
Model-based Engineering and Spatiotemporal
Analysis of Transport Systems

Simon Hordvik1, Kristoffer Øseth1, Henrik Heggelund Svendsen1, Jan Olaf
Blech2, and Peter Herrmann1

1 NTNU, Trondheim, Norway, {simon.hordvik, kristoffer.oseth,

hsvendsen}@gmail.com, herrmann@item.ntnu.no
2 RMIT University, Melbourne, Australia, janolaf.blech@rmit.edu.au

Abstract. To guarantee that modern transport systems carry their pas-
sengers in a safe and reliable way, their control software has to fulfill ex-
treme safety and robustness demands. To achieve that, we propose the
model-based engineering of the controllers using the tool-set Reactive
Blocks. This leads to models in a precise formal semantics that can be
formally analyzed. Thus, we can verify that a transport system prevents
collisions and fulfills other spatiotemporal properties. In particular, we
combine test runs of already existing devices to find out their physical
constraints with the analysis of simulation runs using the verification tool
BeSpaceD. So, we can discover potential safety hazards already during
the development of the control software. A centerpiece of our work is
a methodology for the engineering and safety analysis of transportation
systems. We elaborate its practical usability by means of two control
systems for a demonstrator based on Lego Mindstorms. This paper is an
extension of [20].

Keywords: Software engineering, spatial modeling, cyber-physical sys-
tems.

1 Introduction

In the development of control software for transport and other cyber-physical
systems, safety is a major challenge to achieve [25]. Particularly, one has to
analyze the software for compliance with spatiotemporal properties like guaran-
teeing a sufficient safety distance between devices at all times. This is mostly
achieved by intensive and costly testing of the software for functional and quality
of service attributes. To ease the analysis effort, we supplement traditional test-
based development by applying a model-based software engineering technique.
Its formal semantics facilitates the use of automatic model-checking and provers
that can detect flaws in the control software. Since we perform the checks on
the models and not on the later code, these flaws, which might be sources for
violations of spatiotemporal properties, are discovered early making the overall
development process more cost effective than plain system testing.



As a model-driven development tool, we chose Reactive Blocks [24]. It pro-
vides the ability to reuse and share building blocks. Further, Reactive Blocks en-
ables us to simulate data and control flows, to model check the building blocks for
functional correctness, and to create executable code automatically. Moreover,
we use BeSpaceD [4], which enables the verification of spatiotemporal properties
in safety-critical systems. It has been deployed in several applications imple-
mented with Reactive Blocks and simulated in the Java software environment,
e.g., [14, 17].

A contribution of this paper is a methodology that defines the various engi-
neering and analysis steps of the control software development process. It allows
us to combine the analysis of kinematic behavior and other data obtained by
gauging existing devices with the simulation and formal verification of the con-
trol software in order to guarantee that a device fulfills certain spatiotemporal
properties. An example for measured data is the worst-case braking distance of
a train that is observed by testing an actual unit. It is directly considered in a
BeSpaced verification proving that the control software causes the train to brake
sufficiently early such that collisions with other trains are prevented.

We apply the methodology by developing two different versions of the con-
trol software for a demonstrator which is built with Lego Mindstorms together
with additional sensors and servers. Lego Mindstorms offers the necessary hard-
ware components needed to build a physical autonomous rail-based system. It
is an affordable way to create demonstrators such as robots, that can be used
in hobby settings as well as research. Event-driven software can be run on the
Lego Mindstorms components enabling the control entities to execute actions
based on input received from the different types of sensors. In the original pa-
per [20], we described an architecture in which the main control functionality is
provided by fixed controllers each controlling a subset of the overall track lay-
out (see also [19]). In this extension, we added a second architecture in which
the functionality is autonomously handled by the controllers of the trains (see
also [34]). Both solutions were developed following our methodology.

Reactive Blocks and BeSpaceD are introduced in Sect. 2 followed by the
presentation of the methodology in Sect. 3. In Sect. 4, the two architectures for
the demonstrator are discussed while Sect. 5 describes the development of the
two control softwares based on the methodology. Section 6 refers to experience
with the approach and in Sect. 7 we present related work. In Sect. 8, we conclude
and name some ideas for future work.

2 Reactive Blocks and BeSpaceD

The model-driven engineering technique Reactive Blocks is a tool-set for the de-
velopment of reactive software systems [24]. A system model consists of an arbi-
trary number of building blocks, i.e., models of subsystems or sub-functionalities,
that are composed with each other. A major advantage of this modeling method
is its reuse potential since a building block can comprise sub-functionality that
is useful in many different applications. The building block is specified once,



stored in a tool library, and, when needed, moved into a system model by simple
drag and drop. The behavior of a building block is modeled by UML activi-
ties that may contain UML call behavior actions representing its inner building
blocks. These inner blocks are also specified by UML activities such that the
approach scales. The interface of a building block is specified by an External
State Machine (ESM) that describes the abbreviated interface behavior of the
block [21]. To make analysis of functional correctness by model checking possible,
the activities and ESMs are supplemented with formal semantics [22]. Moreover,
Reactive Blocks enables the automatic transformation of system models into
well-performing Java code [23]. Some tool extensions allow us to analyze models
also for safety [32] and probabilistic real-time [13, 15] properties.

