
CONSTRAINT-ORIENTED FORMAL
MODELLING OF OO-SYSTEMS�

Günter Graw

Peter Herrmann

Heiko Krumm

Department of Computer Science
University of Dortmund

D-44221 Dortmund, GERMANY

{graw j herrmann j krumm}@ls4.cs.uni-dortmund.de

Abstract: In addition to static structures, the Unified Modelling Language UML
supports the specification of dynamic properties by means of state charts and interaction
diagrams. Each diagram, however, only reflects partial aspects of the system. A common
behavior model is lacking while it is necessary to relate the diagrams with each other and
to enable the verification of dynamic system properties. The formal process specification
technique cTLA provides for modular descriptions of behavior constraints and its process
composition operation corresponds to superposition. Therefore, a UML diagram can be
represented by a cTLA description which is as well modular as it can be combined with
the descriptions of other diagrams.

Keywords: formal object model, cTLA, UML, state chart, interaction diagram

1 INTRODUCTION

Many object systems which run in distributed environments have complex dynamic
behaviors. In addition to the design of the object class structure, one has to develop
suitable system configuration schemes, which describe the creation, deletion, and
localisation of objects, the establishment of execution threads, as well as the interaction

�In Proceedings of the 2nd IFIP WG6.1 International Working Conference on Distributed Applications and
Interoperable Systems (DAIS 99), pages 345–358, Helsinki, June/July 1999. Kluwer Academic Publisher.

1



2 DISTRIBUTED APPLICATIONS AND INTEROPERABLE SYSTEMS II

behavior of objects during execution. There are major design tasks which call for
support by precise and concise behavior descriptions as they are in the scope of typical
formal process specification techniques like Lotos [10]. Unfortunately, many systems
are very complex and the development of complete formal models would be too
expensive. The systems often contain parts where concurrency and interactions are
relatively easy to survey. Therefore partial models are of interest concentrating on the
‘difficult’ system parts. This is reflected by the Unified Modelling Language UML [14]
proposing diagram types directly devoted to aspects of the dynamic behavior of parts
of the object system [2]. So, state charts refer to the behavior of objects and interaction
diagrams describe connections and supported interactions between objects.

Our work concentrates on the transformation of UML-based descriptions into for-
mal specifications which support the understanding of and the formal reasoning with
properties of the dynamic system behavior. In particular, we address the problem
of partial specifications and their well-defined combination by the application of the
specification technique cTLA [6, 11]. It is based on TLA [13] and especially supports
the modular description of behavioral constraints of system parts by means of con-
straint processes (cf. [16]). Thus, single UML diagrams can separately be transformed
to corresponding constraint processes. Due to the superposition character of cTLA’s
process composition, the properties expressed by single processes are present in each
embedding system. Therefore, constraint compositions are consistent and describe
suitable common models of diagram combinations.

The work is related to a series of existing approaches. Superposition of behavioral
properties of processes has been introduced in [3]. Also, [1] uses superposition in a
setting where structured state transition systems model processes which interact via
joint actions. Several other authors reported on the formal modelling of aspects of
the dynamic behavior of object systems. So, [17] has formalized diagrams of OOA
languages. In [12] the services, which are exchanged between objects are specified
state based. [9] reports on recent work which applies the action system approach in
order to model interactions in object systems. The semantics of UML type structures
has been formalized using Z in [4]. The approaches, however, do not yet support freely
combinable modular diagram models.

In the sequel we firstly outline behavior aspects of object systems and relevant
UML components. After shortly introducing cTLA, we enter into the description of
the formal models. The global formal model provides a common understanding for
the context of constraint processes. The constraint processes, their structure, and the
way they model UML state chart and interaction diagrams are described thereafter.

2 DYNAMIC BEHAVIOR

Object-oriented methods and resulting object models have a wide field of application.
This is also reflected by the Unified Modelling Language UML [14] and the different
UML-based methods and procedures. Thus, on the one hand, UML may be applied in
the whole spectrum of development process phases beginning with early requirements
definitions up to the design of implementations. On the other hand, there is a wide
spectrum of aspects and property types of object systems which is addressed by



