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Abstract. We study the problem of efficient deployment of software components
in a service engineering context. Run-time manipulation, adaptation and compo-
sition of entities forming a distributed service is a multi-faceted problem chal-
lenged by a number of requirements. The methodology applied and presented can
be viewed as an intersection between systems development and novel network
management solutions. Application of heuristics, in particular artificial intelli-
gence in the service development cycle allows for optimization and should even-
tually grant the same benefits as those existing in distributed management archi-
tectures such as increased dependability, better resource utilization, etc. The aim
is finding the optimal deployment mapping of components to physically available
resources, while satisfying all the non-functional requirements of the system de-
sign. Accordingly, a new component deployment approach is introduced utilizing
distributed stochastic optimization.

1 Introduction

Today, computer applications tend to be highly distributed and dynamic. In addition,
they are executed on hardware systems that change their topology and performance dy-
namically. This calls for flexible methods to deploy the software components realizing
a networked application on the available hosts to achieve preferably high performance
and low cost levels.

By such a software component we mean an executable stand-alone package of soft-
ware that has a well-defined interface and can communicate with other components via
message exchange. Furthermore, we define a service as a collaboration of distributed
components running in a (possibly also highly distributed) hardware environment on
different hosts, using distinct network elements for interconnection. A specific service
can be observed from different views. We investigate the problem of efficient compo-
nent deployment from the view of the service creator who is in most cases the provider
of the service as well. We do so based on the starting point we use for our investigation,
i.e. we start from a service specification, from a model that is a product of the service
designer. Usually the parameters we are interested in are performance and cost effec-
tiveness, which are both substantial from the provider’s perspective if it comes to the
deployment of a new service.

The problem of cost-efficient component deployment is challenged by multiple di-
mensions of Quality of Service (QoS), or in other words, non-functional requirements



that need to be taken into account. To name a few there might be a fluctuation in the
number of users of the service deployed who might also have arbitrary utility functions
for the service as well as different usage scenarios. Additionally, the QoS requirements
identified might change over time, the system designed might provide several services.
This complicated combination of factors forms the basis of the problem we aim to
solve. Namely, finding the optimal deployment mapping of components to physically
available resources, while satisfying all the non-functional requirements of the system
design.

The resulting deployment mapping has a large influence on the QoS that can and
will be provided by the system. The most basic example of improving QoS by choos-
ing a better deployment architecture is to consider only the latency of the service. The
easiest way to satisfy latency requirements is to identify and deploy the components
that require the highest volume of interactions onto the same resource, or to choose re-
sources that are at least connected by links with sufficiently high capacity.

Several approaches have been followed to solve this problem, e.g. binary integer
programming [1] or graph cutting [2]. Usually, complexity becomes NP-hard using
these methods with more than 2-3 hosts. Others try to capture constraints and restrict
the solution space [3]. However, due to the exact solution algorithms computational
complexity is still an issue. What is even more restrictive in these approaches is that
they do not attempt to work with more than one QoS dimension at a time, while our
objective is to deal with vectors of QoS properties in one run. Furthermore, we aim to
be able to aid the deployment of several different services at the same time using the
same framework.

Approximative solutions are devised by Malek et al., such as greedy algorithms,
genetic programming for example in [4]. Malek et al. however approaches the deploy-
ment problem from the user’s perspective by maximizing an overall utility function. On
the contrary, we aim to investigate the deployment problem from the service provider’s
perspective. Besides, autonomous replication management is targeted by Meling in a
framework based on group communication systems [5]. Widell et al. discuss an alterna-
tive solution based on a stochastic optimization method called the Cross Entropy (CE)
Method [6].

Generally, we require a method that is capable to adapt to changes in the environ-
ment in a highly efficient way. Also, as module allocation problems are proven to be
NP-complete (cf. [7]), except in some special cases, heuristics are needed for providing
an efficient solution. Accordingly, we chose a bio-inspired system, swarm intelligence
as a basis for our method to solve the deployment problem in a fully distributed man-
ner. As we omit any centralized database or building block and propose to use the
analogy of pheromones for storing information in a distributed way the logic presented
is robust and highly adaptive with respect to changing QoS provided by the service ex-
ecution platform. Eventually, our aim is to develop a method for run-time component
(re-)deployment support that allows execution of services within the allowed region of
external parameters defined by the service requirements.

