TOOL-ASSISTED SECURITY
ASSESSMENT OF DISTRIBUTED
APPLICATIONS

Peter Herrmann, Lars Wiebusch, and Heiko Krumm
Universitat Dortmund, FB Informatik, LS IV
D - 44221 Dortmund, Germany

Abstract The CORBA security services support the flexible provision of security
features. Their employment, however, has to be tailored to the assets
and threats of a system. We relate the corresponding analysis and design
of CORBA systems with traditional security analysis, risk assessment,
and countermeasure planning as it is in the scope of information system
security standards. Since security analysis tends to be difficult and
error-prone, we combine that proposal with our object-oriented security
analysis and modeling approach. It employs object-oriented modeling
techniques and tool-assistance in order to facilitate the analysis and
assure its quality even in case of extensive systems.

Keywords: Security analysis, risk assessment, Common Criteria, CORBA security
services, object-oriented security analysis

1. INTRODUCTION

The growing importance of the CORBA platform (OMG, 1997) and
the existing needs for application security analysis and design plead for
the provision of an approach which is devoted to the efficient security
analysis of CORBA-based applications. In particular the objectives ex-
pressed in the appendix E of the CORBA security services specification
(OMG, 2000) aim to the assurance of trustworthiness of information
systems. They should be linked with the general international security
certification standard conceptions, in particular with the notions and
procedures of the Common Criteria (ISO/IEC, 1998). Analysis and de-
sign of secure systems, however, is usually expensive and laborious since
well-educated specialists have to analyze the systems in detail under

consideration of recommendations and standards (e.g., baseline protec-
tion cf. BSI, 1999 or certified levels cf. SOGIS, 1991; ISO/IEC, 1998).

2

Moreover they have continuously to consult the rapidly growing security
information bases (e.g., CERT, 2001).

Meanwhile many procedures for the corresponding analysis and de-
sign of secure systems were proposed (cf. overview in Baskerville, 1993).
They comprise series of phases devoted to system identification, asset
valuation and security objective definition, weakness and threat identifi-
cation, assessment of risks, and finally planning, design, and evaluation
of suitable countermeasures. In Herrmann and Krumm, 2001 we pro-
posed the new approach of object-oriented security analysis. While exist-
ing approaches are based on classical data base and information system
techniques like dictionaries, data repositories, and decision trees, we ap-
ply explicit object-oriented modeling and enhanced object-oriented tech-
niques. Our tool adopts the conceptions of object-oriented design tools
of computer-aided software engineering and supports the comfortable in-
teractive design of graphical model definitions. In fact, our tool re-uses
open-source modules of the Argo project (TIGRIS, 2000). We represent
system and security objectives by means of an object instance diagram.
Special support results from libraries of predefined object classes which
model system component types and define basic methods for automated
class-specific analysis and evaluation.

The automated threat analysis and countermeasure introduction of
the tool is mainly based on the conception of graph rewrite systems
(cf. Bardohl et al., 1999). A rewrite system consists of a set of rewrite
rules where a rule is a pair of graph patterns, a pre-pattern and a post-
pattern. Moreover an application condition and effect functions can
belong to a rule. A rule can be applied to a graph if an instance of its
pre-pattern can be found in the graph. The application replaces the in-
stance of the pre-pattern by a corresponding instance of the post-pattern.
The patterns are object configuration patterns. So, pre-patterns can
correspond to scenarios which come along with vulnerabilities and post-
patterns can augment those scenarios with representations of threats.

In the sequel we report on the adaption of class libraries and rewrite
rules to the security analysis of CORBA based distributed applications.

2. OBJECT-ORIENTED ANALYSIS

ISO/IEC published a set of common criteria (CC) to standardize se-
curity evaluations of IT systems (ISO/IEC, 1998). Moreover it provides
a methodology for detecting vulnerabilities and for developing counter-
measures in order to reduce the risks. Fig. 1 delineates the main notions
of the CC. Computer systems and system components are assets for their
owners. The assets are exposed to various security risks since they con-

Tool-assisted Security Assessment of Distributed Applications 3

Threat agents

Owners

impose give rise to Confidentiality || Integrity || Availability
Risk Risk Risk
Countermeasures Threats
reduce exploit leading to
own ‘ Risk
Vulnerabilities oading o value : {low,medium,high}
regarding
Asset

regarding

Figure 1 Security classes and associations

tain vulnerabilities which can be utilized by malicious threat agents. To
minimize the risks, asset owners impose countermeasures reducing vul-
nerabilities. The countermeasures, however, may contain vulnerabilities
themselves which have to be reduced by other countermeasures.

