
Model-based Engineering and Analysis
of Space-aware Systems Communicating

via IEEE 802.11

Fenglin Han⇤, Jan Olaf Blech⇤⇤, Peter Herrmann⇤ and Heinz Schmidt⇤⇤
⇤Norwegian University of Science and Technology, Trondheim, Norway

Email: {sih|herrmann}@item.ntnu.no
⇤⇤RMIT University, Melbourne, Australia

Email: {janolaf.blech|heinz.schmidt}@rmit.edu.au

Abstract—We propose a model-driven development approach

for autonomous control systems with emphasis on the physical

space and the communication via wireless connections. In partic-

ular, we combine model-based engineering with simulation and

emulation techniques for mobile communication. The design and

implementation is done using our Reactive Blocks Framework.

For the mobile communication we use the popular IEEE 802.11

WLAN protocol which is simulated using software tools in order

to get estimations of connection delays. The spatial constraints are

verified with our BeSpaceD tool. As an example, we present the

design and verification of autonomous robots performing services

in a large factory hall and coordinating by means of wireless

communication which is based on several access points.

I. INTRODUCTION

Recent technological development leads to a growing
number of systems in which various mobile components act
autonomously in a shared physical space. Examples for such
systems abound in domains such as robotics, aeronautics, and
automotive manufacturing. The autonomous systems must not
interfere with each other in an undesired way which could
result in accidents. Further, in many applications they form
collaborative groups in order to perform joint tasks (e.g.,
several robots transport a heavy workpiece together on a
construction site or coordinate their actions for warehouse
automation). To achieve such a collaborative behavior, the
components need to continuously interact with each other via
wireless connections and the communication has to keep hard
real-time limits. When developing such a system, one therefore
has to consider communication-related issues (e.g., bandwidth
limits occurring when many components are close together
such that they are handled by a single access point). As
shown in [1], the performance of a teleoperated robot system
is strongly influenced by the quality of the communication
environment.

Many industrial methods, e.g., Matlab/Simulink- and IEC
61131-based approaches, seek to build control systems solely
from a model-based software engineering point of view.
Others, e.g., OPNET [2], focus only on the communication
network design and analysis.

In this paper, we propose bridging model-based develop-
ment and network design. To this end, we study and evaluate
a method for real-time control applications of wireless inter-
connected devices that takes both wireless network response

times and spatiotemporal properties into account. In particular,
we combine network simulation using Jemula [3] with spatial
constraint solving using BeSpaceD [4], [5]. In extension of
this previous work,

1) we apply constraint solutions to provide parameters
for network simulations;

2) the results of the network simulations including
failure probabilities and other statistical properties
are then used to input further constraints into the
constraint solver. For instance, if an access point fails,
the neighboring ones may take over parts of its traffic,
but at the expense of heavier loads.

3) The expected communication delays can be simulated
with Jemula when one or more access points fail.

We also continue to use our model-based software engi-
neering method Reactive Blocks1 that allows us to specify
system models by composing reusable sub-models, so-called
building blocks [6], [7]. This approach enables us to create
controllers for mobile components using the combination of
these three methods. Our contribution is the combination of
these methods as well as the exchange of models and the flow
of analysis results.

The interaction of the three methods and tools is depicted in
Fig. 1. The top section refers to the modeling of autonomous
systems with Reactive Blocks. Moreover, as depicted in the
center section, we simulate the network usage of the system
to get significant predictions of the expected communication
delay. In the current version of the toolchain, we restrict
ourselves to the popular IEEE 802.11 series of WLAN pro-
tocols as interconnection technology and use the open source
IEEE 802.11 simulator/emulator Jemula [3] to simulate WLAN
usage. In the third step shown in the bottom section, the models
and simulation data are used for verification. For instance, we
can model check functional [7] and performance [8], [9] issues.
This paper introduces another analysis technique, i.e., the use
of BeSpaceD to prove the impact of communication delays
for spatial properties of autonomous systems. Here, the Be-
SpaceD proofs take the knowledge about worst-case or average
communication delays learned in the Jemula simulations into
account.

1Until recently Reactive Blocks was named Arctis.