The remainder of this paper is organized as follows. The next section will introduce
our system model and position our work. Sect. 3 briefly presents the Cross-Entropy Ant
System (CEAS) that is used throughout the paper as the basis of our heuristic optimiza-



tion method. Sect. 4 provides our solution to the target scenario and a summary of our
algorithm. Sect. 5 comes with a more tangible example and compares our results to
previous solutions. In the last section we conclude and touch upon our future work.

2 Support for Deployment Mapping

Our deployment approach fits to the engineering method SPACE which is devoted to
the rapid and correct engineering of distributed services [8]. As depicted in Fig. 1(a), in
the process of developing a service, one creates first a purely functional service model.
This specification is collaboration-oriented, i.e., the overall service specification is not
composed from descriptions of the physical software components realizing the service
but from models of distributed sub-functionalities which — in interaction — fulfill the
complete service behavior. This specification style enables the development of service
models by reusing building blocks from domain specific model libraries to a much
higher degree than it would be possible when applying component-based descriptions
(e.g., [9]). As modelling language, we use UML collaborations and activities.

After performing correctness checks on the service model (see [10]), it is trans-
formed to a component-oriented design model by a model transformation tool [11]
which is specified by UML state machines. In the next step, code generators create ex-
ecutable Java code from the design model enabling a fully automated transformation
of collaboration-oriented service models to executable programs. This process is well
described in [12].
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Fig. 1. Development with SPACE and the deployment support

For the efficient deployment of the implementation, we extend the development cy-
cle as shown in Fig. 1(b). The service models are amended by high-level non-functional
(NF) goals defining the non-functional requirements (NFR) of a service in a rather
abstract manner. In parallel with the transformation from the service to the design mod-
els, these NF goals are refined into requirement profiles specifying the non-functional
requirements of the service components. Moreover, a network profile is added, thus
required and provided properties are collected describing the system and its target envi-
ronment. Based on these inputs our deployment logic can be launched with the profiles
specifying the goals and the net-map specifying the search space.

For capturing QoS requirements that are relevant to our system, we follow the colla-
boration-oriented style and capture NFRs in design time. NFRs usually represent qual-
ities such as security, performance, availability, portability, etc. In fact, in our view the



deployment logic should be able to handle any properties of the service, as long as we
can provide a cost function for the specific property. In that matter we will exploit the
advanced scalability of CEAS and the method of pheromone sharing.
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Fig. 2. Collaboration with NFRs

In Fig. 2 a simple example of a collaboration between two components is depicted
enriched with NFRs for both the components and for the collaboration binding them.
This basic collection of requirements contains two types of cost values, an execution and
a communication cost. The execution cost is added to the local cost of a node that con-
tains the particular component after deployment. The communication cost is imposed
on the connection between the two components participating in the collaboration. This
simple example of collaboration-oriented specification and capturing of requirements
will be illustrated in the example in Sect. 5.

Existing component deployment strategies and solutions use various centralized
databases and decision logics. Relying on a fully centralized logic requires the bur-
den of keeping the central database constantly updated and at the same time introduces
a single point of failure in the system. Moreover, a performance bottleneck may arise at
the node storing the central database and accommodating the decision logic both com-
munication wise and storage wise.

In a distributed cooperative algorithm (semi-)autonomous agents cooperate to a-
chieve certain common goals. Since in a distributed environment autonomous agents
do not have an overview of the system as a whole, their decisions have to be based on
information that is available locally to the place where they reside. To enable cooper-
ation between agents, some sort of shared memory is required at each place an agent
can visit. In our deployment logic, the information is distributed across all the nodes
participating in the deployment. In this way, we achieve a completely robust, scalable
and fault tolerant mechanism. Furthermore, to achieve a complete solution, our aims
are twofold. First, the logic shall be able to obtain an initial deployment mapping based
on the service model. Second, once the service is running, the logic shall be capable of
monitoring online and execute the necessary changes to satisfy the requirements it is
launched with.