Our approach supports the CC compliant system identification by a
library of asset classes like networks, stations, applications, and data as
well as associations between the classes. The tool supports the creation
of asset and association instances resulting in a UML object diagram
of the system. Thereafter the assets have to be evaluated in order to
define the requirements for protection. According to the potential dam-
age each asset is assigned with either one of the four security levels of
baseline protection mazimum, high, moderate, and low or with one of
seven evaluation assurance levels introduced in the CC. One can assign
different security levels for an asset with respect to each of the three
security objectives confidentiality, integrity, and availability.

The next phase identifies firstly vulnerabilities and thereafter threats
on the assets. It is supported by libraries of vulnerability classes and
threat classes. Moreover two rewrite rule libraries exist. One detects and
documents vulnerabilities, the other adds corresponding threats. The
interactive valuation of the seriousness of threats concludes the phase.

Then risks are modeled by objects augmenting pairs of assets and vul-
nerabilities. Moreover, the value of a risk is calculated from the security
level of the asset and the seriousness of the vulnerability (cf. Courtney,
1977). That risk assessment is again supported by a class and a rewrite
rule library. An interactive classification of risks follows and decides if a
risk is not acceptable and must be reduced by countermeasures.

A countermeasure class library and a countermeasure introduction
rewrite rule set support the last phase. Attributes of countermeasure
objects describe protection levels and prizes which influence the auto-

[SEMBA: Foot view: CORBA model - [O] =]
File Edit View Arrange Model SecAnalysis

U EEENNAREEE

Q, | P L ——7 ™ |
| 0—C) “
> - LY " 4 | =
Privwcipal CORBACst Stk OFRE Entity 1 Station 1
-
ORB 7!7!
Transfer
TCPTP Hebarork
= 3

[c)} :I 3/

ol & =

Sheleton ORE Brtity 2 Station 2 '_

Figure 2 Object model of the CORBA architecture

mated selection of measures and the computation of achieved security
levels. Since countermeasures may have vulnerabilities themselves, the
analysis has to iterate the phases in order to check the extended system.

3. ANALYSIS OF CORBA APPLICATIONS

In order to enable security analysis according to the CORBA security
services specification (OMG, 2000), we extended the set of system asset
classes by CORBA-specific components like client and target objects,
stubs, skeletons, and ORB components. Moreover classes were added
specifying countermeasures like principal-authenticator objects or cre-
dential objects. Fig. 2 depicts an UML object diagram of a CORBA-
based system. Here, the CORBA client and target objects and the
principal accessing the client are described by the objects Client, Tar-
get, and Principal while the objects Stub and Skeleton model the access
points of the IDL-based interface. The ORB specification consists of the
underlying hardware platform (Station 1, Station 2, Network) and of the
ORB software components (ORB Entity 1, ORB Entity 2).

Next, we will sketch the security analysis of a small part of the system.
In a first step, we evaluate the client object and assume that a damage of
the client object caused by a malicious attack may lead to a considerable
disruption of the institution. Therefore, according to BSI, 1999, we
evaluate it with the security level High.

Thereafter the tool identifies vulnerabilities of the client object which
may cause threats. With respect to user access, objects may be vul-
nerable in two manners: At first, an object is not able to recognize the
true identity of a principal which may be exploited by masquerade based

Tool-assisted Security Assessment of Distributed Applications 5

attacks. At second, an object has to enable access to system resources
in order to fulfill given privileges. That may be utilized for an extension
of the granted privileges. The tool therefore assigns the two vulnera-
bility objects Inability to recognize true identity and Utilization of not
granted privileges to Client. Likewise threat objects are added describing
threats based on wrong identities or exceeded privileges. The seriousness
of the vulnerabilities is rated to Mazimum since Client is not protected
by countermeasures yet.