BeSpaceD is a constraint solving and non-classical model checking frame-
work [3, 4]. It emphasizes particularly on dealing with models of cyber-physical
systems that usually comprise a large amount of time and space-based aspects.
BeSpaceD provides a modeling language and a library to reason on models, using
techniques such as state-space exploration, abstraction and reduction. It enables
the creation of verification goals for SAT and SMT solvers and provides connec-
tions to these tools. Thus, these solvers can be used based on much more concrete
models than their traditional inputs. On the other hand, BeSpaceD models are
more abstract than typical use-case specific (meta-)models that are applied in
case specific tools. From an expressiveness point of view, SAT and SMT offer
the specification elements of propositional logic (+ Presburger arithmetic [31]).
Semantically, using BeSpaceD the notions of time and space are added. Other
semantic carrying elements are available: They are treated as predicate parame-
ters and have to be resolved in programs building on the BeSpaceD frameworks
or queries to BeSpaceD.

BeSpaceD is written in Scala and compatible with Eclipse/Java. The mod-
eling language is based on abstract datatypes and integrates with the Scala
language. It is possible to write one’s own programs that construct BeSpaceD
models and to write code using BeSpaceD functionality for checking it. In fact,
as shown in [13, 17], an extension of Reactive Blocks is able to transfer its models
to BeSpaceD models such that they can be directly analyzed for spatiotemporal
properties.

3 Methodology

The creation of control software for transport systems requires knowledge about
central kinematic properties like braking distances or maximum accelerations.
Since the systems and their environments are often too complex to gain such
data exclusively by simulation, it has to be gathered by testing and observing
prototypes. This feature is considered by our methodology (see Fig. 1). It consists
of five major steps:

1. In parallel to the development of the physical device, an initial version of the
control software is engineered with Reactive Blocks. This first model already
contains several functions that will also be used later in the final version,



Development of Initial Control Software

 Prototype Testing of Initial Software

Development of Extended Control Software

Software Analysis with BeSpaceD

Transformation into Executable Code

Fig. 1. Methodology overview

e.g., the access to sensors and actuators. The functions guaranteeing safety,
however, are either not implemented or based on initial data concluded from
simulations resp. experience with previous versions.

2. Code is generated from the initial Reactive Blocks model and used in the
prototypes which are tested in order to find out relevant kinematic proper-
ties.

3. When all relevant properties are observed, the control software is extended.
For that, we amend the original Reactive Blocks model by adding building
blocks and flows. In this way, existing sub-functionality will be preserved
making the development process cheaper.

4. The extended Reactive Blocks model is analyzed by BeSpaceD for compli-
ance with relevant spatiotemporal properties. Depending on the complexity
of the verification runs, we may carry out the proofs in two different ways:
(a) One extracts a descriptive formula of relevant system functionality from

the Reactive Blocks model and transforms it into a format readable by
BeSpaceD. Afterwards, BeSpaceD verifies that this specification keeps
certain spatiotemporal properties. As shown in [17], the extraction of
the descriptive formulas can be carried out automatically if the Reactive
Blocks model was developed based on a certain course of action and
a set of dedicated building blocks. Due to its completeness, this kind
of analysis is preferred but according to the complexity of the problem
might exceed the capabilities of the solvers used by BeSpaceD.

(b) One composes the control software model with a simulator that is also
created in Reactive Blocks [13]. Thus, several simulation runs can be
performed and their logs are translated into input for BeSpaceD that
analyzes the data for compliance with the spatiotemporal properties.
The log data can be proved very efficiently (e.g., 10,000’s of different
spatiotemporal coordinates within a split second). But in contrast to the
other solution, this one is not exhaustive such that it can only guarantee
the preservation of the properties for the simulated cases.



8.2. TESTING THE IMPLEMENTED SYSTEM 55

Figure 8.5: Railroad layout used for testing the deployed system. The colored areas
shows which EV3 smart brick each point switch is physically connected to. Each
point is tagged with the port of the EV3 it is connected to, and the identifier of the
respective point.

Figure 8.6: Plot showing the flow of messages through the AMQP broker during a
test run.

As shown in Figure 8.6, messages are sent to the broker and distributed to the
appropriate clients. As the figure shows, the number of outbound messages are
always equal or greater than the number of inbound messages. This is due to the
publish-subscribe pattern, i.e. if a message is published by one client (inbound to
the broker) with a topic that four other clients subscribe to, the broker will publish
four messages as a consequence.

Fig. 2. Track with control zones

5. When the developed control software fulfills all desired properties, the Reac-
tive Blocks model is transformed into code that is installed in the transport
devices and used for further certification steps.

Depending on the kind of system, these steps can also be iterated such that the
control software is developed and analyzed in several cycles. Thanks to the fully
automatic nature of the code generation in Reactive Blocks, the results of the
engineering cycles can be easily transformed into executable code.

Due to the importance of system safety for life and limb of the later pas-
sengers, we do not see our methodology as a replacement for traditional certifi-
cation but as a supplement. Yet, we expect that the model-based development
and spatiotemporal analysis leads to a better quality of the produced software.
In consequence, the certification process will have to deal with fewer software
errors and therefore is getting smoother.

4 Demonstrator

As mentioned in the introduction, we use the Lego Mindstorms train-set to
exemplify and evaluate our methodology. In the following, we will show two
stages of expansion for the overall architecture of the system. The track layout
is sketched in Fig. 2. It consists of five different stations that are connected by up
to four trains. A train set comprises a motor, wheels and a train body (see Fig. 3).
Further, we provide each train with a color sensor facing towards the tracks (in
Fig. 3 on the right side of the train). It enables the train to count sleepers



Fig. 3. Example Lego train

and to detect special sleepers that are furnished with colored Lego bricks. The
coordination of the motor and the color sensor as well as the connection with a
wireless communication device is provided by an EV3 controller, the standard
control unit of Lego Mindstorms. This unit is transported in one of the cars. In
the following, we will discuss both stages in greater detail.

