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Abstract

In addition to static structures, the Unified Modelling Language (UML) supports the specification
of dynamic properties of objects by means of statechart and sequence diagrams. Moreover, the
upcoming UML 2.0 standard defines several kinds of actions to specify invocations, computations
and the access of structural features. The formal specification technique compositional Temporal
Logic of Actions (cTLA) provides for modular descriptions of behavior constraints and its process
composition operation corresponds to superposition. Furthermore, cTLA facilitates the selection of
an arbitrary subsystem of a complex specification which is composed of processes. We introduce
an approach for formal-based refinement verifications of detailed UML models which fulfill more
abstract ones. In a first step of the verification, the abstract and the detailed model are transformed
to cTLA specifications. Thereafter, we can prove that the cTLA specification of the more detailed
model implies the cTLA description of the more abstract one by application of the model checker
TLC (Temporal Logic Checker).

Keywords: UML, statecharts, sequence diagrams, compositional Temporal Logic of Actions,
cTLA, TLC.

1 Introduction

UML (Unified Modeling Language) [5] is the defacto standard for the speci-
fication of software under the care of the OMG (Object Management Group)
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since 1997. The OMG is also responsible for the evolution of the UML. Mean-
while several attempts have been started to form an executable version of UML
(cf. e.g., [29]). Stephen Mellor and Marc Balcer [26] provided an xUML (exe-
cutable UML) profile which supports the enaction of UML models by the aid of
simulation tools. Moreover several companies (e.g. Kennedy Carter, Project-
tech) developed tools which support the enaction and simulation of executable
UML models. The executability of UML models is in particular of interest
for the MDA (Model Driven Architecture) initiative (cf. e.g., [22]) started by
the OMG two years ago, which has the aim to generate executable code from
models specified in UML.

Our approach has stronger requirements on the correctness of models which
are used as input for transformation and generation tools. The upcoming UML
2.0 standard [21,27,32] includes an improved action semantics and new seman-
tical foundations for sequence diagrams and activity diagrams. Our former
work concentrated on the formalization of UML 1.4 models using cTLA (com-
positional Temporal Logic of Actions) as a foundation [10,11,8] in order to
prove formally that systems are refined in a correct fashion. cTLA [16] is
a specification technique based on Lamport’s TLA (Temporal Logic of Ac-
tions) [23] with a strong emphasis on constraint-oriented modelling and com-
position of specification blocks which are described in a process-like notation.
The ability to compose arbitrary processes to subsystems facilitates the specifi-
cation of interesting properties — even, if the specified system has a remarkable
complexity — in an acceptable amount of time.

Moreover, cTLA supports refinement proofs verifying that a system ful-
fills certain properties. Due to the compositional structure of cTLA system
definitions, a verification can be reduced to relatively easy provable lemmas
(cf. [16]) each stating that a — usually small — subsystem realizes a single
cTLA process describing a certain aspect of the property as well as some —
normally trivial — consistency checks.

The structured verification is a basis for so-called specification and verifica-
tion frameworks supporting specification and verification in certain application
domains. At first, a framework contains libraries of cTLA processes which may
be instantiated and composed in order to create specifications of systems and
properties in a rather easy fashion. At second, the framework contains theo-
rems proven by the framework designers which correspond directly to the proof
steps of a structured verification. Thus, a refinement proof can be performed by
selecting suitable theorems and by performing some simple consistency checks
which can also be supported by a tool (cf. [18]). We already created frame-
works for the domains of communication protocol verification [15,16], hazard
analysis of technical processes [17], and verification of security properties of
component-structured software [14].
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Fig. 1. The class model of the abstract Controller

Besides of the frameworks, which are beyond the scope of this article, one
can also perform refinement proofs by means of model checks if the space of the
reachable system states does not exceed a certain finite number (cf. [1,24]). The
advantage of model checker application to the frameworks is that the proofs
can be performed in a highly automated fashion. Since UML-based system
descriptions tend to describe systems in a relatively abstract manner, we ex-
pect that the modeled state space of many real-life systems can be handled
by a model checker. Therefore we decided to apply the powerful checker TLC
(Temporal Logic Checker) [24,33], to perform the refinement proofs. Tools for
the transformation of UML specifications into cTLA [9,11] and of cTLA spec-
ifications into TLA [19] exist. The transformation utilizes the compositional
features of cTLA extensively since a UML diagram can be transformed into a
separate cTLA process. Our approach complements a lot of other approaches
formalizing UML diagrams by formal models (cf. [25,28,30,31]) which, however,
do not use compositionality in the way explained in this paper.