The objective is to find the optimal, or at least a satisfactory, mapping in reasonable
time between a number of component instances c, onto nodes n. A component, ci ∈ C
(C is the set of components available for (re-)deployment) can be a client process, or
a service process, while a node, n ∈ N (N is the set of nodes) can be a transit node,
e.g. a traditional IP router, a server node, which is capable of accommodating a service
component, a client node, which is an aggregation point for client components, or a
mixed node that can accommodate both client and service components.

The cost function F (M) of the mapping M : C → N should be minimized under
the constraints given by the mapping scopes Ri ⊆ N for each component instance i. Ri



is determined by the intersection of access restrictions, service provider policies (e.g.
service level agreements of ISPs), provided and requested capabilities (soft costs) and
provided and requested capacity requirements (hard costs, e.g. bandwidth limitations).
Attached components, i.e. components restricted to a specific node will have an Ri set
consisting of a single node, thus reducing the search space.

Fig. 3. Component mapping example

An illustration of the model can be found in Fig. 3. Suppose we develop a service,
Servicek, which is implemented by three service components C = {c1, c2, c3} and the
service is expected to be accessed by two distinguishable set of clients. Besides the re-
quirement profiles, the service provider must provide the net-map for the decision logic
as well, specifying the available nodes and links. Thus, the set of nodes becomes N =
{n1, n2, . . . , n8}. Client nodes in this case are considered to be aggregation nodes, i.e.,
they represent a single point of access to the network for the clients of the service, with
a different meaning from the traditional notion of node. So, the designer can specify
where in the provided net-map the clients are located and can insert additional param-
eters describing the clients of the service, such as the expected amount of clients, the
expected service demand, etc. as NFRs. Constraints that will influence the optimal de-
ployment can be assigned to nodes and links. For links, constraints appear as the costs
of using the particular link for connection between two components that need to inter-
act. Constraints assigned to nodes, for instance, can represent memory sizes restricting
placement of component instances to a place. Besides, node properties can be interre-
lated, i.e., for example if a mixed type node (n6) accommodates a service component it
can influence the rest of the properties, e.g. lower the amount of allowed clients at the
node by modifying the memory constraint.

Next, we introduce the stochastic optimization background, which we use for pro-
viding solutions to the component deployment and redeployment problem.

3 Cross Entropy Ant System

The deployment problem in this paper is approached by use of a distributed, robust
and adaptive routing system called the Cross Entropy Ant System (CEAS) [13]. The
CEAS is an Ant Colony Optimization (ACO) system as introduced by Dorigo et al.



[14], which is a multi-agent system for solving a wide variety of combinatorial opti-
mization problems where the agents’ behavior are inspired by the foraging behaviour of
ants. Examples of successful application in communication system are load-balancing
(Schoonderwoerd et al. [15]), routing in wired networks by AntNet [16], and routing
in wireless networks by AntHocNet [17]. The key idea is to let many agents, denoted
ants, iteratively search for the best solution according to the problem constraints and
cost function defined. Each iteration consists of two phases; the forward ants search
for a solution, which resembles the ants searching for food, and the backward ants that
evaluate the solution and leave markings, denoted pheromones, that are in proportion
to the quality of the solution. These pheromones are distributed at different locations
in the search space and can be used by forward ants in their search for good solutions;
therefore, the best solution will be approached gradually. To avoid getting stuck in pre-
mature and sub-optimal solutions, some of the forward ants will explore the state space
freely ignoring the pheromone values.

The main difference between the ant based systems is the approach taken to evalu-
ate the solution and update the pheromones. For example, AntNet uses reinforcement
learning while CEAS uses the Cross Entropy (CE) method for stochastic optimization
introduced by Rubinstein [18]. The CE method is applied in the pheromone updating
process by gradually changing the probability matrix pr according to the cost of the
paths. The objective is to minimize the cross entropy between two consecutive samples
pr and pr−1. For a tutorial on the method, [19] is recommended.

The CEAS has demonstrated its applicability through a variety of studies of differ-
ent path management strategies, such as shared backup path protection (SBPP) [20],
p-cycles [21], resource search under QoS constraints [22], and adaptive paths with
stochastic routing [23]. Implementation issues and trade-offs, such as management
overhead imposed by additional traffic for management packets and recovery times
are dealt with using a mechanism called elitism [24] and self-tuned packet rate control
[25], [26]. Additional reduction in the overhead is accomplished by pheromone shar-
ing [27] where ants with overlapping requirements cooperate in finding solutions by
(partly) sharing information.