CONSTRAINT-ORIENTED FORMAL MODELLING OF OO-SYSTEMS 3

UML. Our approach concentrates on the issues of concurrency and concurrent object
interaction. In order to identify the scope of our work in more detail, we give a short
outline of the underlying view to object systems. We view an object system as a set
of objects and a set of threads of activity. An object system evolves during runtime
from an initial object configuration. This execution is determinated by the (relatively)
static object class definitions, by the description of the initial configuration, and by the
interactions with the object system’s environment. Each object encapsulates operations
and attributes. It belongs to an object class defining the operations and attributes of the
class. There may be one or more class hierarchies, where subclasses inherit properties
of superclasses. We do, however, not concentrate on more static issues of classes,
inheritance, and polymorphism. Instead, we concentrate on the object configurations
occuring at runtime. Therefore, we want to refer to the initial configuration of an object
system and to the different steps of execution which change the current system state.
The relevant system state depends on the set of currently existing objects, and in more
detail on their data and control states. The data state corresponds to the values of the
object’s attributes. The control state defines which operations, at which positions, and
under which synchronisation conditions are currently under execution. The state of the
object system as a whole identifies the set of currently existing objects and moreover
contains the object states as components.

In the UML an execution step within an object corresponds to an action. Actions
are distinguished in send actions, call actions, local invocations, create actions,
terminate actions, destroy actions, return actions, raise actions, and uninterpreted
actions. Some actions like local invocations effect only the local object. Other actions
(e.g., call actions) influence foreign objects, too. Here, two objects communicate
with each other. The communication is specified by means of requests which can
be either signal requests or operation requests. A signal request triggers a receiver
asynchronously with no reply (e.g., exceptions used in a fault situation). Objects
communicate by means of operation requests if the calling object demands a service
provided by the called object. The request is forwarded by a message instance which
can carry a set of arguments. The called object may invoke a return action leading to a
return message. Messages can be send sequentially in one thread and concurrently in
different threads.

Services provided by objects to other objects are called operations. An operation
has a unique signature restricting the possible actual parameters. Operations are
triggered by the reception of a message due to a call action of another object. Operations
may be called synchronously or asynchronously. In the case of a synchronous call
the caller enters a waiting state and is blocked till the corresponding return message
arrives. In case of an asynchronous call the caller proceeds without blocking. An
object can also invoke own operations calling a local invocation action.

Object creation and deletion is originated by create, destroy and terminate actions.
A create action creates an object based on the specified set of classifiers. A destroy
action ceases a foreign object instance to exist while a terminate action ceases an
instance itself to exist.



4 DISTRIBUTED APPLICATIONS AND INTEROPERABLE SYSTEMS II

Business Account

int PersNr

withdraw(int amount) runTrans

int PersNr

BusinessTransact.

1 1

Figure 1 The class diagram.

In order to facilitate the application of our model, we assume the run-to-completion
semantics (RTC).This fundamental semantics has the assumption that requests are
processed in sequence, where each incoming request stimulates a run-to-completion
(RTC) action sequence. The next external request is dispatched after the previous RTC
action sequence has completed. This assumption simplifies the synchronization of
an object since the incoming request is processed only after the object has reached a
well-defined (stable) state configuration.

3 MODELLING BASED ON UML

Object-oriented systems are specified in UML by means of several diagrams each
modelling a certain aspect of the system. Below, we will introduce class diagrams, use
case diagrams, collaboration diagrams, and statechart diagrams which are particularly
important for the dynamical aspects of object-oriented systems. The application of the
diagrams is explained by a simple example consisting of a business transaction which
withdraws money from a business account.

In the UML class diagrams model the static structure of classes and their relations.
Each class is specified by an icon containing the class attributes and operations as well
as privacy properties. Fig. 1 depicts the class diagram of our example system which
consists of two classes modelling the two system parts business account and business
transaction. Each class contains an attribute with the name “PersNr”. By these
attributes unique identifiers as an account number are specified. The class Business
Account contains an operation withdraw modelling the withdrawal of money from
the account. In Business Transaction the operation runTrans specifies the transaction
performing the withdrawal. The relations between classes in a class diagram may be
associations, aggregations, compositions, and inheritance. In our example, the two
classes are coupled by means of associations. The numbers at the end of the dashed
line indicate the multiplicity of one. Thus, one business transaction must be associated
with exactly one business account and vice versa. For our approach class diagrams are
important for the definition of the global formal model (Sec. 5).

In order to facilitate the description of complex object-oriented systems, the UML
enables the specification of single use cases each describing only a relevant function of
the system. A use case is modelled by the sequence of messages exchanged between
the system and outside interactors, so-called actors, together with actions performed
by the system. An actor can participate in different use cases and therefore is modelled



CONSTRAINT-ORIENTED FORMAL MODELLING OF OO-SYSTEMS 5

withdraw

O1 : BusinessTransactionO2 : Business Account

Figure 2 The collaboration diagram of the example.