We adapted our formalization to the upcoming UML 2.0 standard since the
improved action semantics (which was introduced in UML 1.5) and the compo-
sitional aspects of sequence diagrams facilitate the transformation into cTLA
processes. Based on these new semantical features we redefined our transfor-
mation rules from UML diagrams to cTLA processes fostering the generation
of very compositional cTLA system descriptions which facilitate the carrying
out of suitable refinement proofs by means of the model checker TLC. In order
to stay within the boundaries of this paper, we had to restrict ourselves into
sketching the process of transforming a UML model into the corresponding
cTLA processes and to verify some example properties.

In Secs. 2 to 4, we explain the UML 2.0 statecharts, sequence diagrams,
actions, and activities. After an introduction to cTLA in Sec. 5, we focus on
the transformation of statechart diagrams and sequence diagrams into cTLA
in Secs. 6 and 7. Finally, we sketch the steps of an example proof in Sec. 8.
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Fig. 2. The statechart of the abstractController class

2 Statecharts in UML 2.0

In UML models, states can be used to define attributes of an object and
its behavior in a rather fine-grained way. Here, we apply them in a more
abstract fashion in order to model the current situation of an object and its
reaction on incoming events. Fig. 1 shows an example class-diagram describing
a controller for a technical process which gets input from a sensor and forwards
corresponding output values to an actor unit. As depicted in Fig. 2, a state
description in UML 2.0 contains an unambiguous name. Moreover, one can
define activity identifiers which are accompanied by the keywords entry, exit or
do each. An activity (cf. Sec. 4) marked by entry is executed when the object
enters the state containing the entry statement. Activities accompanied by
exit are carried out when the state is left, whereas activities marked by do are
triggered when an object remains in a particular state for a while.

In UML 2.0, transitions can be provided with a statement containing an
event name, a guard condition, and an activity identifier. By the event name
it is possible to specify a UML change event, call event, send event or comple-
tion event. Change, call and send events are triggered by changing an object
attribute resp. by execution of a call or a send action whereas a timed event
refers to a certain real time constraint. A transition is executed if the spec-
ified event occurs and the guard condition specified in the statement holds
as well. In contrast, so called completion transitions or triggerless transitions
depending on a completion event are carried out without an external trigger.
A completion event fires if all transitions and entry resp. state activities in
the currently active state are completed. It is preferred against other events in
order to prevent deadlocks. Furthermore, one can allow the deferral of events.
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If an event cannot be processed in the current state, it is stored in an event
queue and can be used later. During the execution of a transition, the ac-
tivity identified in the transition statement is carried out. Similar to Harel’s
statechart diagrams [12], one can define so-called composite states from sub-
states which can contain substates as well. A composite state can be a nested
state corresponding to the OR-States in a statechart diagram. If an incoming
transition of the nested state is fired, exactly one of its substates gets active.
The other kind of a composite is a concurrent state which corresponds to an
AND-state in a statechart diagram. Here, the substates carry out transitions
concurrently. A special class of states are pseudostates which have to be left
immediately after being entered. Therefore, pseudostates must not contain
do activities which are only executed if a state remains active for a while.
Well-known pseudo-states are initial states. In contrast, final states are not
pseudostates since an object remains in this state after reaching it. Another
class are decision nodes which are used to model decision processes between
alternating state-transition sequences. In nested states history states (e.g. the
state H*) can be applied to store the lastly visited substate of a nested state.
By executing an incoming transition of a history state the substate stored by
it is reached.

To model the processing of events and correspondingly, the selection of
transitions UML 2.0 defines a special state machine which is based on the run-
to-completion semantics. According to this semantics only one event may be
processed at a point in time and the processing cannot be interrupted by other
events. By special state configuration information the state machine describes
which state resp. substates are currently active (cf. [10]).