4.1 Applying zone controllers

This system architecture was developed within a master’s thesis [19]. It restricts
the trains to purely counterclockwise operation albeit with possibly different
speeds such that a train might catch up with another one. As shown by the
colored backgrounds of Fig. 2, the tracks are partitioned into four zones. An
EV3 unit, called zone controller, coordinates all trains in a particular zone in
order to prevent collisions. This resembles the procedure used in the European
Rail Traffic Management System (ERTMS), a novel train control system to be
used in all European railway networks [10, 37]. Moreover, the zone controller
drives the switch points in its zone. The beginning of the zones are marked by
colored sleepers such that the color sensors of a train can detect when a new
zone is entered.

The train controllers are connected with the zone controllers by means of the
Message Queuing Telemetry Transport Protocol (MQTT) [27]. This is a popular
machine-to-machine connectivity protocol often used in the “Internet of Things”
domain. Usually, both the routing of connections and the brokerage of users are
done by a number of standard MQTT servers. Since tests, however, showed that
the use of these servers lead to an unacceptably high transmission delay, we
created our own MQTT server that is realized on a Raspberry Pi [38]. Figure 4



Fig. 4. Communication architecture between trains and zone controllers

sketches the communication architecture used. A detailed technical evaluation
of the demonstrator can be found in [19].

Fig. 2 highlights that a station consists of two tracks. A stopping track is
linked to a platform that allows passengers to enter and leave trains. A second
track makes it possible that a train not stopping may pass the station while
another one waits in it. Further, at some points we have alternate routes, e.g., for
trains going from the station in the red zone to the one in the yellow one. Thus,
the trains have to be routed which is done by the zone controllers. For that, the
demonstrator is split into 23 different tracks that are each bordered by two switch
points. The beginning of each track is marked by an unambiguously colored
sleeper such that a train can always follow up on which track it is currently
located. As shown in the message-sequence-chart in Fig. 5, a train provides
the responsible zone controller with its destination. Based on that, the zone
controller selects the tracks, the train has to pass in its zone, and sets the switch
points accordingly. The routing algorithm is based on work described in [28].

The switching of zones by a train is realized by a sequence of colored sleepers
as depicted in Fig. 6. First, the train passes a green sleeper indicating that a zone
shift is coming up. Since a zone shift affords the time-consuming establishment
of a new connection between the train and zone controller, we use overlapping
segments in which the train is controlled by both involved zone controllers. The
beginning of the overlapped segment is marked by a sleeper in the color of the
new zone. When passing it, the train controller starts building up a MQTT
connection with the new zone controller. The end of the overlapping segment is
identified by a colored sleeper that signals the beginning of a new track in the



Fig. 5. Two trains interacting with a zone controller

newly entered zone. It may only be passed if the connection with the controller
of the new zone is established and thereafter, the link with the controller of the
old zone is released.

As mentioned above, the zone controllers are responsible for preventing colli-
sions of trains in their zone. For that, they permanently need information about
the exact positions and speeds of the trains. Since color sensors are the only
sensing equipment used in our demonstrator and Lego trains have the nice fea-
ture that sleepers are always in the same distance from each other irrespectively
of the track shape, we use the sleepers as means to define exact train positions.
In particular, each train controller maintains a so-called sleeper counter that
totals how many regular, i.e., non-colored, sleepers of the track on which it cur-
rently moves, it already passed. Further, by using time-stamps and knowing the



Track 1 Track 2 Track 3

Zone 1

Zone 2

. . .

. . .

. . .

. . .

Green Track sleeeper
“New zone coming up”

 Zone Sleeper
(either blue, yellow, green or red)
“Enter new zone”

Track Sleeper
(either blue, yellow, green or red)
“Leave previous zone”

Overlap

Fig. 6. Sleepers indicating zone switches

distance between the sleepers, a train calculates its current speed. Whenever a
regular sleeper is passed, the train sends the value of its sleeper counter and
speed value to the responsible zone controller (resp. zone controllers if the train
is on an overlapping track), see Fig. 5.

From these data and its knowledge about the current track of the train,
the zone controller establishes which sleeper the train just entered. It sets this
sleeper and, with help of the information about the train’s length, all other
sleepers that are covered by the train into state occupied. Due to its knowledge
about the system layout, the zone controller may also consider the sleepers of
the previous track if the train just passes a track border. In addition, the sleepers
vacated by the train since the last notification was received, are set to free.

The zone controller checks if the train is on a collision course with another
one. Based on the current speed and position of the train, it calculates the dis-
tance needed for the train to come to a complete stop. This distance is converted
into the number n of sleepers that are passed before the train stands after cut-
ting power. Moreover, taking the communication delay between the zone and
train controllers into consideration, we add a safety buffer b of sleepers3 to n. If
at least one of the n+b buffers ahead of the train is occupied, the zone controller
sends immediately a stop message to the train that initiates an emergency stop.
Of course, this holds also for sleepers in the subsequent track when the train
reaches the end of the previous one. If all the next n + b buffers are not oc-
cupied, an all-clear signal is sent, and the train may continue with its current
speed. Since the zone controller may have been broken, the train it also stopped
when no signal at all arrives within a certain period of time.

3 It is important to note that, the bigger the safety buffer b is, the more states of
sleepers need to be checked, which means more processing time and again a bigger
latency with regards to when the train receives a response. By testing the braking
distances of the trains with various safety buffer values, we found out that b = 10
gives the best results.



Fig. 7. The layout tool Bluebrick

The logic also includes the option of using an extra buffer such that the zone
controller will check the state of sleepers that are even further in front of the
train. Are any of these sleepers occupied, the controller commands the train to
slow down, instead of coming to a complete stop. If the blocking train in front
continues to stand still, the emergency break is initiated a little closer to it due
to the reduced speed, which leads to a smoother operation.