Building 
blocks

System

System Engineering 
and Composition

Time

Analysis
Model

Environment
Design

Simulation

Formal 
Verification 

Tools Input

library

Tr
an

sf
or

m
at

io
nMobile 

Communication 
Simulation

Spatial 
Constraints

Checking

Data

Modeling

Simulation

Verification

Building
 Blocks

Fig. 1. Summary of the Approach.

The combination of these tools allows us to make use-
ful predictions about the communication infrastructure of an
embedded system already on the modeling level. If spatial
properties are proven wrong, it is usually much cheaper to
adapt the system infrastructure and the functionality of the
mobile components on the modeling level than later when the
system has already been implemented.

In Sect. II, we introduce the background of our approach.
To facilitate understanding, we thereafter describe a mobile
robot system-based scenario in Sect. III. The detailed control
module description is discussed in Sect. IV followed by the
definition of spatial properties in Sect. V. The WLAN com-
munication simulation results for the scenario are introduced
in Sect. VI. In Sect. VII, we explain how the simulation can
be combined with the spatial analysis. The text is completed
by a discussion about related work and a conclusion.

II. BACKGROUND

The technology used in this work consists of the three tools
Reactive Blocks, BeSpaceD and Jemula mentioned above.

Further, relevant characteristics of the IEEE 802.11 protocol
are discussed.

A. Reactive Blocks

The model-driven engineering method Reactive Blocks
is a tool-supported approach for developing reactive concur-
rent software systems [7]. The systems are composed from
models of reusable software components, so-called building
blocks. The main ingredients of a building block are a UML
2.x activity diagram and an abstract External State Machine
(ESM) [10]. Similar to a Petri net, the activity diagram models
the detailed implementation logic as a token flow. To allow
formal analysis, we supplemented the activity diagrams with
a formal semantics allowing to order the token flows into
reactive run-to-completion steps [11]. The ESM shows the
abbreviated interface behavior of the building block as an
abstract UML 2.x state machine. The concept enables us to
specify recurrent sub-functionality by separate building blocks
that can be specified once, stored in model libraries and reused
in a drag-and-drop fashion in models. System models can be
automatically analyzed for functional errors by a built-in model
checker [7]. Further, executable Java code can be automatically
generated [12].

An extension of the tool supports also the analysis of prob-
abilistic real-time performance and safety issues. In particular,
the time and probabilism properties can be formalized and
analyzed using probabilistic timed automata-based formal ver-
ification [8], [13]. The formal analysis and verification is based
on the two verification tools UPPAAL [14] and PRISM [15].
We established two extensions of the ESMs called Real-Time
External State Machine (RTESM) [8], [16] and Probabilistic
Real-Time External State Machine (PRTESM) [13] to model
time-constrained behavior. This allows us to check hard real-
time properties, e.g., proving that a system leaves a certain
state within a period of time in order to carry out some safety
preserving actions.

B. BeSpaceD

In [4], [5], we introduce BeSpaceD as a tool framework
for specifying behavior of distributed systems and formally
reasoning about them. BeSpaceD emphasizes on spatial be-
havior but is not restricted to this. It allows the verification of
safety properties such as the absence of physical collisions be-
tween interacting robots and obstacles, the coverage of sensor
ranges, or WLAN ranges. Specification is done using abstract
datatypes out of a development environment supporting the
Scala programming language. The abstract datatypes can be
generated by Scala programs or by instantiation of other
software. Checking and reasoning in BeSpaceD is realized
using library functions creating verification goals. Verification
goals are solved by standard tools such as SAT and SMT
solvers or by specialized algorithms. For the purpose of this
paper, specifications of spatial problems are done using the
BeSpaceD constructs provided in a library inside code written
in the Scala programming language.

