de-tailed sliding window protool spei�ation onsisting of FAPMs and AMCs. To performthe �rst step, we apply eight framework theorems, eah proving one SC of the serviespei�ation. As an example we list the theorem instane verifying an instane of the20



liveness SC LiveInNoAttr2 in Fig. 8. The theorem states that an instane of the SCLiveInNoAttr, i.e., LIn, is implemented by a protool system whih ontains the pro-esses of Sys as a subsystem if the onditions Pars and 2EnvCond hold. Sys onsistsof instanes of the APMs SLiveMRq, RLiveARq, RLiveIn, and RAknowledge as well asinstanes of the AMCs MSDUId, MCorruptions, MPhantoms, MLiveIn, ASDUId, ACor-ruptions, APhantoms, and ALiveIn. It guarantees that user data (SLiveMRq) and on�r-mations (RLiveARq) are transmitted arbitrarily often between the protool entities, thatorretly transmitted user data are delivered to the servie user (RLiveIn), and that onlydelivered data are on�rmed (RAknowledge). Furthermore the basi data hannels arealive (MLiveIn and ALiveIn) and do not deliver orrupted data or phantoms (MSDUId,MCorruptions, MPhantoms, ASDUId, ACorruptions, and APhantoms).While instantiating the formal parameters of the onstraint proesses in Sys aording2To redue the spei�ation size, we omitted the atual parameters of the proesses in the protoolsubsystem de�nition.LET Pars �= {(p,q)| p, q 2 [info : usd; seq : key [ {"<< >>"}; ak : key℄ ^p.seq = q.seq } ={(p,q)| p.seq = q.seq ^p 2 [info : usd; seq : key [ {"<< >>"}; ak : key℄ ^q 2 [info : usd; seq : key [ {"<< >>"}; ak : key℄ }{̂ (k,k) | k 2 [info : usd; seq : key [ {"<< >>"}; ak : key℄ } �{ (p,q) | q =2 [info : usd; seq : key [ {"<< >>"}; ak : key℄ _p.seq = q.seq }{̂ (k,k) | k 2 [info : usd; seq : key [ {"<< >>"}; ak : key℄ } �{ (p,q)| q =2 [info : usd; seq : key [ {"<< >>"}; ak : key℄ _p.ak = q.ak };Sys �= SLiveMRq ([info : usd; seq : key [ {"<< >>"}; ak : key℄, : : :) ^RLiveARq (: : :) ^ RLiveIn (: : :) ^ RAknowledge (: : :) ^MSDUId ^ MCorruptions (: : :) ^ MPhantoms (: : :) ^ MLiveIn (: : :) ^ASDUId ^ ACorruptions (: : :) ^ APhantoms (: : :) ^ ALiveIn (: : :) ^CCLiveInNoAttr;EnvCond �=8 krq,p,kd : Enabled(SLiveMRq.fMRq(krq,p,kd)) )(krq,p,kd) 2 Sys.efMRq ^8 p,kd : Enabled(RLiveARq.fARq(p,kd)) ) (p,kd) 2 Sys.efARq ^8 krq,d : Enabled(RLiveIn.fIn(krq,d)) ) (krq,d) 2 Sys.efIn ^8 krq : Enabled(MLiveIn.fMIn(krq)) ) krq 2 Sys.efMIn ^8 d : Enabled(MLiveIn.fMnoTik(d)) ) d 2 Sys.efMnoTik ^8 krq : Enabled(ALiveIn.fAIn(krq)) ) krq 2 Sys.efAIn ^8 d : Enabled(ALiveIn.fANoTik(d)) ) d 2 Sys.efANoTik;IN Pars ^ Sys ^ 2 EnvCond ) LiveInNoAttrFigure 8: Theorem LiveInNoAttr21



to the desription in Se. 6, we adapted the theorem to our example. Sine the abstratprotool spei�ation ontains instanes of all APMs and AMCs listed in Sys whih areoupled in aordane with the (not expliitely listed) oupling formula CCLiveInNoAttr,Sys is a subsystem of the abstrat sliding window protool. The replaements of theparameters are onsistent if the formula Pars holds. The �rst onjunt of Pars is atautology and therefore holds. The other onjunts express that, if two PDUs p and q areidential, their reord omponents p:seq and q:seq resp. p:ak and q:ak must have equalvalues as well. These onjunts hold trivially sine two reords are equal per de�nitionemif all reord omponents (partiularly seq and ak) are equal as well.The temporal ondition 2EnvCond guarantees that LiveInNoAttr is implemented notonly by the subsystem Sys but also by the whole abstrat sliding window protool. Aliveness proof might fail if the entire system ontains proesses weakening the liveness ofthe APMs and AMCs in Sys. For instane, if the entire system ontains an APM prevent-ing the delivery of user data at all, Sys ould of ourse not guarantee the liveness of theSC LiveInNoAttr. During the design of the theorem we veri�ed that exept for the APMDataChanOpenR all APMs and AMCs of the framework ful�ll the ondition 2EnvCond.DataChanOpenR, however, is not a part of the abstrat protool spei�ation. Thus,2EnvCond also holds, and we proved that the abstrat sliding window protool imple-ments the servie onstraint LIn modeled as an instane of the SC LiveInNoAttr. In thesame way we verify the other seven SCs of the servie spei�ation.Thereafter, the seond major proof step veri�es that the abstrat sliding windowprotool spei�ation is ful�lled by the more detailed one. It is performed aordingly.By appliation of 13 framework theorems we prove that the 13 APMs of the abstratprotool spei�ation are ful�lled. The proof of the AMCs is not neessary sine thebasi servies used by the entities of the detailed resp. abstrat protool are modeled byidential AMCs.8 ConlusionWe outlined the essential features of the transfer protool framework and its appliationto the formal spei�ation and veri�ation of ommuniation protools with the help of asliding window protool example. Similarly, more omplex protools were examined withremarkable few expense of work. For instane, the high-speed transfer protool XTP [44℄was spei�ed and veri�ed within three weeks [24℄. The framework an be aessed viaWWW (http://ls4-www.informatik.uni-dortmund.de/RVS/P-TPM).Currently, we extend the spei�ation tehnique TLA. Besides the modeling of event-disrete, not time-valued dynamial behaviours, TLA an also be used to speify real-time properties and ontinuous behaviours [19, 23℄. We are going to adapt the frameworkapproah to the modeling of distributed realtime systems. At the moment we examinethe appliation �eld of hemial engineering system ontrol [25℄. Furthermore, the TLAextension an also be utilized for ommuniation protools (�., modeling the transmissionof multimedia data).
22
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