4.2 Autonomous train control

The second stage of extension was developed within a project thesis [34]. It
comprises some significant changes to the system. Most prominently, the over-
all architecture was modified. While in the first stage, the main computational
intelligence, in particular the routing and collision detection, was in the zone
controllers, we moved them into the train controllers making the trains to truly
autonomous units. In consequence, the zone controllers are now simple switch
point controllers that just switch the points based on external commands re-
ceived.

A second change is that the trains may now move in both directions. Further,
we decided to make the adaptation to layout changes more flexible than in the
first stage where the layout information was hardcoded. For that, we use the
freely available Lego planning tool Bluebrick [26] (see Fig. 7) to model the track
layout. Bluebrick allows us to draft a graphical model of a layout that is saved
in form of an XML file from which the track structure can be automatically



extracted and stored in the train controllers. To figure out the routing of a train,
we realize a variant of Dijkstra’s Shortest Path Algorithm [9]. For simplicity, a
route to be performed is always chosen based on the shortest physical length but
does not take possible waiting times at side tracks into account.

Allowing to operate trains in both directions affords to take measures in or-
der to avoid front crashes. For that, we use distributed interlocking, a technique
based on Gray’s Two Phase Commit Protocol [12]. This protocol was originally
developed to ensure that distributed transactions are carried out consistently.
It uses an coordinator that first sends the relevant commands of a transaction
to other stations involved. Thereafter, it triggers the Two Phase Commit Pro-
tocol that consists of a voting phase followed by a completion phase. In the
voting phase, the coordinator queries from all other stations the confirmation
that they are able to complete the transaction on their sites. After receiving
positive confirmations from each station, the coordinator proceeds into the com-
pletion phase and sends a commit message to the other stations that thereupon
make the transaction permanent. If at least one station answers with a negative
confirmation, however, the coordinator sends an abort message leading all other
stations to discard the transaction. Thus, as long as there are no data or station
losses in the completion phase, all transactions are handled consistently.

As depicted in Fig. 8, the distributed interlocking algorithm is based on the
Two Phase Commit Protocol. If a train wants to leave a station, it needs to lock
the sub-route towards the next station on its path. For that, it checks whether
the sub-route is already locked by another train. If that is not the case, the train
starts to reserve the lock by asking the other trains in the layout using a Re-
questLock message. Each other train may only confirm this request by answering
with an AllowLock if it is neither on the sub-route nor has itself a request for
locking it pending. Otherwise, it replies with a DenyLock message. Following the
Two Phase Commit Protocol, the requesting train sends a PerformLock message
if all replies were positive. Then it owns the lock and may enter the sub-route.
If at least one other train denied the lock, the request is discarded by sending
AbortLock messages and the train has to wait until getting the lock later. After
leaving a sub-route, the train notifies the others about the release of the lock
such that another train may acquire it. In principle, one can relax this algorithm
by allowing more than one train to be on a sub-route as long as they run in
the same direction and use the collision avoidance of the first stage to separate
them. We omitted that since, due to the tight time restrictions of project theses,
this modification would have been too complex.

The train controllers have to communicate with each other in order to ex-
change the distributed interlocking messages. They also need to call the switch
point controllers to achieve the desired switch point settings. Further, we com-
bined this project with another one making the remote monitoring of the system
over large distances possible [18]. For that, relevant data like the position, length
and speed of a train have to be send to a remote server. Due to decision within
the scope of the other project, in this state the Advanced Message Queuing
Protocol (AMQP) [1] is used. It allows the subscription of topics relevant for a



Train 1 Train 2 Train 3 Train n...

RequestLock(RouteElement i, train1)

RequestLock(RouteElement i, train1)

RequestLock(RouteElement i, train1)

Check if 
RouteElement i

is available

Check if 
RouteElement i

is available

Check if 
RouteElement i

is available

AllowLock(RouteElement i, train1

AllowLock(RouteElement i, train1

AllowLock(RouteElement i, train1

Reserve lock on 
RouteElement i

for Train 1

Reserve lock on 
RouteElement i

for Train 1

Reserve lock on 
RouteElement i

for Train 1

Review votes

AllowLock(RouteElement i, train1)

AllowLock(RouteElement i, train1)

Reserve lock on 
RouteElement i

for Train 1

Reserve lock on 
RouteElement i

for Train 1

DenyLock(RouteElement i, train1)

Review votes

Abort 
reservation

on RouteElement i
for Train 1

PerformLock(RouteElement i, train1)

PerformLock(RouteElement i, train1)

PerformLock(RouteElement i, train1)

Lock
RouteElement i

for Train 1

Lock
RouteElement i

for Train 1

Lock
RouteElement i

for Train 1

alt

All participants confirm

alt

One participant deny

AbortLock(RouteElement i, train1)

AbortLock(RouteElement i, train1)

AbortLock(RouteElement i, train1)

Abort 
reservation

on RouteElement i
for Train 1

Lock
RouteElement i

for self

Reserve lock on 
RouteElement i

for self

Abort 
reservation

on RouteElement i
for self

Fig. 8. Collision avoidance by distributed interlocking



Fig. 9. The communication architecture used in the second stage

party such that an AMQP Broker may forward received messages to all stations
that subscribed them. Thus, it was possible to develop the architecture shown
in Fig. 9 such that the train controllers, switch point controllers, and external
servers are unburdened from receiving messages not relevant for them. For in-
stance, a train controller can subscribe to the other ones in order to receive
the messages of the distributed interlocking but refrain from receiving position
reports of other trains that are intended for the external servers.

5 Engineering the Controllers of the Demonstrator

The development of the control software for the two stages of expansion of our
demonstrator followed the methodology presented in Sect. 3.