C. IEEE 802.11 WLAN Delay Analysis

The IEEE 802.11 wireless local area network (WLAN)
protocol is widely used for enterprise, home and public



Fig. 2. Animation of the Warehouse Robot System with 50 Robots.

access networks. It consists of several protocol variations
that define specifications for Media Access Control (MAC)
and Physical (PHY) layer specifications. In the MAC layer,
there are mainly two coordination functions, the Distributed
Coordination Function (DCF) and the Point Coordination
Function (PCF) that specify the media access and collision
control. DCF is a distributed medium access scheme based
on Carrier Sense Multiple Access using a Collision Avoidance
(CSMA/CA) scheme with binary slotted exponential backoff.
In the basic IEEE 802.11 MAC protocol using DCF, a station
determines individually when to access the media. The station
service responsible for information exchange is referred to as
MAC Service Data Unit delivery (MSDU delivery). In contrast,
PCF is a centralized media access function, in which the access
point grants access to the different stations by polling.

Due to the competitive media access, DCF has the greatest
impact on the performance of IEEE 802.11 wireless protocols.
In our simulation we use the so called Request/Clear To Send
(RTS/CTS) access mode which is the general mechanism to re-
serve the wireless communication channel in DCF. The WLAN

latency is mainly composed of two parts, the transmission
delay and the backoff delay. The transmission delay refers to
the latency of transferring packets over the net and depends on
the packet size (number of bits) and the transmission rate. The
backoff delay refers to the lag of time a station needs to access
the WLAN. The IEEE 802.11 MAC DCF uses the so-called
binary slotted exponential backoff [17] to estimate the backoff
delay. That is an analytical model computing the saturation
throughput performance of DCF as a stochastic process. The
model is easy to understand but can be hardly analyzed by
machines due to the state space explosion problem. Therefore,
we use emulators to simulate the communication collision and
delay of stations to discover how the number of mobile stations
can affect the delays and, in consequence, the overall network
communication.

We apply Jemula802 and its kernel Jemula [3], which
are open-source Java-based emulation tools to model IEEE
802-based communication. The Jemula emulation software has
an event-based architecture and maintains an XML interface
for the configuration of networks and systems. Like Reactive



Moving station

Storage point

Access point

y m

Radio link

Robot trail

z m

x m

St
or

ag
e 

ha
ll

WiFi signal

BSS zone

Fig. 3. Communication Infrastructure in the Storage Hall.

Blocks and BeSpaceD, Jemula is developed under the Eclipse
framework.

III. MOTIVATING SCENARIO

In this section, we introduce a scenario comprising a
mobile distributed robot system followed by a closer discussion
of its communication infrastructure.

A. Warehouse Robot System

We created a simulator of a mobile robot fulfilment
system that contains multiple robots and handles goods in
a warehouse. Our scenario is inspired by the Kiva robot
system2. As depicted in Fig. 2, the robots fetch pallets (black
rectangles) and transport them to other designated positions
in the warehouse. Robots currently transporting a pallet are
shown in the animation as filled colored rectangles while the
unfilled ones refer to robots not carrying a pallet. The robots
run on a line grid marking the floor. Lines are spaced one
meter apart. Whenever a robot leaves a crossing, it signals its
path to the next crossing to all the other robots in order to
prevent that another robot heads towards the same crossing.
When a new crossing is reached, another message to the other
robots indicates that the crossing from which the robot left, is
freed.

Due to the communication delay, nevertheless, up to four
robots may be simultaneously on their way to the same
crossing. As soon as a robot learns about such a conflict by
receiving the respective signal from one of the other robots, it
immediately stops and moves back to the crossing from which
it was coming. Due to the physical layout of the system, the
combined communication delay and reaction time leading to
an emergency stop needs to take place within a second to avoid
collisions. We showed in [8], [16] how maximum reaction
times can be computed based on the system model. For our

2https://www.youtube.com/watch?v=lWsMdN7HMuA.

scenario, we found out that a reaction time of 200 ms is suffi-
cient to stop the robot such that the maximum communication
delay is 800 ms. The proof under which circumstances this
maximum delay can be guaranteed by the system, is discussed
later in this paper.

B. WLAN topology and environment

We use a WLAN for the coordination and scheduling of the
moving robots that is sketched in Fig. 3. The working space
of the robots is modeled as a plane of width x, height y, and
depth z. We assume that several access points are installed in
the ceiling. The scenario is simplified by using the following
assumptions:

1) We assume that neither the pallets and their content
infer with the radio signals nor that there are obstacles
between the access points and the robots. Thus, we
suppose idealized conditions for the quality of the
radio signals.