In this paper, the CEAS is applied to obtain the best deployment of a set of com-
ponents, C, onto a set of nodes, N. The nodes are physically connected by links used
by the ants to move from node to node in search for available capacities. A given de-
ployment at iteration r is a set Mr = {mn,r}n∈N, where mn,r ⊆ C is the set of
components at node n at iteration r. In CEAS applied for routing the path is defined
as a set of nodes from the source to the destination, while now we define the path as
the deployment set Mr. The cost of a deployment set is denoted F (Mr). Furthermore,
in the original CEAS we assign the pheromone values τij,r to interface i of node j at
iteration r, while now we assign τmn,r to the component set m deployed at node n at
iteration r. In Sect. 4 we describe the search and update algorithm in details.

In traditional CEAS applied for routing and network management, selection of the
next hop is based on the random proportional rule presented below. In our case how-
ever, the random proportional rule is applied for deployment mapping. Accordingly,
during the initial exploration phase, the ants randomly select the next set of components
with uniform probability 1/E, where E is the number of components to be deployed,



i.e. the size of C, while in the normal phase the next hop is selected according to the
random proportional rule matrix pr = [pmn,r], where

pmn,r =
τmn,r∑

l∈Mn,r
τln,r

(1)

The pheromone values in (1) are determined considering the entire history of cost val-
ues Fr = {F (M1), . . . , F (Mr)} up to iteration r. The backward ants update the
pheromone values at the nodes where one or more components in Mr are deployed.
The pheromones are updated according to

τmn,r =
r∑

k=1

I(l ∈ Mn,r)β
∑r

x=k+1 I(x∈Mk)H(F (Mk), γr) (2)

where I(x) = 1 when x is true and 0 otherwise. H(f, γ) = e−f/γ is the performance
function and β ∈ (0, 1) is the weight parameter, or in other words the memory fac-
tor in the auto-regressive formulation of the performance function. The auto-regressive
formulation hr(γr) = βhr−1(γr) + (1 − β)H(F (Mr), γr) is the key in CEAS for
avoiding any centralized control and synchronized iterations. This reformulation allows
the cost value F (Mr) to be calculated immediately after a single ant ends its forward
movement, i.e. the ant manages to find a mapping for all the components originally
assigned to it. Now, iteration r represents the total number of updates, in other words,
the total number of backward ants returned. The reformulated performance function,
hr(γr) can be approximated by

hr(γr) ≈ 1− β

1− βr

r∑

i=1

βr−ie−
F (Mi)

γr (3)

see [13]. Thus, a digest of the search history is applied, where older cost values gradu-
ally disappear, i.e. evaporate. This evaporation is achieved using the memory factor β
that provides geometrically decreasing weights for the output of the performance func-
tion. The control parameter, γr can be determined by minimizing γ subject to h(γ) ≥ ρ,
where ρ is the search focus parameter (typically 0.05 or less). For more details about
the parameters and solutions to (2) and (3) see [28].

4 Application of Ant-based deployment mapping

The deployment logic can be considered as an optimization task continuously executed
by independent ant-like agents in the target network hosting the service we model. The
continuous ant behavior contributes to the advantage of our approach, namely that the
same logic can be used for an initial static mapping and for an online redeployment
mechanism.

At first, every ant is assigned a task of deployment of C components. Thereafter,
ants are started continuously and proceed with a random-walk on the provided net-map
randomly selecting each next node to visit. Behavior at a visited node depends on if the
ant is an explorer or a normal ant. A normal ant selects a subset of C governed by the



pheromone levels at the node it currently resides in and stores its selection mn,r in a
mapping list Mr, which is carried along by the ant. Similarly, an explorer ant selects a
subset mn,r based on a random decision instead of the distributed pheromone database.
Explorer ants are used for exploring the available net-map, both initially and later as
well for covering up fluctuations in the network, e.g. new nodes appearing. More pre-
cisely, the effects of exploration are twofold. First, as optimization starts explorer ants
are used to cover up a significant amount of the problem space via random sampling.
The required number of initial exploration iterations depend on the problem size, but it
can be estimated by sampling the pheromone database size. After that, the normal phase
starts, in which case only a fraction of the ants generated are flagged as explorers, thus
allowing for the required responsiveness to changes in the environment, while normal
ants are focusing on finding the optimum.