5.1 Zone controller-centric model

The creation of an initial software version profitted strongly from work by [28]
who developed building blocks that facilitated the handling of the access to the
EV3 train and zone controllers from the Reactive Blocks model. These blocks
could be simply combined to achieve a first user-managed control system.

In the second step of our methodology, we could use the initial control soft-
ware to find out the relevant kinematic properties of the trains. In particular,
we analyzed the stopping distances for five of the seven speed levels4 offered for

4 The track layout contains many turns such that the two highest speed levels would
often lead to derailments. Therefore, we did not consider them further.



Fig. 10. Breaking distance for different speed levels

Lego Mindstorms trains. Fig. 10 depicts that, as expected, the braking distances
are parabolic albeit with a relatively small gradient. Using these results and the
fact that two sleepers are in a distance of 32.5 mm, we could determine the num-
bers n of sleepers to be considered for each speed level in the collision avoidance
scheme discussed in Sect. 4.1.

Moreover, in this phase we examined the color sensors more closely to get
good readings. With respect to using the sensors for speed calculation, we
checked three alternatives, i.e., computing the speed after passing 16.25 mm,
32.5 mm resp. 65 mm. The tests revealed that the longest distance which corre-
sponds to computing the speed only after every second sleeper, rendered by far
the best measurements. Further, we detected quality issues for sensing different
colors. We found out that we get better results if the color sensor is in a dis-
tance of 12 mm above the track than the 6 mm tried by [28]. We also discovered
that the likelihood to detect the correct color is significantly improved when
the thread handling color changes pauses between two checks for exactly 14 ms.
When it runs without pausing, often white color is falsely read. In addition, we
found out that, in general, blue and green render better results than red and
yellow. We took these experiments into consideration when deciding which colors
to be used at which points in the layout.

After getting sufficient knowledge about the kinematic behavior of the demon-
strator as well as the correct treatment of the color sensors, we continued with



Fig. 11. Building block for the train control logic

the third step of the methodology, i.e., the creation of the final control logic
using Reactive Blocks. As an example, Fig. 11 depicts the UML activity of the
building block TrainLogic specifying the control logic of the train controllers. It
contains four inner building blocks. Block Robust MQTT was taken from a Re-
active Blocks library. It specifies the logic to handle connections with the MQTT
server. Building block ControlSensorLogic models the access to the color sensor
and the interpretation of the metered colors as described in Sect. 4. Block Motor
is based on work in [28] and specifies the control of the train engine. Finally,
building block Communication defines the cooperation with the responsible zone
controller(s) via MQTT.

The semantics of UML activities resemble Petri Nets such that we can inter-
pret a control or data flow as tokens running via the edges to the various vertices
of the activity. The block TrainLogic is started by a flow through the incoming
parameter node5 init that is forked into three flows. One flow leaving the fork
leads to the operation initMQTTParam that is a carrier of a Java method cre-
ating an object of type Parameters. This object carries the data needed to start
an MQTT connection. It is forwarded towards pin init of block Robust MQTT.
The other two flows leaving the fork initiate the blocks Communication and Mo-
tor. The block ControlSensorLogic does not need to be initialized. It gets active
when the motor starts operating.

The other flows of the activity are only sketched. There are several flows
from ControlSensorLogic to Communication modeling the notification of the

5 The term parameter node refers to pins at the edge of a UML activity.



BIGAND(

List(

IMPLIES(TimePoint(1429190484062),

BIGAND(List(OccupyNode(288),

OccupyNode(289), OccupyNode(290),

OccupyNode(291), OccupyNode(292),

OccupyNode(293), OccupyNode(294),

OccupyNode(295), OccupyNode(296),

OccupyNode(297)))),

IMPLIES(TimePoint(1429190483864),

BIGAND(List(OccupyNode(287),

OccupyNode(288), OccupyNode(289),

OccupyNode(290), OccupyNode(291),

OccupyNode(292), OccupyNode(293),

OccupyNode(294), OccupyNode(295),

OccupyNode(296)))),

...

Fig. 12. Train data in BeSpaceD

zone controller about the various findings of the color sensor. The control of the
train speed by the zone controller is specified as a flow from pin setMotorAngle of
building block Communication that defines the desired speed level as an integer
value. This flow is forwarded to pin rotateValue of block Motor after which the
engine speed is adjusted. Two flows from Motor to ControlSensorLogic realize
that the color sensor is only operative if the motor turns. Finally, the activity
contains three event receptions used to control the train directly from the central
console. They can be used to set destinations for the train, to manage the motor
directly from the console, and to terminate the train controller. In the latter
case, an event of type STOPANDTERMINATE leads to block Motor in order
to stop the train and to switch off the color sensor before the building block
TrainLogic is terminated by a flow through parameter node terminate.

The model checker and animator of Reactive Blocks [24] proved helpful to
check our controller models for functional correctness. The built-in model checker
verified general functional properties, e.g., that all flows in a block are consis-
tent to the interface descriptions of both, the ESM of this block and those of
the inner blocks. The animation feature which allows to highlight flows of a
block that can be executed in a certain state, was used to analyze our models
for problem-specific properties. For instance, by inspecting all states of build-
ing block TrainLogic (see Fig. 11) we found out that a train controller does
only unsubscribe the MQTT connection with a zone controller if it currently
is connected with two of them. Thus, except for the system start, a train con-
troller is always connected with at least one zone controller as long as no MQTT
connection breaks.