3 Sequence Diagrams in UML 2.0

In UML 2.0, sequence diagrams are strongly influenced by the current Message
Sequence Chart (MSC) standard [13]. Sequence diagrams consist basically of
object instances and their lifelines. Event occurrences may be found on a life-
line and correspond to actions which are executed in an object. For instance,
an action may represent the creation and the reception of a message. The
occurrence of messages is described by the aid of traces. A trace consists of
sequences of event occurrences < E1, E2 . . . , E

n
>. In UML 2.0, it is possible

to incorporate traces of foreign sequence diagrams into another diagram using
the keyword ref and an identifier which refers to another sequence diagram.
Moreover, one can compose sequence diagrams from other diagrams by ap-
plication of so-called CombinedFragments. A CombinedFragment may contain
so called InteractionOperands. That are special regions in the diagram where
events may occur in arbitrary orders defining a set of alternate traces. The
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Fig. 3. The sequence diagram of the Controller

mode of interleaving between the events in such a region is determined by
a special InteractionOperator. In the following, we will introduce two of the
currently 11 defined InteractionOperators:

• seq: This InteractionOperator determines that the CombinedFragment pro-
vides a weak sequencing of the behavior of its InteractionOperands. Weak
sequencing is defined on a set of traces which fulfill the following three prop-
erties. Firstly, the order of event occurrences of each InteractionOperand

is preserved in the result. Secondly, event occurrences on different lifelines
which stem from different InteractionOperands may occur in an arbitrary
order. Thirdly, the event occurrences on the same lifeline stemming from
different InteractionOperands are sequenced with respect to the order of
these InteractionOperands.

• strict: The strict InteractionOperator implies that a CombinedFragment has
a strict order of the event occurrences belonging to each InteractionOperand.
The strict sequencing, however, is only enforced on the uppermost level of
CombinedFragment with the operator strict. Thus, if the strict Combined-

Fragment A contains another combined fragment B, the event occurrences
of B will not be directly compared with those of A.

In the sequence diagram listed in Fig. 3, an interaction scenario is described.
It contains two CombinedFragments the first of which is depicted in Fig. 4.
The corresponding sequence diagram contains a CombinedFragment which is
marked by the InteractionOperator strict. Thus, the event occurrences of this
CombinedFragment have to keep a strict order.
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Fig. 4. The reused sequence diagram

4 Actions and Activities in UML 2.0

Another major improvement of UML 2.0 is the new Action Semantics defining
a meta-model for action based description languages [32]. In contrast to the
traditional Object Constraint Language (OCL) it facilitates the description of
dynamic behavior enabling the generation of implementation code from UML
models. Actions are the fundamental units of executable functionality. The
Action Semantics does not define a particular syntax for action statements
but more abstract class definitions which can be realized by applying various
different syntaxes. Two actions exchange data and object information via
special input and output pins.

The UML 2.0 superstructure [27] distinguishes Invocation Actions, Read
Write Actions, and Computation Actions. Invocation Actions are used to per-
form operation calls and transmission of signals between objects. A relevant
derived action is the so called CallOperationAction which transmits an opera-
tion call request to a target object where it invokes an associate behavior. The
operation call is completed by a reply transmission which is performed by a
ReplyAction. A CallOperationAction may be carried out synchronously block-
ing the caller until receiving the reply transmission. In contrast, if the action
is asynchronous, the caller may proceed immediately and acts in concurrence
with the invoked action. At the target object the receipt of an operation call
triggered by a remote object is handled by an AcceptCallAction. This action
produces a special output token which is used later to supply the results of the
associated behavior to the ReplyAction returned to the caller. Other Invoca-
tion Actions are used to send or broadcast signals to target objects in order
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to carry out operations without reply transmissions and to transmit objects
to target objects.

A Read Write Action is used to perform read and write access to structural
features like object attributes and properties, to create and destroy objects,
and to handle links between objects. Derivations are Structural Feature Ac-

tions to handle access to structural features, Object Actions to manage the life
cycle of an object, and Association Actions in order to operate on links and
associations. An example of the first subclass is ReadStructuralFeature retriev-
ing the values of a uniquely identified and not statical structural feature of a
certain target object. So called Object actions are responsible for the creation
and destruction of objects. A CreateObjectAction is an action which creates
an object conforming to a class. The destruction of objects is performed using
a DestroyObjectAction.

Finally, Computation Actions invoke primitive functions computing output
values from input values without reading or writing other system resources.

A CreateObjectAction is an action which creates an object conforming to
a class. The destruction of objects is performed using a DestroyObjectAction.

The actions are incorporated into activities which define certain orders of
action executions. In our current work, we concentrate on so called Basic-

Activities which, in contrast to more powerful extensions, do not allow the
concurrent execution of different actions. An activity is modelled in a Petri
Net-like style containing nodes which are connected by edges forming a com-
plete flow graph for data and control values. An activity model consists of
three types of nodes: An action node is used to define an action operating on
received control and data values and providing control and data to other ac-
tions. Control nodes are used to coordinate control flow as well as data flow by
routing control and data tokens through the graph. Finally, object nodes are
applied to store both objects and data temporarily until they can be accepted
by an action.