In the next step the tool assesses the risks for Client. The confidential-
ity, integrity, and availability risks are calculated based on the security
level High of the object Client and the seriousness values Mazimum of
the vulnerabilities. By using a special risk matrix (cf. Herrmann and
Krumm, 2001), the tool calculates the value High for all three risks of
the client. Since these risks are unbearable, suitable countermeasures
have to be imposed. Therefore the security analysis is continued.

The CORBA security specification (OMG, 2000) intends the use of
a principal-authenticator object and credential objects to provide au-
thentication and access control. The principal-authenticator object au-
thenticates principals requesting access to a CORBA system resource
by authentication methods like passwords, smart cards, or biometric
systems. Moreover, it maintains an access control list describing the
privileges of the particular principal. The principal-authenticator object
creates credential objects which can be forwarded to objects the princi-
pal wants to access. A credential object testifies that the principal was
authenticated by the principal-authenticator object and contains infor-
mation enabling the accessed object to check the principal’s privileges
for compliance with its own security policy. If an object does not con-
tain security related functions, the checks are performed by the ORB.
In our example, the tool introduces a principal-authenticator object and
credential objects to reduce the two vulnerabilities of the client object.
Moreover, it has to decide which authentication method to impose. Since
password-based authentication systems offer too weak protection for an
asset facing a high risk, the tool selects a smart card system which is
the least expensive of the remaining alternatives. Finally, the tool as-
signs the security level High to the principal-authenticator object and to
the credential objects since these objects guard an asset also rated with
High.

Since the principal-authenticator and credential objects carry vulner-
abilities themselves which intruders may use to reduce their protection,
a second iteration of the security analysis is performed for the extended
system consisting of the original CORBA example and the added safe-
guards. This iteration leads to the introduction of unique signatures

6

and timestamps for credentials in order to protect them against attacks
during network transfer.

4. CONCLUDING REMARKS

We considered the needs for standard compliant security assessment
of distributed CORBA-based applications and reported on the princi-
ples of a new approach for that purpose. It combines object-oriented
modeling of CORBA security issues and Common Criteria. Moreover it
focuses on tool-assistance and automation. Current work is devoted to
the enhancement of the libraries and to practical experiments. Future
work aims to the integration of support for the second major task in the
provision of secure systems, namely proper operation and management
of the security components. It will utilize results from current work on
general model-based security management (cf. Liick et al., 2001).

References

Bardohl, R., Taentzer, G., Minas, M., and Schiirr, A. (1999). Application of graph
transformation to visual languages. In Handbook on Graph Grammars, Volume 2,
Chapter 1. World Scientific.

Baskerville, R. (1993). Information Systems Design Methods: Implications for Infor-
mation Systems Development. ACM Computing Surveys, 25(4):375-414.

Booch, G., Rumbaugh, J., and Jacobson, 1. (1999). The Unified Modeling Language
User Guide. Addison-Wesley Longman.

BSI (1999). IT Baseline Protection Manual. Bundesamt fiir Sicherheit in der Infor-
mationstechnik, www.bsi.de.

CERT (2001). Current information bases and advisories. www.cert.org.

Courtney, R. (1977). Security Risk Assessment in Electronic Data Processing. In
AFIPS Conf. Proc. of the National Computer Conference /6, pages 97-104, Ar-
lington. AFIPS.

Herrmann, P. and Krumm, H. (2001). Object-oriented security analysis and modeling.
In Proc. 9th International Conference on Telecommunication Systems, pages 21—
32, Dallas. ATSMA, IFIP.

ISO/IEC (1998). Common Criteria for Information Technology Security Evaluation.
ISO/IEC. International Standard ISO/IEC 15408.

Liick, I., Schéfer, C., and Krumm, H. (2001). Model-based Tool-Assistance for Packet-
Filter Design. In Policies for Distributed Systems and Networks, LNCS 1995, pages
120-136, Bristol. IEEE, Springer-Verlag.

OMG (1997). A Discussion of the Object Management Architecture. Object Manage-
ment Group (OMG).

OMG (2000). Security Services Specification, Version 1.5. Object Management Group
(OMG), CORBA.

SOGIS (1991). Information Technology Security Evaluation Criteria (ITSEC). EC
advisory group SOGIS.

TIGRIS (2000). ArgoUML Vision. Tigris. argouml.tigris.org/vision.html.