Once an ant has deployed all its assigned components the resulting mapping Mr

can be evaluated by applying the cost function F (Mr) derived from the service specifi-
cation. A more concrete example on F (Mr) can be found in Sect. 5. Once the mapping
is evaluated, the ant goes back along the nodes in its path that has been stored in the
hop-list Hr and updates pheromone values according to Equation (2) corresponding to
the pairs of component sets and nodes it has selected during its journey. After that, a
new iteration starts as a new ant is emitted, unless a stopping criteria is met. A stop-
ping criteria can be constructed by observing the moving average of the evolving cost
value, i.e. detecting convergence to a suggested solution. Another option is sampling
the size of the distributed pheromone database during an iteration. After convergence a
very strong pheromone value will emerge in the database, while inferior solutions will
evaporate. The described process is summarized in Algorithm 1.

Algorithm 1 Deployment mapping of C = {c1, . . . , cE} component instances
1. Select the initial node n ∈ N where the search will start randomly.
2. Select a set of components mn,r ⊆ C which satisfies n ∈ R for every ci ∈ mn,r according

to the random proportional rule (normal ant), Equation (1), or in a totally random manner
(explorer ant). If such a set cannot be found, goto step 5.

3. Update the ant’s deployment mapping set, Mr = Mr + {mn,r}.
4. Update the set of components to be deployed, C = C−mn,r .
5. Select next node, n randomly and add n to the hop-list Hr = Hr + {n}.
6. If C 6= ∅ then goto 2., otherwise evaluate F (Mr) and update the pheromone values, Equation

(2) corresponding to the {mn,r} ∈ Mr mappings going backwards along Hr .
7. If stopping criteria is not met then increment r, initialize and emit new ant and goto 1.

Generally, we have a trade-off between convergence speed and solution quality.
Nevertheless, while deploying a service in a dynamic environment, which is our goal, a
pre-mature solution that satisfies both functional and non-functional requirements often
suffices. Thus the optimality requirement can be relaxed while taking restoration time
requirements into consideration. Besides, it has been proven that ACO systems do in
fact find the optimum at least once with probability close to one and when this has hap-
pened they converge to the optimum in a finite number of iterations. Since CEAS can



be considered as a subclass of ACO the optimal deployment mapping will eventually
emerge.

5 Analysis of a Problem

As a representative example, we consider the scenario originally from Efe dealing with
heuristical clustering of modules and assignment of clusters to nodes [29]. This sce-
nario has also been investigated by Widell et al., and a comparison to results of several
other authors can be found in [6]. This scenario, even though artificial and may not be
tangible from a designer’s point of view, is sufficiently complex to test our deployment
logic. The problem is defined in our approach as a collaboration of E = 10 compo-
nents (labelled c1 . . . c10) to be deployed and K = 14 collaborations between them
kj , j = 1 . . . K, as depicted in Fig. 4. We consider three types of requirements in this
specification. Besides the execution and communication costs, we have a restriction on
components c2, c7, c9, regarding their location. They must be bound to nodes n2, n1, n3,
respectively.
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Fig. 4. Collaborations and components in the example scenario

Furthermore, to be able to use similar mechanisms for specifying the net-map for
the deployment logic, we propose to use the same object paradigm UML employs to
reduce complexity. Thus, we specify the underlying physical map of hosts as a diagram,
depicted in Fig. 5.
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Fig. 5. The target network of hosts in the example scenario

In this example, the target environment consists only of N = 3 identical, intercon-
nected nodes with a single provided property, namely processing power and with infi-
nite communication capacities. Accordingly, we only observe the total load (l̂n,r, n =
1 . . . N ) of a given deployment mapping at each node. The communication cost be-
tween two components is considered significant only if it appears between two separate
nodes, and we will strive for a global optimal solution of equally distributed load among
the processing nodes and the lowest cost possible, while taking into account the NFRs,
execution cost fci