Activity graphs may contain two kinds of directed edges connecting the
activity nodes. On the one hand, control flow edges permit only the passing of
control tokens between two actions. A control flow edge implies that the action
at the target end of the edge (arrowhead) cannot start before the source action
finishes. On the other hand, object flow edges describe the relations between
output and input pins of subsequent actions. Only data tokens and objects
are permitted to pass along object flow edges.

5 cTLA

Leslie Lamport’s Temporal Logic of Actions (TLA, [23]) is a linear time tem-
poral logic which describes safety and liveness properties (cf. [2]) of state tran-
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PROCESS Adapter(data : ANY;
processCallFct : SET[data → data];
processReturnFct : SET[data → data];
callAdapterEvents : SUBSET(data))

BODY
VARIABLES
qu : queue of data;
sAdapter : {"init", "deqCall", "procCall",

"called", "deqReturn", "procReturn"};
val : data;
sync : {"true","false"};
. . .;

INIT
∆

= sAdapter = "init" ∧ qu = empty ∧ sync = "false" ∧ . . .;
ACTIONS

getCallProxy(value : data)
∆

=
qu ′ = insert(qu, value) ∧ sAdapter ′ = sAdapter;

dequeueCall
∆

=
sAdapter = "init" ∧ sync = "false" ∧ qu �= empty ∧
head(qu) ∈ callAdapterEvents ∧ sAdapter ′ = "deqCall" ∧
val ′ = head(qu) ∧ qu ′ = tail(qu) ∧ Unchanged(sync);

processCall
∆

=
sAdapter = "deqCall" ∧ sync = "false" ∧
sAdapter ′ = "procCall" ∧ val ′ = processCallFct[val] ∧
Unchanged(qu,sync);

callControl(value : data)
∆

=
sAdapter = "procCall" ∧ sync = "false" ∧ value = val ∧
sAdapter ′ = "called" ∧ sync ′ = "true" ∧ Unchanged(val, qu);

callControlReply
∆

=
sAdapter = "called" ∧ qu �= empty ∧
sAdapter ′ = "deqReturn" ∧ val ′ = head(qu) ∧
qu ′ = tail(qu) ∧ sync ′ = "false";

. . .;
WF : dequeueCall, processCall, callControl, . . .;

END Adapter

Fig. 5. cTLA process of the adapter object in the design pattern

sition systems by means of canonical formulas. cTLA (compositional TLA,
[16]) is based on TLA, but enables the suitable specification of systems in the
notation of processes omitting canonical parts of TLA specifications. In partic-
ular, it enables the composition of system descriptions from implementation-
oriented processes, constraint-oriented processes, and combinations. Process
composition in cTLA has the character of superposition (cf. [3]). Here, a rele-
vant property of a process or a subsystem is also a property of the embedding
system. Therefore structured verification is possible (i.e., a proof that a system
has a property can be reduced to the verification that a subsystem fulfills the
property). A cTLA process acts as a modular specification component and a
system can be specified by a set of coupled processes. A process has either the
form of a simple process or of a process composition. Simple processes refer
directly to state transition systems and can represent implementation parts
as well as logical constraints. Fig. 5 depicts the simple cTLA process type
Adapter which is used in our verification example (cf. Sec. 8). In the header,
the process type name and generic module parameters (e.g., processCallFct)
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are declared. The parameters facilitate the specification of a spectrum of sim-
ilar but different processes by a single process type. The body of the process
type defines the state transition system modelling a process instance. The
state space is specified by state variables like qu, sAdapter, val, and sync.
The initial condition INIT refers to state variables and defines the set of initial
states (i.e., sAdapter initially has the string value "init"). The state transi-
tions are specified by actions (i.e., getCallProxy). An action is a predicate on
a pair of a current and a successor state modelling a set of state transitions.
The state variables referring to the current state are described by ordinary
variable identifiers (i.e., sAdapter) while variables referring to the successor
state occur in the so-called primed form (i.e., sAdapter’). An action may be
supplemented by action parameters (e.g., var). The next state relation of the
modelled state transition system corresponds to the disjunction of the actions.