CallBA( a)withdraw

finished/return

doneWithdrawCalled

Figure 3 The Statecharts of the classes Business Account and Business Transaction.

as a set of roles. In each use case it plays one particular role. Use cases are specified
by use case diagrams representing the relations between the system and the actors.

Collaboration diagrams describe a set of participants and relations that are mean-
ingful to accomplish a certain purpose like a use case or an operation. Fig. 2 shows
a collaboration diagram of our example. It specifies the use case performing a with-
drawal operation of the business account. The participants in a collaboration, usually
objects, are called instances. In the example, O1 of the class Business Transaction and
O2 of the class Business Account are the instances. In order to keep a collaboration
diagram simple, only the Classifier Roles of the instances, i.e., the roles essential
for realizing the particular purpose, are specified. To specify the relation between
instances, links and interactions are used. A link is an instance of the association
specifying that instances are connected. The line between O1 and O2 denotes the
link between the two objects. The messages sent between instances are modelled
by interactions. In our example the interaction “withdraw” specifies the messages
used to invoke the operation withdraw in O2 and to return the result of this operation.
By different interaction symbols one can specify if messages invoke operations syn-
chronously or asynchronously. Furthermore, aspects of message synchronization can
be described by means of numbers indicating the execution order of the messages.

The local behavior of objects or interactions are specified by statechart diagrams.
Similarily to Harel’s statecharts [5], a state machine models the behavior of an object or
interaction by states and non-atomar transitions. Transitions are stimulated by events
and depend on guard conditions modelling additional local conditions. Furthermore,



6 DISTRIBUTED APPLICATIONS AND INTEROPERABLE SYSTEMS II

PROCESS Object (cf : ClassFrame ; id : OId ; class : ClassName)
VARIABLES
state : cf.State ; ! object data, links, and control
lifecycle : (unborn, alive, dead); ! life cycle state
qu : queue of Message ; ! messages received
awaitReturnOf : MessageId ; ! if blocked: call message id
� � � ! message id management, etc.

INIT b� lifecycle � unborn � � � � ; ! initially, object does not exist
ACTIONS
callAction ( receiver : OId ; ! send Call-message

objState, objNextState : cf.State ;

message : Message ; mode : SyncMode ) b�

lifecycle�alive � lifecycle �
�lifecycle �

cf.nextState(state,state,message,receiver,mode) �
awaitReturnOf �

�IF mode�blocking THEN message.id ELSE nullId �
qu �
�qu � � � � ;

receiveAction ( objState, objNextState : cf.State ;

message : Message ) b� ! receive a message
� � � ; ! if message is a return message awaited, it is

! inserted at the front of qu otherwise appended.
returnAction ( receiver : OId ; ! send Return-message

objState, objNextState : cf.State ;

message : Message ) b� � � � ;
createAction ( receiver : OId ; ! send Create-message

objState, objNextState : cf.State ;

message : Message) b� � � � ;

startAction ( � � � ) b� � � � ; ! initiate object

terminateAction ( � � � ) b� � � � ; ! destroy object

localInvocation ( � � � ) b� � � � ; ! local operation call

internalAction ( � � � ) b� � � � ; ! internal execution step
END

Figure 4 Process type Object.

the transitions are labelled by an action list identifier describing the actions executed if
the transition fires. Fig. 3 depicts the state charts of the classes Business Account and
Business Transaction. If the operation runTrans is called in Business Transaction, the
transition between the initial state and the state done is fired invoking a call action for
the operation withdraw. Since this operation is defined synchronously, the transition
does not terminate until the reception of the return message. Afterwards, the system is
in the state done and can proceed to the final state by an internal transition. In Business
Account the reception of the call event triggers the withdraw operation and fires the
transition from the initial state to “WithdrawCalled”. After an event indicating the end
of the operation the transition to the final state is fired and a return action is invoked.

4 SPECIFICATION TECHNIQUE CTLA

The compositional TLA specification style cTLA [6, 11] supports the definition of
parametrized process and system types. Systems are composed from processes which
interact via joint actions like Lotos processes [10]. As in Lotos, processes can model
implementation parts as well as logical system constraints (cf. [16]). Process specifi-
cations are formed by instantiation of cTLA process types. A process type may either
describe a simple process or a (sub)system.