In the forth step of the methodology, the completed system was analyzed
with BeSpaceD for the presence of spatiotemporal properties. As stated above,



the development of the Reactive Blocks model is in parts based on work from [28]
which did not use the special building blocks needed to enable an automatic ex-
traction of the control logic as described in step 4a of the methodology. Therefore,
we decided to use alternative 4b instead, i.e., we applied BeSpaceD to check logs
of runs observed by executing the control software. Since Lego trains are usually
not damaged by crashes, we could not only get runs from pure simulation but
also from running the real trains on the tracks. In Sect. 4.1, we explained that
sleepers form the basis for describing the locations of trains as well as breaking
distances. Therefore, it seemed natural to use them also in the BeSpaceD proofs.
The simulation resp. operation of the train and zone controllers lead to formulas
as sketched in Fig. 12. A formula comprises a long list of conjunctions marked
by a BIGAND statement. Each conjuncted element features an IMPLIES statement
describing that a time point implies that a train occupies a certain number of
sleepers on the track.

We used BeSpaceD to check runs of various scenarios mostly to guarantee
freedom of collisions. Here, the solvers were used to verify that no sleeper was
occupied by more than one train6 at any time. But we could also validate that the
results observed in step 2 of the methodology are consistent with the observed
runs. For instance, the higher complexity of the final control software did not
impact the braking distances compared with the observed ones (see Fig. 10).
The BeSpaceD proofs did not reveal any performance problems. The longest
run comprised 1973 time points that correspond to more than 32 minutes of
operation and afforded the check of 10,000’s of sleepers. They were checked
within 0.3 s each on a standard 2.8 Ghz Intel Core i5 running MacOS.

After finishing the BeSpaceD test, we completed the engineering process with
the fifth step of the methodology. Here, we automatically generated Java code
from the Reactive Blocks models that was exported to the EV3 controllers as
executable .jar files. This procedure could be performed for all controllers of our
system within a few minutes.

5.2 Train controller-centric model

Since we did not change the physical layout of the trains and only amended the
track layout slightly, we could directly take over the results from the first two
methodology steps carried out for the first stage. That holds particularly for the
best handling of the color sensors and the determination of the braking distances
as discussed in Sect. 5.1.

Due to the major architectural changes, i.e., the transfer of the routing and
collision prevention from the zone controllers to the train controllers, the inte-
gration of Bluebrick, the use of the Shortest Path and distributed interlocking
algorithms as well as the replacement of MQTT with AMQP, we had to develop
a new model for the control software in the third step of the methodology. We

6 The inaccuracy of using sleepers for measurement was compensated by overapproxi-
mating the length of the trains, i.e., we declared a crash even when only one sleeper
lay between those occupied by two trains.



could rely on the original building blocks for the access of the train motors resp.
sensors and the control of the switch points but had to create novel ones for the
various concepts mentioned above. As described in [34], altogether 12 building
blocks were created for the train controller software and additionally four for the
switch point controller. Moreover, a building block was integrated into the train
software in order to handle the external monitoring of the trains (see [18]).

The amendment of the architecture and, in particular, the change of the
collision prevention handling demands for a full replication of the BeSpaceD
analysis in the forth step of the methodology. Mainly due to the strict time
restrictions mentioned above, however, we decided to refrain from that in this
stage. Another reason was that the distributed interlocking algorithm is a quite
conservative collision prevention technique precluding approximations of trains
from the outset. Thus, the expected performance impact should be even less than
the one experience for the first stage. Nevertheless, as soon as the distributed
interlocking is combined with the approach mechanisms of the first stage such
that several trains may be in the same sub-route as long as they operate in the
same direction (see Sect. 4.2), there will be significant spatiotemporal issues.
Thus, we plan to make leeway on the spatiotemporal analysis for this extension.

The fifth step of the methodology is identical with the first stage of expansion.
We automatically generated the Java code for both, the train and switch point
controllers as executable .jar files that can be directly executed in the various
EV3 controllers.

6 Experience from Building the Demonstrator

Together with general library blocks like timers or buffers and, in particular,
the blocks to handle MQTT [27], around 55% of the zone controller-centric
model had not to be created from scratch but could be reused. For the train
controller-centric model, this number is with 52% nearly identical. Albeit we have
used Reactive Blocks to build transport system controllers only for a relatively
short time, these numbers are not too far from the reuse rate of 70% that is
usually achieved when creating models in already well-supported application
domains [21].

We were also pleased that the input formulas for BeSpaceD could be easily
generated and proved within very short time frames. We learned, however, that
the necessity to use certain blocks in order to create descriptive formulas of the
control software as used in alternative 4a of the methodology, might lead to
practical problems. The engineer likes to be as free as possible when creating
or selecting models in order to be able to address particular design problems
flexibly. Thus, the rigid structure of the blocks needed to facilitate the creation
of the BeSpaceD formulas [17] may be seen as cumbersome. We need to spend
more work in solving this conflict between easy development and analysis.

Building control software in two different stages of expansion poses the ques-
tion to which degree the iteration of the methodology steps alleviates the efforts
in the second project. As discussed in Sect. 5.2, we did not need to repeat the



first two steps of the methodology, i.e., the development of the initial control
software and the prototype testing, which saved us a significant amount of time.
Engineering the control software in the third step was less relaxed than originally
expected which, however, results from the fact that the various changes afforded
a complete new Reactive Blocks model. At least, the building blocks accessing
the motors and sensors of the trains as well as the switch points could be reused.
That was helpful since, according to our experience, the access functionality for
external devices is often the most complicated part to develop (see [16]). For a
more evolutionary development, we yet expect a much higher degree of reuse. Ex-
perience to compare the forth step of the methodology, i.e., the BeSpaceD-based
analysis, will be investigated in the future.