Liveness constraints in cTLA are modelled by means of fairness assump-
tions on actions. The specification in Fig. 5 contains a new construct WF listing
some action names (e.g., dequeueCall). It declares that the corresponding ac-
tions have to be executed “weak-fairly” for all defined action parameters (i.e.,
a weak-fair action has eventually to be performed if, otherwise, it will be con-
tinuously enabled for an infinite period of time). Similarly, by the construct
SF one can define “strong-fair” actions which have even to be executed if they
are disabled from time to time. In order to guarantee the superposition prop-
erty of cTLA, the fairness constructs are conditional. They force an action
only if for a certain period of time both the action itself was enabled and the
process environment does not block it. Due to these conditional fairness as-
sumptions the fairness properties of local processes cannot be spoiled by the
process environment guaranteeing that all composed systems describe a realiz-
able behavior. A disadvantage of this definition, however, is that it is harder to
check if the conditional fairness assumptions assure the desired system liveness
properties. Nevertheless, one can overcome this problem by adopting a certain
specification style guaranteeing that a fair process action is only blocked by
the environment in system states if it is disabled locally, too. In our appli-
cation example, this property holds trivially for nearly all of the fair actions
since they are coupled only with other actions which are always enabled. For
the remaining cases one has to prove the property by means of an invariant
verification.

Systems and subsystems are described as compositions of concurrent pro-
cesses. As in the ISO/OSI specification language LOTOS [20], a set of pro-
cesses interact in a rendezvous-like way by performing actions jointly, and the
data parameters of the actions can model the communication of values be-
tween processes. Each process encapsulates its variables and changes its state
by atomic execution of its actions. The system state is the vector of the process
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PROCESS concreteComposition
(Sdata : ANY;
aSprocCallFct : SET[data → data];
aSprocReturnFct : SET[data → data];
. . .)

PROCESSES cT : concreteController(. . .); cS : concreteSensor(. . .);
cA : concreteActor(. . .); pS : Proxy(. . .);
aS : Adapter(Sdata, aSprocCallFct, aSprocReturnFct);
pA : Proxy(. . .); aA : Adapter(. . .);
sd : SequenceDiagram;

ACTIONS
getCallSensor(value : Sdata; actionInfo1 : String;

actionInfo2 : String)
∆

=
aS.callControl(value, actionInfo1) ∧
cS.getCallAdapter(value, actionInfo2) ∧
sd.possibleMessageOfSD(actionInfo1, actionInfo2) ∧
cT.stutter ∧ cA.stutter ∧ pS.stutter ∧ pA.stutter ∧
aA.stutter;

getCallSensorReturn(. . .)
∆

=
. . .;

. . .;

END

Fig. 6. Process type concreteComposition

state variables. State transitions of the system correspond to simultaneously
executed process actions or to so-called process stuttering steps (i.e., the pro-
cess does not change its state). Since, moreover, a process participates in a
system action either by exactly one process action or by a process stuttering
step, one can define a system action by a conjunction of process actions and
stuttering steps. In consequence, concurrency is modelled by interleaving while
the coupling of processes corresponds to joint actions. The fairness assumption
of a process action is inherited by the system action to which it is coupled.
The design of cTLA process types as well as the composition of processes to
systems and the transformation to TLA is supported by a compiler tool [19].

An example of a compositional cTLA process is depicted in Fig. 6. In the
section PROCESSES, instances of cTLA process types are listed (e.g., in the ex-
ample an instance aS of the process type Adapter introduced in Fig. 5). The
coupling of process actions to system actions is defined in the part ACTIONS.
For instance, the system action getCallSensor is coupled from the action
callControl of process aS, the action getCallAdapter of process cS, and the
action possibleMessageOfSD whereas the other processes of the system per-
form so-called stuttering steps in which their local variables are not changed.

6 Transformation of statecharts and actions into cTLA

The transformation of statecharts to cTLA processes was already described in
[10]. The basic idea is to create a separate cTLA process for the state machine
of each UML class. Instances of the cTLA process specify the behavior of
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each object instantiated from the corresponding UML class according to its
statechart diagram. Our transformation of a statechart to a cTLA process is
based on the concept of run-to-completion semantics (cf. [6]) which assumes
that only one thread of control is active in an object at a certain point of time.
This concept forces the interleaving of concurrent processes.

The transformation is performed in two steps. At first, we flatten a state
chart to another state chart containing only simple states and pseudostates.
This is done by application of graph grammars (cf. [7]). In this step, we also
consider the actions defined in a state. Actions of entry activities are shifted to
every activity of an ingoing transition. In contrast, an action of an exit activity
belonging to a state is shifted to every activity of an outgoing transition. Do
activities are not supported since they invoke concurrent computations which
can be interrupted at any point of time. This, however, violates our assumption
of run-to-completion semantics for a state machine.