CONSTRAINT-ORIENTED FORMAL MODELLING OF OO-SYSTEMS 7

The process type Object outlined in Fig. 4 is an example of a process type specifying
a state transition system directly. It describes the behavior of an object (cf. Sec. 5).
The header of the cTLA process type declares the process type name and the process
parameters cf, id, and class. The state of the process is modelled by the variables in
the VARIABLES section. The process starts with an initial state corresponding to the
condition INIT. The next state relation is described by means of actions which are
defined in the part ACTIONS. An action (e.g., callAction) is a predicate over action
parameters (e.g., receiver), state variables (e.g., lifecycle), and so-called primed state
variables referring to the next state (e.g., lifecycle’). In the course of time, a process
may perform action steps (i.e., it may change its state in accordance with the definition
of an action) or it may perform so-called stuttering steps (i.e., the process does not
change its state while the environment of the process performs a state transition).

The cTLA process type outlined above describes safety properties. Liveness con-
straints are described by additional fairness assumptions of actions (e.g. the expression
WF : callAction denotes that callAction has to be performed weak fairly). Fair-
ness forces the activity of a process. A fair action cannot be enabled for an infinite
period of time without being executed. By weak fairness the execution of the action
is required only if it would incessantly be enabled otherwise. By strong fairness the
execution of an action is guaranteed even if the action is disabled sometimes. Unlike
TLA/TLA+, cTLA provides for conditional fairness assumptions to keep the composi-
tionality of systems. WF : callAction guarantees executions of callAction only,
if callAction is enabled in its local process as well as the environment of this process
tolerates callAction.

Systems and subsystems are described as compositions of processes. A composition
consists of a set of concurrent processes. Each process encapsulates its variables and
can change its state by the atomic execution of actions. The state of a system is
represented by the vector of the state variables of its processes. State transitions of
the system correspond to system actions. A system action is a logical conjunction
of process actions and process stuttering steps where each process contributes to the
system action by exactly one action or a stuttering step. Thus, concurrency can be
modelled by interleaving and the coupling of processes can be modelled by joint
actions.

Fig. 5 shows as an example the process type GlobalSystem. This system type is
composed from the processes declared in the PROCESSES-section. Here, the system
consists of OId many instances obs[i] of the process type Object which is described
by the cTLA construct ARRAY.

The actions of the system GlobalSystem are listed in the ACTIONS-section. The
processes composed to a system participate either by a process action or by a stuttering
step to a system action. For instance, the action operationCall, modelling the call
of an operation is a coupling of the process action callAction of the process instance
obs[caller], which describes the calling object, and of the process action receiveAction
of the process instance obs[callee] specifying the called object. The other objects
participate to callAction by stuttering steps. The transfer of data between processes is
modelled by the action parameters, e.g., the parameters message of all process actions



8 DISTRIBUTED APPLICATIONS AND INTEROPERABLE SYSTEMS II

PROCESS GlobalSystem ( cfs : ARRAY [class] OF ClassFrame ;
OId : data type ;
classOf : [OId � class] )

PROCESSES ! the infinite array of object processes
ARRAY obs [OId] of Object(cfs[classOf(index)],index,classOf(index));

ACTIONS ! system actions defining the coupling of the objects
operationCall (caller, callee: OId ; ! caller calls operation of callee

callerState, callerNextState,
calleeState, calleeNextState: State ;

message : Message ; mode : SyncMode ) b�

obs[caller].callAction(callee,callerState,callerNextState,message,mode) �
obs[callee].receiveAction(calleeState,calleeNextState,message) �
� i � OIdn{caller,callee} obs[i].Stutter ;

operationReturn (caller, callee: OId ; ! callee operation returns to caller
callerState, callerNextState,
calleeState, calleeNextState: State ;

message : Message ) b�

obs[caller].receiveAction(callerState,callerNextState,message) �
obs[callee].returnAction(caller,calleeState,calleeNextState,message) �
� i � OIdn{caller,callee} obs[i].Stutter ;

objectDestroy (this : OId ; ! one object terminates

objState, objnextState : State ) b�

obs[this].terminate(state,nextState) �
� i � OIdn{this} obs[i].Stutter ;

objectCreate (� � �) b� � � � ; ! object sends create message

objectStart (� � �) b� � � � ; ! object reacts on create message

localInvocation (� � �) b� � � � ; ! object performs local opcall

internalAction (� � �) b� � � � ; ! object performs internal step
END

Figure 5 Process type GlobalSystem.

coupled in the system action callActions have to carry identical values. cTLA facilitates
the combination of different property types like safety and liveness. In the resource
oriented specification style, this supports the combined description of all relevant
aspects of a component in a single process type. In the constraint oriented specification
style, different aspects of a component are described by separate constraint processes.
However, liveness properties may be combined with models of the safety behavior
of the component’s environment in order to support the modularity of verifications
(cf. [7]).