2) The access point antennas in the warehouse are
arranged in a way that every robot is always in the
range of one of them. To achieve that, we partition the
warehouse into access areas and each access area is
completely covered by the circular range of an access
point. This will be discussed in detail in Sect. V.

3) Since robots can only physically interfere with each
other if they are in close proximity, they will be either
covered by the same access point or are at the border
between two access points. Thus, a robot only needs
to consider other robots and objects covered by the
same or by neighboring access points. We reflect that
in our simulations introduced in Sect. VI.

IV. MODELING THE CONTROLLER IN REACTIVE BLOCKS

Since the robot scenario consists of several robots of the
same sort, we define the robot controller as a multi-session
building block [18] in Reactive Blocks. This allows us to



Fig. 4. Multi-session Building Block Robot.



init/

getPallets//callPallets
start/

start starting Idle
rcvNewNext/

active
/callNewDest
/sendNewNext

stop/stopped to all: 
rcvNewNext/

to all: 
getNewDest/

Fig. 5. ESM of Building Block Robot.

model an arbitrary number of control entities that can interact
with each other as well as with their common environment.
Figure 4 depicts the UML activity of the multiple-session
building block that we named Robot while its ESM is found in
Fig. 5. Each robot has a unique identifier stored in the variable
me. The other variable data stores information such as the
current position and direction of the robot, the pathes of other
robots, and the positions of the pallets in the warehouse.

Robot contains three internal building blocks that each have
their own UML activities and ESMs. TimeStampOccupyBox-
Manager is taken from a library and manages the handling
of data types carrying information about spatial properties
and time of a robot. The building block HybridKIVASystem
contains the basic logic of the robot control. Whenever the
robot either reaches its destination or a crossing from which it
can continue in various directions, a token is triggered passing
pin callDecision of block HybridKIVASystem. This token is
duplicated at the fork behind this pin and one copy forwards
to operation newStop in which a Java method is executed that
creates a message to inform the other robots that the crossing,
from which the current one is reached, has been vacated.
The token is forwarded to the parameter node sendNewNext
enabling the environment of building block Robot to trigger a
WLAN message to all other robots. The other token copy is
forwarded to the building block NextPosition which contains
the routing algorithm of the robot.

If the robot did not yet reach its destination, in NextPosition
the new path is computed and forwarded via pin nextData
to block HybridKIVASystem. In parallel, a flow leaves pin
sendNewNext and forwards to a set-method for the local
variable data that contains relevant data of the robot and its
environment. Thereafter, a data unit is generated to inform the
other robots of the next crossing to which the robot proceeds.
The data unit is forwarded to parameter node sendNewNext
in order to instantiate the according WLAN communication.
If the robot reached its destination, a flow is issued passing
via parameter node callNewDest to the system control which
might assign a new task to the robot. The answer from the
system control is received via a flow through getNewDest. As
indicated by the filter to all, the new destination is sent to
all robots since each one stores which pallets are currently
transported by a robot.

Messages indicating the current positions and paths of
other robots are received via parameter node rcvNewNext from
where they proceed to operation othersNewOccupation. In the
corresponding Java method, the received data is stored in
variable data. The message is forwarded to building block
NextPosition to be checked if the other robot is on a collision
course with the local one. In this case, a token is sent via
pin nextData to block HybridKIVASystem that causes the

Fig. 6. Spatial Arrangement of Access Points.

emergency stop of the robot as well as the retreat to the
crossing from where the robot left.

V. COMMUNICATION ACCESS RANGES

The warehouse layout discussed in Sect. III-B raises a
number of spatial issues that have to be addressed by the
overall system design:

1) The access points have a limited range and we must
ensure that every point in the storage hall in which
robots may act, is sufficiently covered by access
points. That holds particularly, when unlike to our
assumptions in Sect. III-B, the storage hall contains
obstacles which may distort radio signals.

2) An access point may fail with a certain probability.
In this case, some robots in the coverage area of
the broken access point may be covered by the
neighboring access points while other robots may
experience communication loss. In the former case,
the access points taking over may get saturated. We
verify properties of saturation, spatial aspects and
failure probability to foster risk analysis. To guarantee
high availability of continuous communication access
for all robots, we require this failure probability to be
below a minimal threshold.