Moreover, by this transformation, we solve conflicts between transitions in
an active state. According to the firing priorities of the UML (cf. [27]), we
extend the guards of the lower priority transitions. In consequence, in the
flattened statechart a transition t is only enabled if all other transitions, which
in the original statechart are in conflict with t and have a higher priority,
cannot be executed.

At second, we transform the flattened state chart into a cTLA process.
Since this state chart corresponds to a simple state transition system, this
transformation is straightforward. The states are modelled by a cTLA vari-
able and the transitions by cTLA actions. As an example of a cTLA process
resulting from a transformation, we depicted the process Adapter in Fig. 5.
The variable sAdapter list the various states of the flattened statechart as
Strings while the transitions between these states are specified by actions. A
cTLA action (e.g., processCall) checks the currently active state and guard
in the predicate and sets the value of the state variable sAdapter to the suc-
ceeding state. Non-determinism of UML transitions can be directly mapped
to the cTLA actions. If two transitions of the flattened state chart are enabled
non-deterministically, their two cTLA action representatives are also enabled
in the same state.

Besides of transforming states and transitions, we have to consider other
parts of a statechart. Each attribute of a class is transformed into a variable
of the cTLA process representing a corresponding object. For instance, an
attribute val of the statechart is represented by the variable val in the cTLA
process Adapter. Moreover, the cTLA process representing an active object
contains a queue qu handling concurrent calls. A cTLA action describing a
UML transition with a trigger (e.g. dequeueCall), has an additional conjunct
(head(qu) ∈ callAdapterEvents) which checks if the appropriate event is
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contained in qu. A state variable sync used to block an object initiating
a synchronized calls. Moreover we introduced the state variable lifecycle

describing the lifecycle state of an object 3 . Possible values of lifecycle

are unborn, alive, and dead. Unborn and dead objects are neither able to
compute a result nor to take part in an interaction. Moreover, for every pin of
an action we added a set of state variables. One variable is used to store the
data transferred via the pin. For the sake of simplicity, we restrict the range of
pin types to simple data types. Another variable states if the pin is currently
filled by a data or control value.

In the UML2.0, an activity is modelled by a kind of Petri Net. Since a Petri
Net corresponds with a state transition system, it can be transformed relatively
easily to corresponding cTLA variables and actions. As outlined in Sec. 4, we
currently restrict ourselves to so called BasicActivities (cf. [27]) using actions
which are connected by their object and control flow edges permitting no
concurrent flow between actions. This basic level of activity modelling supports
the description of traditional sequential flow charts including decisions and
merges. Moreover, we assume that a well formed activity is completed by an
ActivityFinalNode which is connected to the final actions of an activity. Thus,
in cTLA one can model a transition linked with an activity by two cTLA
actions. The first describes the control flow from the previous state of the
transition to the initial state of the activity while the other forms the link
between the ActivityFinalNode and the transition’s next state.

The UML actions are transformed within the context of the transformation
of their corresponding activities. An action is extended by statements which
are responsible for removing data and control values from the state variables
representing the input and output pins as well as the control edges of an
action (cf. Fig. 5). The transformation of an UML action is handled based
on its scope. Read and Write Actions as well as Computation actions have
only local scope whereas invocation actions have access to other objects. For
each UML action with local scope it is sufficient to introduce a new cTLA
action transforming the semantics of the UML action and describing its access
to its input and output pins as well as its incoming and outgoing control
edges. An example in the cTLA process Adapter is the Computation Action
processCall which modifies the variable val coupled with the action’s input
and output pins.

Read Write Actions reading or writing structural features can also be trans-
formed into a single cTLA action each. This action models the assignment of a
value from the corresponding attribute to the corresponding pin and vice versa.
Moreover, CreateObjectActions and DestroyObjectActions are supported by

3 In Fig. 5, we omitted this and the remaining variables in order to save space.
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cTLA actions that change the value of the state variable lifecycle if the cre-
ation and destruction of objects is handled in the corresponding UML model.
The cTLA action which creates an object sets the value of the state variable
lifecycle to alive if it has the value unborn. An additional action is used
to change the value of lifecycle to dead if an object has to be destroyed and
the value of lifecycle is alive.