7 Related Work

In the past, verification and analysis tools have been typically studied with
respect to the underlying verification and analysis techniques rather than em-
phasizing the domain. PHAVer [11] is a tool that allows the analysis of spatial
properties in hybrid-systems. Another application of formal verification tech-
niques to train systems is described in [30]. Here, deduction-based verification
techniques from the KeYmaera system [29] are applied. An application of the
SPIN model checker for the verification of control software aspects of a railway
system is described in [7]. A variety of other generic tools, recent work and ap-
proaches, e.g., [5, 8, 36] for model checking spatial properties of cyber physical
systems exist. The combination of Reactive Blocks with BeSpaceD has been
studied, e.g., in [14, 17]. Here, the emphasize is on robots and either measured
or simulated spatiotemporal values. Unlike in this paper, the combination of
simulation and measured values was not considered.

The European Rail Traffic Management System (ERTMS) is a major in-
dustrial project undertaken by the Association of the European Rail Industry
members. Its main focus is on creating a seamless integrated railway system
in Europe to increase European railways competitiveness, capacity, reliability
rates and safety [10, 37]. A relevant focus is the automatic train protection sys-
tem named European Train Control System (ETCS), and the Global System for
Mobile Communications – Railway (GSM-R). GSM-R is based on the GSM stan-
dard and provides voice and data communication between the track controllers
and the train. It uses frequencies specifically reserved for railroad applications.
A variety of other large scale European funded projects exists in the domain
of safety-critical cyber-physical system. For example, the ARTEMIS Chess [6]
project includes a focus on the rail domain. Among other results, it produced a
modeling language.

The first stage of our work uses a similar lego infrastructure as [28] where new
means for public transport have been studied based on Lego Mindstorms and
Reactive Blocks. In contrast to Overskeid’s work, however, ours is more centered
on software quality, in particular, with respect to making systems safe. For that,
the separation of the control functionality between train and zone software is



performed in a novel way that disburdens the performance of the EV3 controllers
better when a larger number of trains has to be coordinated. Further, the use
of BeSpaceD enables us to verify relevant spatiotemporal properties formally.
Finally, following the methodology presented in Sect. 3 facilitates carrying out
a well-regulated software engineering process.

8 Conclusion

Above, we presented our approach to create control software for transport sys-
tems using the model-based engineering technique Reactive Blocks. The intro-
duced methodology enables us to check safety properties on measured and sim-
ulated data collected from a transport system. We exemplified the use of the
methodology and its evaluation by showing two realizations for our demonstra-
tor that is based on Lego Mindstorms.

Currently, we continue our work by using the introduced methodology for
other projects. In one, we have replaced the EV3 controller in a train by a Rasp-
berry Pi [38] (see [35]). This allows us to use also other sensors like magnetome-
ters, accelerometers, proximity sensors and readers for RFID chips positioned in
the layout. The combination of these sensors will make more precise position and
speed readings of the trains possible. In another approach, we use the method-
ology to create control software for transport robots that are each controlled
by a Raspberry Pi. Besides preventing collisions, the robots collaborate in or-
der to, e.g., transport certain pieces together without letting them fall down.
Moreover, we cooperate with Statens Vegvesen, the Norwegian Public Roads
Administration, and Jernbaneverket, the Norwegian Government’s Agency for
Railway Services, in order to find out in which respect our approach can be used
for the development and licensing process of real transport systems.

Another interesting application domain for our approach is industrial au-
tomation [2, 16]. We provide the BeSpaceD-based safety analysis as a cloud
based service and work also on using analysis results to provide adequate views
to operators and other stakeholders. As a first use-case, we realized the remote
monitoring of the Lego Mindstorms demonstrator that is located in Trondheim,
Norway, from the monitoring platform VxLab in Melbourne, Australia [18, 33].

References

1. AMQP.org: Advanced Message Queuing Protocol (AMQP). www.amqp.org/ (2016),
accessed: 2016-02-01

2. Blech, J.O., Peake, I., Schmidt, H., Kande, M., Ramaswamy, S., Sudarsan SD.,
Narayanan, V.: Collaborative Engineering through Integration of Architectural,
Social and Spatial Models. In: Emerging Technologies and Factory Automation
(ETFA). IEEE Computer (2014)

3. Blech, J.O., Schmidt, H.: Towards Modeling and Checking the Spatial and Interac-
tion Behavior of Widely Distributed Systems. In: Improving Systems and Software
Engineering Conference (2013)



4. Blech, J.O., Schmidt, H.: BeSpaceD: Towards a Tool Framework and Methodology
for the Specification and Verification of Spatial Behavior of Distributed Software
Component Systems. Tech. Rep. 1404.3537, arXiv.org (2014)

5. Caires, L., Torres Vieira, H.: SLMC: A Tool for Model Checking Concurrent Sys-
tems against Dynamical Spatial Logic Specifications. In: Tools and Algorithms for
the Construction and Analysis of Systems. pp. 485–491. Springer-Verlag (2012)

6. CHESS-Consortium: Chess modeling language and editor v1. 0.2 (2010)

7. Cimatti, A., Giunchiglia, F., Mongardi, G., Romano, D., Torielli, F., Traverso,
P.: Model checking safety critical software with SPIN: an application to a railway
interlocking system. In: Computer Safety, Reliability and Security. pp. 284–293.
Springer-Verlag (1998)

8. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: An SMT-Based Model
Checker for Hybrid Systems. In: Tools and Algorithms for the Construction and
Analysis of Systems. pp. 52–67. Springer-Verlag (2015)

9. Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik 1, 269–271 (Dec 1959)

10. ERTMS Project: ERTMS in brief. http://www.ertms.net/?page_id=40, accessed:
2015-08-14

11. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In:
Hybrid Systems: Computation and Control. pp. 258–273. Springer (2005)

12. Gray, J.N.: Notes on Data Base Operating Systems. In: Operating Systems — An
Advanced Course, pp. 393–481. LNCS 60, Springer-Verlag (1978)