3) Robots are moving through the hall and it may be
that several of them are in proximity to each other.
That does not only raise the probability of accidents
between robots but might also increase the commu-
nication delay of the access points in this zone. We
have to find out if there is sufficient bandwidth to
guarantee certain maximum communication delays
even if many robots are close together.

BeSpaceD [4], [5] allows us to establish spatial models
for access point ranges including probabilities for, e.g., fail-
ures. For example, we can define a higher likelihood of a



communication failure if a robot is farer away of the nearest
access point. We assume that the robots keep a perfect, error-
free connection with an access point if they are within a
certain limited radius but that the QoS deteriorates when the
robot is outside this radius. Furthermore, we can formalize
behavioral properties of robots like positions and paths and
also situation-dependent constraints on the channels [9], [13].
Ranges of access points tend to have a circular shape. But we
can also partition the ranges in other shapes like the rectangular
partitioning that is shown in Fig. 6. Here, a square describes an
area fully covered by one access point. Particularly the edges
of a rectangle may also be covered by other access points.

For our robot scenario, we used the BeSpaceD tool to
check the above mentioned consistency and safety properties
regarding the coverage. In particular, we checked consistency
properties, e.g., is there a sufficient coverage for a given
number of robots and safety properties: Given a probability
distribution for communication delays, can we guarantee an
upper bound for communication time between an access point
and a robot? This is closer discussed in Sect. VII.

Below, we list a small code fragment written in Scala for
the specification of a simplified coverage problem consisting
of circular access point ranges for a rectangular factory hall at
a given point of time below:

def coverage =
IMPLIES (AND(Owner ("WLAN_RANGE"),
Prob(1.0)), BIGAND(

OccupyCircle(15,15,40)::
OccupyCircle(35,15,43)::
...
OccupyCircle(65,130,42)::
Nil ));

def factoryhallarea =
IMPLIES (AND(Owner ("FactoryHall"),
Event("Operation")),

OccupyBox(10,10,100,150)
);

The example uses implications for specification. The idea
is that time, event, probability, and ownership combinations
imply space occupation, i.e., space occupation is provided
for a particular aspect (here, the range of an access point
WLAN_RANGE) and the probability that communication is
successful. For mobile components the space occupation may
vary depending on the time. Thus, by using spatiotemporal
models for both the access point ranges and for robots, one
can for instance prove with BeSpaceD whether a robot is
always covered by circles that have probability 1.0. The space
occupation part in the example uses a logical conjunction to
combine different geometric shapes. In the example we use
circles OccupyCircle with different coordinates and radius.

BeSpaceD based checking is done by calling library
functions. An example for an spatial inclusion test is
provided below. It makes use of breaking specifications
(here, a box and circles) down into comparable entities
unfoldInvariant and carrying out the actual inclusion
test inclusionTestsBig:

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

0

100

200

300

400

500

600

time (ms)

de
la

y 
(m

s)

Fig. 7. MSDU Delivery Delay Simulation.

inclusionTestsBig(
unfoldInvariant(

OccupyBox(10,10,200,250))::Nil,
unfoldInvariant(

BIGAND(
OccupyCircle(15,15,10)::

...
OccupyCircle(35,16,12)::
Nil ))::Nil))

VI. SIMULATION RESULTS

The second and third spatial properties mentioned above
can only be proven if the WLAN can guarantee a certain
maximum communication delay. We use Jemula802 [3] to
simulate the IEEE 802.11a physical layer (PHY) at the wave
band of 5 GHz that allows up to a transmission rate of 54 Mb/s.
Each mobile station, i.e., each robot, uses an omnidirectional
antenna to send and receive the control and data packets. We
assume that the maximum packet size of the control data is
200 bytes which corresponds to the fact that the identifier
of the robot as well as information about the reached and
vacated crossings are transported. Jemula802 emits packets at
time intervals following a negative exponential distribution.
For our example, the tool generates a mean load of 0.9 Mb/s.
The packet size varies by a small amount which is uniformly
distributed.