Invocation actions have to reflect that they are coupled with other actions
in a peer object. In consequence, the corresponding cTLA action will be cou-
pled with another action in a different process modelling the peer behavior.
For instance, in a cTLA system specification a cTLA action representing a
CallOperationAction of a calling object will be coupled with the cTLA action
modelling the corresponding AcceptCallAction of the called object, which en-
queues pending calls to the queue of the called object. For instance, in the sys-
tem specification concreteComposition in Fig. 6 the action getCallSensor

models an operation call of the adapter to the sensor. Here, the process action
callControl of the adapter describing a CallOperationAction is coupled with
the process action getCallAdapter in the sensor specifying the correspond-
ing AcceptCallAction. The two linked process actions have to carry identical
action parameters modelling the arguments of the operation call.

Similar to an operation call, the corresponding operation reply is also mod-
elled by two coupled cTLA actions. In the UML, however, an incoming reply
transmission is accepted by the same CallOperationAction which also trig-
gered the initial call. Since this non-atomic behavior cannot be specified by
a single cTLA action, we describe CallOperationActions by two cTLA ac-
tions modelling the execution of an operation call resp. the acceptance of
the reply transmission. In the process Adapter the actions callControl and
callControlReply are both used to model a single CallOperationAction.

7 Transformation of UML 2.0 sequence diagrams

Each UML sequence diagram is transformed into one instance of the cTLA
process type SequenceDiagram which is depicted in Fig. 7. In particular, the
transformation tool computes the set of all total traces permitted by the se-
quence diagram and instantiates the generic module parameter SetOfTraces

with it. In the cTLA process type, a trace is represented as a sequence of
strings. Each string represents an occurrence of an object and is composed of
the object name, a dot used for separation and the name of the action asso-
ciated with the event occurrence (e.g., ”O2.getValue” represents the CallOp-
erationAction getValue on the lifeline of O2). In order to model the sequence
diagram’s behavior, we, moreover, use the set of all legal partial traces which
is specified by the constant SetOfPossibleTraces. The set of partial traces cor-
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PROCESS SequenceDiagram(SetOfTraces : SUBSET(Sequence))
CONSTANT
setOfPossibleTraces : SUBSET(SetOfTraces)

∆

= UNION {
{SubSeq(d, 1, 2) : d ∈ setOfTraces},
{SubSeq(d, 1, 3) : d ∈ setOfTraces}, ... };

VARIABLES
currentTrace : Sequence;

INIT
∆

= ∧
currentTrace = << >>;

ACTIONS
possibleMessageOfSD(EventOccurrence1, EventOcurrence2)

∆

=
currentTrace ◦
<<EventOccurrence1, EventOccurence2>>
∈ setOfPossibleTraces ∧
currentTrace ′ = currentTrace ◦
<<EventOccurence1, EventOccurence2>> ∧

END

Fig. 7. Process type SequenceDiagram

responds to the union of all subsequences of SetOfTraces which are described
by the cTLA operator SubSeq 4 . Moreover, the cTLA process introduces a
variable currentTrace modelling the partial trace of events which already took
place during the system execution. An interaction between two UML objects
or between two UML actions of the same object is specified by the action
possibleMessageOfSD. Its action parameters EventOccurrence1 and EventOc-

currence2 describe the events taking place during firing the interaction. The
enabling condition of possibleMessageOfSD states that the action may only be
executed if the two events corresponding to the interaction lead to a partial
trace of occurred events which is permitted by the sequence diagram. The new
trace of events is stored by the variable currentTrace.

In the UML, sequence diagrams are used to describe the interaction of ob-
jects. Thus, they form a link between the state chart diagrams describing the
behavior of the objects. In consequence, we use the cTLA representation of
the sequence diagrams in order to model the interaction of the cTLA processes
specifying the statecharts. Therefore, in cTLA processes modelling a complete
system the cTLA action possibleMessageOfSD is coupled with the cTLA ac-
tions of the process instances representing the corresponding UML actions and
their events in the statecharts. In order to achieve correct compositions, we
assume that the state machines are statically bound. Thus, the alphabets of
the combined state machines can be mapped into each other.

In the example system outlined in Fig. 6, possibleMessageOfSD is coupled
with the actions callControl of the process modelling the adapter and get-

CallAdapter of the cTLA process specifying the concrete sensor. Each of these

4 The first argument of SubSeq describes the orignal trace d, the second argument indicates
which string of d is the first element of the subtrace, and the third argument refers to the
length of the subtrace.
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getValue()
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y : Real
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SensorProxy

x : Real

getValue()

11 11

ActorProxy

y : Real

setValue()
11 11

periodicTask

x : Real

y : Real

loop()

sleep()

awake()

interrupt()

resume()

1

1

1

1

1

1

1

1

Fig. 8. The class model of the detailed Controller

two actions contains an action parameter actionInfo1 resp. actionInfo2 de-
scribing the event occurrence related with the specified UML action. Since the
action parameters have to be equal to the parameters of action possibleMes-

sageOfSD, the two UML actions of the adapter and the concrete sensor may
only take place if the related event occurrence can be tolerated by the sequence
diagram.