5 GLOBAL FORMAL MODEL

The global formal model models an object-oriented system in detail. It represents all
object instances of the system, their class memberships, life-cycle states, data attributes,
and links. Moreover, the state transitions of the object instance models correspond to
execution steps of object operations. If one would define the global formal model of a
special object-oriented system, one could analyse all relevant functional aspects on the
basis of this model. The model, however, would be too complex to support practical
verifications. Our approach therefore does not rely upon the availability of the detailed
definition of the global formal model. We only need to know its structure in order to
provide for a common understanding of the relevant behavior steps of the execution
of object-oriented systems. In particular, the actions of the model are of importance.



CONSTRAINT-ORIENTED FORMAL MODELLING OF OO-SYSTEMS 9

ClassFrame b� h State b� [[ att1 : type1 ; att2 : type2 ; � � �
link1, link2, � � � : OBId ;
control : stack of ProgramCounter ]] ;

nextState ( curState, nextState : State ;
actMessage : Message ; peer : OId ;
mode : (blocking, nonblocking) ) : relation i

Figure 6 ClassFrame — scheme.

They will be used later on to relate constraint models to the global formal model. This
defines the semantics of the interfaces of constraint models and indirectly relates the
different constraint models of a system with each other. Accordingly the following
description focuses on the model structure and its actions.

Each object is modelled as an instance of the cTLA process type Object, which
represents the common features of objects as well as class specific ones. The class
specific properties are imported into a process using a process parameter of type Class-
Frame. We assume, that from each class definition of an object system a corresponding
ClassFrame-structure can be compiled. As outlined in Fig. 6, a ClassFrame defines
the data type State for the data and control state of an object as well as the relation
nextState defining the detailed state transitions which correspond to execution steps of
object operations. It consists of state pairs relating current states with their successors.
Additionally, nextState-tuples can contain the value of a message which is connected
with the corresponding state transition, the object identifier of the peer object of the
message transfer, and in case of operation call transitions the synchronisation mode of
the invocation.

The definition of the process type Object is outlined in Fig. 4. Besides of the
ClassFrame-parameter cf, the parameter id represents the unique object identification
and class the class membership. The following variable state comprises the object
specific state components. The other variables reflect the common object model
features. So, the variable lifecycle represents the current life cycle state of an object.
We model the dynamically changing set of existing object instances of a system by a
static but infinite set of processes. Thus, creation and deletion of objects is modelled
by transitions of the lifecycle states of the corresponding processes. The following
variables are devoted to the message interface of an object. With respect to the receipt
of messages, pending messages are stored in the queue qu. In the case of synchronous
operation calls, the variable awaitReturnOf will store the message identifier of that
call message for which the return message is awaited. Other variables not shown here
model details of message management and action scheduling.

The actions of the cTLA process type Object correspond directly to the actions
of UML objects which are introduced in Sec. 2. Thus, a callAction performs the
local state transition of a calling object in accordance to cf.NextState (this condition
is relevant for all actions) and defines the value of that message which forwards the
invocation to the callee (action parameter message). Dependent on the mode of the
call, the caller may be blocked (variable awaitReturnOf). The receiveAction enqueues
received messages into the message queue qu. The returnAction and the createAction



10 DISTRIBUTED APPLICATIONS AND INTEROPERABLE SYSTEMS II

send return messages resp. create messages. The further actions define state transitions
which are only of local interest.

The global model is defined by the process type GlobalSystem outlined in Fig. 5. In
the array obs, it contains processes of type Object for all ever existing object instances.
Each array component is parameterized by the ClassFrame of an object class and we
assume that for each object class there exist inifinitely many array components. The
actions of GlobalSystem conjoin real actions and stuttering steps of the Object process
instances. There are two sorts of actions, message transfer actions and local actions.
Message transfer actions (like operationCall) are a conjunction of a sending action of
a sender process, of a receiving action of the receiver, and of stuttering steps of all
others. Local actions (like objectDestroy) concern only one object. The corresponding
process performs a real action while all others stutter.

6 FORMAL CONSTRAINT PROCESSES

The different diagrams of UML specifications are formally modelled by a series of
constraint-oriented cTLA-processes. All constraint processes define actions which
correspond in their names and basic parameters to the actions of the global formal
model. This implicitly relates the constraint processes with each other. Formally, we
can define an extended global model, which is a composition of the global formal
model with all constraint processes and where in each case the equally named actions
are conjoined to one system action. Due to the features of cTLA, any subsystem of the
extended model can be used for formal verifications of system properties. In particular,
subsystems may be used which do not contain the global formal model.