We configured a traffic generator for each mobile robot
under the same access point. The generator emits network
packets in the form of MAC Service Data Unit (MSDU) deliv-
eries [19] and the simulated transmission time corresponds to
the network communication latency for the robots. We plotted
the communication delays simulated for 40 s and simulated
several scenarios with different numbers of robots. Figure
7 shows the result of this simulation when an access point
interconnects 50 mobile robots. Figure 8 depicts the delay
distribution histogram of the simulation results. The simulation
generates 400 MSDU packets, and we used the matlab tool
to get several useful indices: The maximum delay is 535.7
ms and the mean or expected value of the communication
delay is 142.9 ms. Compared with the maximum delay of
281.3 ms, and the expected value 76.7 ms when we consider



0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

Delay (ms) of Communication (400 bins)

C
ou

nt
s

Fig. 8. Communication Delay Distribution.

only 20 robots communicating via the same access point, the
delay shows a significant growth. Thus, while the maximum
communication delay is significant, it is sufficiently below the
maximum acceptable delay time of 800 ms necessary to avoid
an accident between robots. The same result was also found in
the other simulations with different parameters, e.g., numbers
of robots or size of access point ranges. Since the throughput
of a wireless channel is affected by multiple factors, e.g, size
of delivered MSDUs, PHY layer modes used, and bandwidth
offered to the communication channel, the mobile stations are
adjustable according to need.

VII. COMBINING THE RESULTS

Our underlying method combines spatial constraint speci-
fication and solving with network topology and packet traffic
simulation. On the one hand, we use spatial analysis results
to parameterize the network simulation. On the other hand,
we take simulation results including failure probabilities into
a further spatial analysis.

BeSpaceD analyzes the satisfaction of spatial constraints
listed in Sec. V, such as sufficient coverage of the warehouse
by access points so that all robots are always in range. These
analysis results are applied to prime the Jemula simulations.
For example, we determine the topology of base stations
including the number of channels available in a certain area.
In turn, this determines the parameters for and the number of
Jemula runs necessary to cover all relevant use cases.

For further constraint analysis, BeSpaceD takes the Jemula
simulation results as input. For instance, if an access point fails,
the neighboring ones may take over parts of its traffic, but
at the expense of heavier loads. The expected communication
delays can be simulated with Jemula when one or more access
points fail. In BeSpaceD, we can now use these simulation
results together with the probabilities that we assume for the
failures of access points as well as spatial properties (e.g.,
the likelihood that a robot in the zone of a failed access
point is at a place also covered by one of its neighbors) to
verify if the overall probability that all robots can communicate
with each other within a certain period of time, is greater or
equal a certain value p. The value p (e.g., 99.999% that a

data exchange is completed within 800 ms) helps to estimate
the average risk of costs caused by malfunctions resulting
in accidents. BeSpaceD was used to check several scenarios
based on Jemula input.

Based on the risk analysis, one can decide if other pro-
tective mechanisms are necessary, for instance a function in
the robot control logic that continuously checks if an active
connection is available and immediately stops the robot if that
is not the case.

For the third property of Sect. V, i.e., the check if there is
sufficient bandwidth when several robots are in a certain area,
the Jemula simulations are also used. Particularly, we simulate
up to which number of robots the maximum communication
delay is still bearable.

VIII. RELATED WORK

The surveys in [20], [21] show that due to the memory and
time cost, simulation-based verification is popular in industry
and software practice. It is often seen as simple and straight-
forward. In [22], however, Dill states that simulation-based
verification does not cope with increasing system complexity
since it is getting more and more difficult to select suitable test
cases. Since formal verification is sometimes too complex to
be automatically executed by machines and highly laborious
when carried out manually, we seek an approach combining
simulation and formal verification to achieve high quality
software verification results in an acceptable period of time.

For the translation from state machine-based component
models to Petri net analysis, [23] proposed a set of translation
strategies from state machines using the history attribute to a
class of non-autonomous Petri nets named Input-Output Place
Transition Nets (IOPT nets).