13. Han, F., Blech, J.O., Herrmann, P., Schmidt, H.: Towards Verifying Safety Prop-
erties of Real-Time Probability Systems. In: 11th International Workshop on For-
mal Engineering approaches to Software Components and Architectures (FESCA).
EPTCS (2014)

14. Han, F., Blech, J.O., Herrmann, P., Schmidt, H.: Model-based Engineering and
Analysis of Space-aware Systems Communicating via IEEE 802.11. In: 39th Annual
International Computers, Software & Applications Conference (COMPSAC). pp.
638–646. IEEE Computer (2015)

15. Han, F., Herrmann, P., Le, H.: Modeling and Verifying Real-Time Properties of
Reactive Systems. In: 18th International Conference on Engineering of Complex
Computer Systems (ICECCS). pp. 14–23. IEEE Computer (2013)

16. Herrmann, P., Blech, J.O.: Formal Model-based Development in Industrial Au-
tomation with Reactive Blocks. In: 3rd Workshop on Human-Oriented Formal
Methods (2016), to appear

17. Herrmann, P., Blech, J.O., Han, F., Schmidt, H.: A Model-based Toolchain to
Verify Spatial Behavior of Cyber-Physical Systems. International Journal of Web
Services Research (IJWSR) 13(1), 40–52 (2016)

18. Herrmann, P., Svae, A., Svendsen, H.H., Blech, J.O.: Collaborative Model-based
Development of a Remote Train Monitoring System. In: Evaluation of Novel Ap-
proaches to Software Engineering, COLAFORM Track (2016)

19. Hordvik, S.E., Øseth, K.: Control Software for an Autonomous Cyber-Physical
Train System. Master’s thesis, Norwegian University of Science and Technology
(NTNU) (2015)

20. Hordvik, S., Øseth, K., Blech, J.O., Herrmann, P.: A Methodology for Model-based
Development and Safety Analysis of Transport Systems. In: 11th International
Conference on Evaluation of Novel Approaches to Software Engineering (ENASE)
(2016)



21. Kraemer, F.A., Herrmann, P.: Automated Encapsulation of UML Activities for In-
cremental Development and Verification. In: Model Driven Engineering Languages
and Systems (MoDELS). pp. 571–585. LNCS 5795, Springer-Verlag (2009)

22. Kraemer, F.A., Herrmann, P.: Reactive Semantics for Distributed UML Activities.
In: Joint WG6.1 International Conference (FMOODS) and WG6.1 International
Conference (FORTE). pp. 17–31. LNCS 6117, Springer-Verlag (2010)

23. Kraemer, F.A., Herrmann, P., Bræk, R.: Aligning UML 2.0 State Machines and
Temporal Logic for the Efficient Execution of Services. In: 8th International Sym-
posium on Distributed Objects and Applications (DOA06). pp. 1614–1632. LNCS
4276, Springer-Verlag (2006)

24. Kraemer, F.A., Sl̊atten, V., Herrmann, P.: Tool Support for the Rapid Composi-
tion, Analysis and Implementation of Reactive Services. Journal of Systems and
Software 82(12), 2068–2080 (2009)

25. Lee, E.: Cyber Physical Systems: Design Challenges. In: 11th IEEE International
Symposium on Object Oriented Real-Time Distributed Computing (ISORC). pp.
363–369. IEEE Computer (2008)

26. McKenna, A., Nanty, A.: BlueBrick — Version 1.8.0. bluebrick.lswproject.com/
help_en.html (2015), accessed: 2016-02-02

27. MQTT.org: Message Queuing Telemetry Transport (MQTT). mqtt.org/, accessed:
2015-08-14

28. Overskeid, K.M.: Personal Rapid Transit (PRT) System using Lego Mindstorms.
Master’s thesis, Norwegian University of Science and Technology (NTNU) (2015)

29. Platzer, A., Quesel, J.D.: KeYmaera: A Hybrid Theorem Prover for Hybrid Sys-
tems (System Description). In: Automated Reasoning. pp. 171–178. Springer
(2008)

30. Platzer, A., Quesel, J.D.: European Train Control System: A Case Study in Formal
Verification. In: Formal Methods and Software Engineering, pp. 246–265. Springer
(2009)

31. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In:
Comptes rendues du ler Congres des Math. des Pays Slaves, Warsaw. pp. 192–
201, 395 (1929)

32. Sl̊atten, V., Kraemer, F., Herrmann, P.: Towards Automatic Generation of For-
mal Specifications to Validate and Verify Reliable Distributed System: A Method
Exemplified by an Industrial Case Study. In: 10th International Conference on
Generative Programming and Component Engineering (GPCE’11). pp. 147–156.
ACM (2011)

33. Svae, A.: Remote Monitoring of Lego-Mindstorm Trains. Project thesis, Norwegian
University of Science and Technology, Trondheim (2016)

34. Svendsen, H.H.: Model-based Engineering of a Distributed, Autonomous Control
System for Interacting Trains, deployed on a Lego Mindstorms Platform. Project
thesis, Norwegian University of Science and Technology, Trondheim (2016)

35. Svendsen, H.H.: Self-Localization of Lego Trains in a Modular Framework. Master’s
thesis, Norwegian University of Science and Technology, Trondheim (2016)

36. Tiwari, A.: Time-Aware Abstractions in HybridSal. In: Computer Aided Verifica-
tion. pp. 504–510. Springer-Verlag (2015)

37. UNIFE Project: UNIFE. http://www.unife.org/, accessed: 2015-08-14
38. Upton, E., Halfacree, G.: Raspberry Pi User Guide. Wiley (2014)