To discuss the formal modelling in more detail,we refer to the two example diagrams
of Fig. 2 and Fig. 3. As described in Sec. 3, Fig. 2 shows a simple collaboration
diagram. It references the relevant objects of the realization of the use case “Perform a
Withdrawal Operation” and their links. It constrains the values and the ordering of the
messages exchanged over the links. Accordingly, a corresponding cTLA constraint
process will refer to the set of active use cases and impose conditions on values and
ordering of messages between objects of the use case. Fig. 7 depicts the definition of
the process type CollaborationDiagramUnit which models the collaboration diagram
under following two assumptions formally. Firstly, we assume, that a process instance
is introduced for each two objects which are relevant for the use case. The objects
are addressed in the process type by means of the process parameters O1 and O2.
Secondly, a constraint process instance shall exist which manages the set of active use
cases and introduces a corresponding parameter activeUseCases to the actions.

The variables of process type CollaborationDiagramUnit (Fig. 7) keep track of
call messages (actMessage) and of blocking due to synchronous calls (callerLocked).
The actions correspond to all system actions of the global formal model as mentioned
above. Since the constraint process, however, shall constrain only those actions,
which are related to the objects O1, O2 and to the use case myUseCase, each action is a
disjunction. Besides of disjunctive terms which apply real constraints (under condition
caller � O1 � callee � O2 � myUseCase � activeUseCases), each action has a term
applying a stuttering step of the constraint process to those action occurrences which



CONSTRAINT-ORIENTED FORMAL MODELLING OF OO-SYSTEMS 11

PROCESS CollaborationDiagramUnit (O1, O2 : OId; myusecase : UseCase)
BODY

VARIABLES
actMessage : SUBSET(Message.Id); ! List of active messages
callerLocked : {"yes","no"}; ! Is caller locked ?

INIT actMessage � {} � callerLocked � "no";
ACTIONS
operationCall (caller, callee : OId; message : Message;

mode : SyncMode; activeUseCases : SUBSET(UseCase) ) b�

! If O1 is caller, O2 is callee, and myusecase is an active use case,
! only messages of type "Withdraw" may be send; message becomes
! active and caller is locked
( caller � O1 � callee � O2 �
myusecase � activeUseCases � callerLocked � "no" �
( ( message.operationname � "Withdraw" � mode � "synchronized" �

actMessage �
� actMessage � {message.id} �

callerLocked �
� "yes" ) ) ) �

! Otherwise process performs a stuttering step
( ( caller �� O1 � callee �� O2 � myusecase �� activeUseCases ) �
actMessage �

� actMessage � callerLocked �
� callerLocked );

operationReturn (caller, callee : OId; message : Message;

activeUseCases : SUBSET(UseCase) ) b�

! If O2 is caller, O1 is callee, and myusecase is an active use case,
! only messages of type "Withdraw" may be returned; furthermore a
! message must be active; message becomes passive and caller is unlocked
( caller � O2 � callee � O1 �
myusecase � activeUseCases � message.id � actMessage �
( ( message.operationname � "Withdraw" �

actMessage �
� actMessage {message.id} �

callerLocked �
� "no" ) ) ) �

! Otherwise process performs a stuttering step
( ( caller �� O2 � callee �� O1 � myusecase �� activeUseCases ) �
( callerLocked � "no" � caller �� O1 � myusecase �� activeUseCases ) �
actMessage �

� actMessage � callerLocked �
� callerLocked );

! Other actions are only enabled if they don �t occur in O1, if O1 is
! unlocked, or if myusecase is not an active Use Case

objectCreate (creator : OId; activeUseCases : SUBSET(UseCase) ) b�

( callerLocked � "no" � creator �� O1 � myusecase �� activeUseCases ) �
actMessage �

� actMessage � callerLocked �
� callerLocked;

objectDestroy (this : OId; activeUseCases : SUBSET(UseCase) ) b�

( callerLocked � "no" � this �� O1 � myusecase �� activeUseCases ) �
actMessage �

� actMessage � callerLocked �
� callerLocked;

objectStart (this : OId; activeUseCases : SUBSET(UseCase) ) b�

( callerLocked � "no" � this �� O1 � myusecase �� activeUseCases ) �
actMessage �

� actMessage � callerLocked �
� callerLocked;

localInvocation (this : OId; activeUseCases : SUBSET(UseCase) ) b�

( callerLocked � "no" � this �� O1 � myusecase �� activeUseCases ) �
actMessage �

� actMessage � callerLocked �
� callerLocked;

internalAction (this : OId; activeUseCases : SUBSET(UseCase) ) b�

( callerLocked � "no" � this �� O1 � myusecase �� activeUseCases ) �
actMessage �

� actMessage � callerLocked �
� callerLocked;

END

Figure 7 Process type CollaborationDiagramUnit.

are irrelevant for the constraint. By this means, the constraint process expresses,
that call messages between O1 and O2 have to call for the operation Withdraw in a
synchronous mode. Moreover, no other message shall occur between the two objects,
until the return of this call is exchanged.