There are plenty of network simulation tools available
and used widely in research. Besides Jemula, simulation and
emulation tools for IEEE 802.11 wireless networks also com-
prise ns2 [24], OPNET [2], and NCTUns [25]. Experimental
research using these tools shows that the performance of a
teleoperated robot system is strongly influenced by the quality
of the communication environment [1]. Also in [26], the
benefits of extensive use of wireless technologies in automation
and robotics are discussed.

The IEEE 802.11 series of wireless protocols has several
flavors in application to industrial robotics, among which IEEE
802.11a is considered as the most suitable existing solution.
An extensive survey on wireless sensor network emulators
and simulators is discussed in [27]. In [28], an experimental
assessment of indoor propagation of WiFi signals with access
points as transmitters operating at a frequency of 2.4 GHz is
undertaken. The power density distribution of the access point
antenna is achieved by movable laptop computers comprising
wifihopper software. The measured and simulated results are
compared to get a correlation coefficient factor (⇢), which indi-
cates a good agreement between measurement and simulation
results.

IX. CONCLUSION AND FUTURE WORK

In this paper, we studied and evaluated a method for real-
time control applications of wireless interconnected devices.



Our method takes wireless network response times and spa-
tiotemporal properties into account. We exemplified this by
using mobile robots carrying out tasks in a warehouse. The
ingredients of our method comprise the modeling of the system
software and the simulation and analysis of the local access
point networks integrated with spatial constraint solving.

In the next step, we seek further integration of the system
development with the simulation and verification tools. In par-
ticular, we are aiming at directly encapsulating the simulation
generator into a separate building block in our Reactive Blocks
environment.

ACKNOWLEDGMENT

We express our gratitude to Professor Yuming Jiang at
the Norwegian University of Science and Technology for his
useful suggestions and discussions during the research work.

REFERENCES

[1] Z. Szanto, L. Marton, P. Haller, and S. Gyorgy, “Performance Analysis
of WLAN based Mobile Robot Teleoperation,” in IEEE International
Conference on Intelligent Computer Communication and Processing
(ICCP). IEEE Computer, 2013, pp. 299–305.

[2] X. Chang, “Network simulations with OPNET,” in 31st Conference on
Winter Simulation: Simulation — a Bridge to the Future (WSC’99),
vol. 1. ACM, 1999, pp. 307–314.

[3] L. Berlemann and S. Mangold, Cognitive Radio and Dynamic Spectrum
Access. John Wiley & Sons, 2009, ch. Appendix A: Jemula802.

[4] J. O. Blech and H. Schmidt, “BeSpaceD: Towards a Tool Framework
and Methodology for the Specification and Verification of Spatial Be-
havior of Distributed Software Component Systems,” arXiv.org, Tech.
Rep., 2014.

[5] ——, “Towards Modeling and Checking the Spatial and Interaction
Behavior of Widely Distributed Systems,” in Improving Systems and
Software Engineering Conference, 2013.

[6] F. A. Kraemer, “Engineering Reactive Systems: A Compositional and
Model-Driven Method Based on Collaborative Building Blocks,” Ph.D.
dissertation, Norwegian University of Science and Technology, 2008.

[7] F. A. Kraemer, V. Slåtten, and P. Herrmann, “Tool Support for the Rapid
Composition, Analysis and Implementation of Reactive Services,” Jour-
nal of Systems and Software, vol. 82, no. 12, pp. 2068–2080, 2009.

[8] F. Han, P. Herrmann, and H. Le, “Modeling and Verifying Real-
Time Properties of Reactive Systems,” in 18th International Conference
on Engineering of Complex Computer Systems (ICECCS). IEEE
Computer, 2013, pp. 14–23.

[9] P. Herrmann, J. O. Blech, F. Han, and H. Schmidt, “A Model-based
Toolchain to Verify Spatial Behavior of Cyber-Physical Systems,” in
2014 Asia-Pacific Services Computing Conference (APSCC), 2014.

[10] F. A. Kraemer and P. Herrmann, “Automated Encapsulation of UML
Activities for Incremental Development and Verification,” in Model
Driven Engineering Languages and Systems (MoDELS), ser. LNCS
5795. Springer-Verlag, 2009, pp. 571–585.