, i = 1 . . . E and communication cost fkj
, j = 1 . . .K. fci

and fkj

are derived from the service specification, thus, the total offered execution load can be
calculated before optimization starts as

∑E
i=1 fci . This way, the logic can be aware of

the target load

T =
∑E

i=1 fci

N
(4)

By looking at the example in Fig. 4 and Fig. 5 for this service we have T ∼= 68. Given
a mapping Mr = {mn,r}, the total load can be obtained as l̂n,r =

∑
ci∈mn,r

fci .
Furthermore, the overall cost function F (Mr) becomes

F (Mr) =
N∑

n=1

|l̂n,r − T |+
K∑

j=1

Ij fkj (5)

for mapping Mr suggested by ant r, where

Ij =
{

1, if kj external
0, if kj internal to a node (6)

Optimization governed by the cost function F (Mr) starts with aligning pheromone
values with the sets of deployed components. With the underlying set of nodes (N) each
ant will form N discrete sets from the set of available components (C) that need to be
deployed and evaluate the outcome of that deployment mapping (Mr) at the end of its
run. However, the ants only need to carry a list of the unrestricted components, i.e. with
the exception of components c2, c7, c9 that are bound to a node by a constraint, leav-
ing the rest of 7 components for mapping. A flag is assigned to each of the remaining
components giving 27 as the number of possible combinations for a set at a node. Thus,
the pheromone database at each node has to accommodate 27 floating point numbers in
this case. After normalizing the pheromones in a node we can observe the probability



distribution of component sets mapped to that particular node by the ant system. Even-
tually the optimal solution(s) will emerge with probability one after convergence.

The pheromone database is indexed by a component set identifier. For example, Id.
36, which is equivalent to ′0100100′B, indicates that the free components c4 and c8 are
deployed on that node. In Fig. 6, pheromone levels (normalized as probabilities) for two
sets of components at node n1 are depicted. After the initial phase of 10000 explorer
ants doing random search the emergence of the solution deemed optimal can be seen in
Fig. 6(a) for the set of components c4, c8 in addition to c7 attached in advance. Also, in
Fig. 6(b) evolution of the pheromone corresponding to a suboptimal set of components,
c4, c6, c8 and c7 deployed at n1, is shown (observe the different scales on the Y-axis).

(a) Id. 36. (b) Id. 52.

Fig. 6. Pheromones at node n1

The optimal deployment mapping can be observed in Table 1. The lowest possible
deployment cost, according to (5) is 17 + (200− 100) = 117.

Table 1. Optimal deployment mapping in the example scenario

node components ln,opt |ln,opt − T | internal collaborations
n1 c4,c7,c8 70 2 k8, k9

n2 c2,c3,c5 60 8 k3, k4

n3 c1,c6,c9,c10 75 7 k11, k12, k14∑
cost 17 100

The rare event of finding the optimal deployment with the lowest cost during a
random search can be observed in Fig. 7. The exploration phase consists of the first
2000 ants, conducting a random search and resulting in a random cost figure. How-
ever, after exploration ends, from ant number 2001, the real optimization phase starts
and the overall deployment cost is converging to the optimal value of 117. At the same
time, we propose usage of a pheromone database that is allocated dynamically in the
memory for storing pheromone values based on a threshold level that evaporates all the
pheromone entries under a certain significance level. In Fig. 7, 1% threshold is applied,
i.e. pheromones smaller than 1% of the highest value are deemed insignificant and are
eliminated from the database.

The database size tops at 27 as the solution space is starting to be covered by explo-
ration ants and thus it can be used as an indicator to switch to the optimization phase.
Likewise, when the overall cost converges to the optimal value (117) the size of the



database approaches one (if there is a single solution like in the example) as the single
optimal solution prevails, allowing for convergence detection.