12 DISTRIBUTED APPLICATIONS AND INTEROPERABLE SYSTEMS II

receiveAction
("withdraw")

donei tcallAction

("withdraw")

internalAction

Figure 8 Equivalent transition system to Business Transaction state chart.

PROCESS BusinessTransaction (id : OId; myusecase : UseCase)
BODY

VARIABLES
state : {"i","done","t"}; ! actual process state

INIT state � "i";
ACTIONS
callAction (caller : OId; message : Message;

activeUseCases : SUBSET(UseCase) ) b�

( state � "i" � myusecase � activeUseCases � id � caller �
message.operationname � "Withdraw" � state �

� "done" ) �
( ( state �� "i" � myusecase �� activeUseCases �

id �� caller � message.operationname �� "Withdraw" ) �
state �

� state );

receiveAction (callee : Oid; message : Message;

activeUseCases : SUBSET(UseCase) ) b�

( state � "done" � myusecase � activeUseCases � id � callee �
message.operationname � "Withdraw" � state �

� "done" ) �
( ( state �� "done" � myusecase �� activeUseCases �

id �� callee � message.operationname �� "Withdraw" ) �
state �

� state );

internalAction (this : OId; activeUseCases : SUBSET(UseCase) ) b�

( state � "done" � myusecase � activeUseCases �
id � this � state �

� "t" ) �
( ( state �� "done" � myusecase �� activeUseCases � id �� this ) �
state �

� state � blocked �
� blocked);

END

Figure 9 Process Type BusinessTransaction.

The second example refers to state chart diagrams. We perform the transformation
of a state chart diagram to a corresponding cTLA-process type in two steps. Firstly, the
state chart which may dispose of nested states and may define transitions labelled by
action sequences, is transformed to a state transition system with a simple set of states
and atomic transition labels. Secondly, we design a constraint process type which
corresponds to the state transition system. With respect to the first step we refer to
existing approaches (e.g., [8, 15]). So we can focus on an outline of the second step
here. We use the very simple example of the state chart which is contained in the right
side of Fig. 3. It can be translated to the small state transition system shown in Fig. 8.
It expresses, that a corresponding object can at first perform a call action in order to
call the operation Withdraw. Thereafter it can optionally receive a return message and
terminate by an internal action.

Fig. 9 shows the corresponding cTLA process type BusinessTransaction. Again,
we assume that for each relevant object id of the use case an instance of the process



CONSTRAINT-ORIENTED FORMAL MODELLING OF OO-SYSTEMS 13

type is introduced and that the active use cases are managed in accordance to a
further constraint process. Like the state transition system in Fig. 8, the process type
BusinessTransaction is also very simple. The three-valued data type of its one variable
state directly represents the state nodes of Fig. 8. Since only the actions callAction,
receiveAction, and internalAction are constrained, the process only contains definitions
of these actions. Definitions of other actions (e.g. object Create) would be fully
equivalent to stuttering steps and therefore are omitted. The constrained actions,
as in process type CollaborationDiagramUnit, again are defined by disjunctions of
terms where the last term describes stuttering of the process for non-relevant action
occurrences. For instance, call actions are not relevant if the constraint process is not
in state i or if the relevant use case myUseCase is not active or if the caller is not the
constrained object id. In the complementary cases, a call action is constrained by our
process. It has to call the operation Withdraw. Moreover, the value of the variable
state changes to “done” in accordance with the state diagram.

7 CONCLUDING REMARKS

We proposed a method for the formal modelling of behavioral UML diagrams by means
of constraint-oriented cTLA-processes. Thereby formal semantics for the diagrams
are defined. Unlike other approaches, which define isolated models for the different
diagrams of a project, in our approach, all constraint processes which concern the same
object system have a common context. Though this common context is usually very
complex, our method is practicable, since we only need to know the context structure
and do not need to define it in detail. Due to the common context (and due to the
superposition character of cTLA’s process composition operation) it is now possible,
to define formal models of sets of UML diagrams which in fact are very valuable
for the early formal analysis of object system designs. We made the experience, that
interesting system properties are mostly not consequences of single isolated diagrams
but can be verified only if one considers a combination. Moreover, as a rule, the
combinations (i.e., the subsystems of corresponding cTLA constraint processes) are
of manageable complexity, so that it is practically possible to reason about interesting
invariants of complex system designs. Present work aims to an application of these
results which provides theorems connecting occurrences of behavioral design pattern
instances with interesting system properties. Moreover, real-time extensions are in
preparation in order to support the verification of hard quality of service requirements.