[11] ——, “Reactive Semantics for Distributed UML Activities,” in Joint
WG6.1 International Conference (FMOODS) and WG6.1 International
Conference (FORTE), ser. LNCS 6117. Springer-Verlag, 2010, pp.
17–31.

[12] F. A. Kraemer, P. Herrmann, and R. Bræk, “Aligning UML 2.0 State
Machines and Temporal Logic for the Efficient Execution of Services,”
in 8th International Symposium on Distributed Objects and Applications
(DOA06), ser. LNCS 4276. Springer-Verlag, 2006, pp. 1614–1632.

[13] F. Han, J. O. Blech, P. Herrmann, and H. Schmidt, “Towards Ver-
ifying Safety Properties of Real-Time Probability Systems,” in 11th
International Workshop on Formal Engineering approaches to Software
Components and Architectures (FESCA). EPTCS, 2014.

[14] J. Bengtsson, F. Larsson, P. Pettersson, W. Yi, P. Christensen, J. Jensen,
P. Jensen, K. Larsen, and T. Sorensen, “UPPAAL: A Tool Suite for
Validation and Verification of Real-Time Systems,” in Hybrid Systems
III, ser. LNCS 1066. Springer-Verlag, 1996, pp. 232–243.

[15] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of Probabilistic Real-Time Systems,” in 23rd International Conference
on Computer Aided Verification (CAV’11), ser. LNCS 6806. Springer-
Verlag, 2011, pp. 585–591.

[16] F. Han and P. Herrmann, “Modeling real-time system performance with
respect to scheduling analysis,” in 6th IEEE International Conference
on Ubi-Media Computing. IEEE Computer, 2013, pp. 663–671.

[17] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed
Coordination Function,” IEEE Journal on Selected Areas in Commu-
nication, vol. 18, no. 3, pp. 535–547, 2006.

[18] F. A. Kraemer, R. Bræk, and P. Herrmann, “Synthesizing Components
with Sessions from Collaboration-Oriented Service Specifications,” in
SDL-Forum, ser. LNCS 4745. Springer-Verlag, 2007, pp. 166–185.

[19] S. Mangold, S. Choi, G. R. Hiertz, O. Klein, and B. Walke, “Anal-
ysis of IEEE 802.11e for QoS Support in Wireless LANs,” Wireless
Communications, vol. 10, no. 6, pp. 40–50, 2003.

[20] J. Jose and S. A. Basheer, “A Comparison of Assertion Based Formal
Verification with Coverage driven Constrained Random Simulation,
Experience on a Legacy IP,” Wipro Technologies Reports, Tech. Rep.,
2009.

[21] W. K. Lam, Hardware Design Verification: Simulation and Formal
Method-Based Approaches. Prentice Hall, 2005.

[22] D. L. Dill, “What’s between simulation and formal verification?” in
Design Automation Conference, 1998, pp. 328–329.

[23] R. Pais, L. Gomes, and J. P. Barros, “From UML state machines to Petri
nets: History attribute translation strategies,” in 37th Annual Conference
on IEEE Industrial Electronics Society (IECON 2011), 2011, pp. 3776–
3781.

[24] T. Issaryakul and E. Hossain, Introduction to Network Simulator NS2,
2nd ed. Springer-Verlag, 2012.

[25] S. Y. Wang and C. C. Lin, “NCTUns 5.0: A Network Simulator for
IEEE 802.11(p) and 1609 Wireless Vehicular Network Researches,” in
68th IEEE Vehicular Technology Conference. IEEE Computer, 2008,
pp. 1–2.

[26] R. Calcagno, F. Rusina, F. Deregibus, A. S. Vincentelli, and
A. Bonivento, “Application of Wireless Technologies in Automotive
Production Systems,” VDI Berichte, vol. 1956, pp. 57–58, 2006.

[27] M. Imran, A. M. Said, and H. Hasbullah, “A Survey of Simulators,
Emulators and Testbeds for Wireless Sensor Networks,” in International
Symposium in Information Technology (ITSim), vol. 2, 2010, pp. 897–
902.

[28] B. M. Abaoy and K. M. Quboa, “Environmental Safety Standards
and WLAN Indoor Propagation,” in 20th Telecommunications Forum
(TELFOR), 2012, pp. 13–16.