We can compare our results to the results obtained using the centralized CE method.
A comparison between different solutions to the original problem from Efe can be found
in [6]. Widell et al., in accordance with the original CE method, uses a selected distribu-
tion to generate a sample iteration, which is in case of the component deployment prob-
lem a particular deployment mapping. The generated samples are then used for updates
in the parameter of the selected distribution. The updates are based on an assessment
of the quality of the sample iteration. Sampling and updating is repeated until conver-
gence is detected, which, due to stochasticity though might not be the optimal mapping
of components. In fact, the number of ant runs in distributed CEAS can be compared to
full iterations in the centralized CE method, as a single ant’s lifetime (from leaving the
nest until its return) is equivalent to the number of samples taken multiplied with the
number of iterations.

Fig. 7. Observed cost and pheromone database sizes

For example, in [6] using 100 samples the mean number of iterations required for
finding the optimal solution with 80% confidence is 41, which in turn is approximately
equivalent to 100 · 41 = 4100 ant runs. We can see that using the same CE focus pa-
rameter, i.e. ρ = 0.01, and a memory factor of β = 0.998 (cf. Sect. 3), we can expect
convergence times to average at 1200 ant runs for arbitrary number of explorations
(Fig. 8) using our distributed CEAS approach. Here, we only compared our results to
the most efficient solution by Widell et al. However, it is difficult to compare the two
approaches in terms of number of iterations because they differ in the methodology, i.e.
multiple samples in one iteration in Widell’s work versus one iteration as a sample in
CEAS. Nonetheless, we have found that our approach is capable of finding the optimal
solution (cf. Table 1) with at least the same confidence, requires less iterations, thus it is
resource conserving and last but not least it is a completely distributed logic compared
to the original CE-based method and the other strictly centralized solutions, e.g. clus-
tering, bin-packing, etc.



In Fig. 8, results of running the deployment logic with different amounts (shown on
the x-axis) of explorer ants are depicted. The mean values of 200 subsequent executions
in each setting can be observed with the standard deviation of the results included as
error bars. The deployment logic is currently implemented in a simulator written in the
Simula/DEMOS language [30] for evaluation purposes.

Fig. 8. The observed cost and the number of ants required for convergence as a function of the
number of explorer ants

It can be noted that above a sufficient amount of initial exploration of the problem
the logic is quite robust in finding the optimal solution and stable in convergence time
as well. However, in our algorithm we do not set the number of explorers to a constant
number, instead we propose to use the dynamic database size as an indication for suffi-
cient exploratory runs. Also, an advantage of our approach is that it can provide alterna-
tive solutions weighted by their cost and corresponding pheromone values will indicate
the deployment mapping for those solutions. So, in a system where convergence time
is very critical, even premature results can be used for near optimal deployment.

6 Closing Remarks

We presented a novel approach for the efficient deployment of software components
taking into account QoS requirements captured during the modelling phase in the ser-
vice engineering approach, SPACE. The procedure starts from high-level QoS goals and
through requirement profiles utilizes swarm intelligence to provide solutions and to aid
dynamic deployment. The logic itself can be executed in a fully distributed manner, thus
it is not prone to deficiencies of existing centralized algorithms, such as performance
bottlenecks and single point of failures. Our approach does not require a centralized
database, instead it uses the analogy of pheromones distributed across the network of
hosts. Furthermore, the logic, as it is presented here, is applied to provide the opti-
mal, initial mapping of components to hosts, i.e. the network is considered rather static.
However, our eventual goal is to develop support for run-time redeployment of compo-
nents, this way keeping the service within an allowed region of parameters defined by
the requirements. As the results with CEAS show our logic will be a prominent candi-
date for a robust and adaptive service execution platform.

Our work is conducted in cooperation with the ISIS (Infrastructure for Integrated



Services) project funded by the Research Council of Norway comprising of multiple
participants both from industry and academia. The methodology and algorithms pre-
sented are in-line with the objectives of ISIS that are to create a well-established service
engineering platform for collaboration-oriented models, covering a development cycle
from the requirements to seamless execution in a heterogenous and dynamic environ-
ment.

In our future work we will investigate applicability and utility of different deploy-
ment strategies based on the existing logic. Also, we plan to experiment with stochastic
optimization methods other than the CE method. Another issue is database size man-
agement locally to the nodes hosting the service. The first step to address this issue was
the introduction of dynamically allocated databases, which will be investigated further.
Especially, in case of deployment of multiple services at the same time, which is one of
the topics in our future research.
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