References

[1] Back, R. J. R. and Kurki-Suonio, R. Decentralisation of process nets with a
centralized control. Distributed Computing (3). pages 72–87, 1989.

[2] Breu, R., Grosu, R., Huber, F., Rumpe, B., and Schwerin, W. Systems, Views and
Models of UML. In Schader, M. and Korthaus A. (eds.), The Unified Modeling
Language, Technical Aspects and Applications. Physica Verlag, 1998.

[3] Chandy, K. M. and Misra, J. Parallel Program Design - A Foundation. Addison-
Wesley, 1988.



14 DISTRIBUTED APPLICATIONS AND INTEROPERABLE SYSTEMS II

[4] France, R., Bruel, J., Larrondo-Petrie, M., and Shroff, M. Exploring The Seman-
tics of UML Type Structures with Z. In Derrick, J. (ed.) Formal Methods for Open
Object-based Distributed Systems, pages 247–257, Chapman & Hall, 1997.

[5] Harel, D. Statecharts: A Visual Formalism For Complex Systems. Science of
Computer Programming (8):231–274, 1987.

[6] Herrmann, P. and Krumm, H. Compositional Specification and Verification of
High-Speed Transfer Protocols. In Vuong, S. T. and Chanson, S. T. (eds.), Protocol
Specification, Testing, and Verification XIV, pages 339–346. Vancouver. B.C.,
IFIP, Chapman & Hall, 1994.

[7] Herrmann, P. and Krumm, H. Re-Usable Verification Elements for High-Speed
Transfer Protocol Configurations. In Dembiński, P. and Średniawa, M. (eds.),
Protocol Specification, Testing, and Verification XV, pages 171–186. Warsaw,
IFIP, Chapman & Hall, 1995.

[8] Hooman, J., Ramesh, S., and de Roever, W.-P. A compositional axiomatization
of Statecharts. Theoretical Computer Science (101):289–335, 1992.

[9] Kurki-Suonio, R. and Mikkonen, T. Liberating object-oriented modeling from
programming-level abstractions. In ECOOP’97 Workshop Rd., Springer, 1997.

[10] ISO. Lotos: Language for the temporal ordering specification of observational
behavior. International Standard ISO/IS 8807, 1989.

[11] Mester, A. and Krumm, H. Composition and Refinement Mapping based Con-
struction of Distributed Applications. In Proceedings of the Workshop on Tools
and Algorithms for the Construction and Analysis of Systems. Aarhus, Denmark,
BRICS, 1995.

[12] Paech, B. and Rumpe, B. State Based Service Descriptions. In Derrick, J. (ed.)
Formal Methods for Open Object-based Distributed Systems, pages 293–302,
Chapman & Hall, 1997.

[13] Lamport, L. The Temporal Logic of Actions. In ACM Transactions on Program-
ming Languages and Systems. 16(3):872–923, May 1994.

[14] The UML Group. UML Semantics. Version 1.1. Rational Software Corporation.
Santa Clara, CA-95051, USA, July 1997.

[15] Uselton, A. C. and Smolka, S. A. A Compositional Semantics for Statecharts
using Labeled Transition System. Lecture Notes in Computer Science 836, pages
2–17, Springer-Verlag, 1994.

[16] Vissers, A. C., Scollo, G., van Sinderen, M., and Brinksma, E. Specification styles
in distributed systems design and verification. Theoretical Computer Science
(89):179–206, 1991.

[17] Weber, M. Systematic Design of Embedded Control Systems. GMD-Bericht
Nr.283, R.Oldenbourg Verlag, 1997.



CONSTRAINT-ORIENTED FORMAL MODELLING OF OO-SYSTEMS 15

Biography

Günter Graw received the diploma degree in computer science in 1993. After working
in industry, he became a graduate student at the University of Dortmund in 1997.
Peter Herrmann works as a researcher at the University of Dortmund, where he
received the Ph.D. degree in computer science in 1997.
Heiko Krumm is professor for computer networks and distributed systems at the
University of Dortmund since 1990.