8 Verification

As an example for outlining the refinement verification of systems, we use a re-
finement pattern for developing a distributed controller of technical processes.
A refinement pattern describes the correct refinement of an analysis pattern
by adding design-relevant information which is modelled in design patterns
and classes. The particular refinement pattern consists of an analysis pattern
describing the scenario of a controller, a sensor, and an adapter without in-
cluding the communication aspects and a design pattern for creating the real
controller. The UML class diagram in Fig. 1 describes the analysis pattern.
It consists of an abstract controller class which in periodic loops asks an ab-
straction of a sensor for certain values of the technical process. Based on this
value, a setting of the actor, which is also modelled abstractly, is computed and
forwarded to the actor. In contrast, the design pattern contains more detailed
objects describing the controller, the sensor, and the actor. Moreover, it con-
tains additional objects realizing the distributed communication between the
controller and the sensor resp. actuator. At the node executing the controller,
the sensor is represented by a special proxy object which maintains the data
transfer to the server site. Here, the communication is realized by an adapter
object which directly interacts with the proxy. Likewise, the communication
with the actor is also performed by means of a proxy and an adapter object.
The UML class diagram of the design pattern is listed in Fig. 8.

The goal of our verification is to prove that the refinement pattern per-
forms only model transformations where the behavior of the derived more
detailed UML specification does not contradict to the behavior of the original
abstract UML description. For this purpose, we transform both UML models
to cTLA specifications as outlined in Sec. 6 and 7. Thereafter, we perform
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qu
∆

= IF (pS.qu �= empty ∨ pS.sProxy ∈ {"deqCall", "procCall"} ∨
aS.qu �= empty ∨ aS.sAdapter ∈ {"deqCall", "procCall"} ∨
cS.qu �= empty

THEN <<SensorCall>> ELSE empty;

Fig. 9. Extract of the refinement mapping for the example proof

a cTLA refinement verification proving that any state sequence modeled by
the cTLA representatives of the design pattern is also state sequence specified
by the cTLA processes describing the more abstract analysis pattern. This
verification corresponds directly to our proof goal.

As an example for a cTLA specification, modeling a part of the design pat-
tern, we use an instance of the cTLA process Adapter (cf. Fig. 5) specifying
the adapters of the sensor and actor in the design pattern. An adapter run
is activated by receiving a call event from the proxy which is enqueued to the
message queue (cTLA action getCallProxy). Thereafter, the event is read
from the message queue and stored in the variable val (action dequeueCall).
Afterwards, the event may be processed (e.g., certain communication-related
computations are performed). This is modelled in the action processCall by
means of the function processFct which is defined as a cTLA action parame-
ter. In the next step, the processed value is handed over to the sensor (action
callControl). Similarly, the other cTLA actions model the handling of the
return of the call event which is received from the sensor and sent back to the
proxy. The actions modelling UML actions triggered by the adapter itself are
provided by weak fairness assumptions in order to guarantee lively behavior.
A weak fair action must not be enabled continuously without eventually being
executed.

The various cTLA processes are composed to a cTLA system specification
Φ of the detailed design pattern objects and Ψ of the abstract analysis pattern
objects. Fig. 6 depicts the compositional cTLA process concreteComposition
specifying Φ. The coupling is performed by defining system actions joint from
process actions. For instance, the action callControl of the cTLA process
instance aS, specifying the adapter of the sensor, is coupled with the cTLA
action getCallAdapter of the cTLA process cS modeling the sensor to the
system action getCallSensor which describes a method call of the adapter to
the sensor object. The verification of the refinement pattern is performed by
a TLA-based logic deduction proof of the implication Φ ⇒ Ψ.

Since the state spaces of Φ and Ψ are different, we have to define a so-
called refinement mapping (cf. [1]) from the states of Φ to those of Ψ. Here,
the compositional structure of the specifications facilitates the understanding
of the system behavior and, in consequence, fosters the detection of a suitable
refinement mapping. In particular, the abstract controller, sensor, and actor
are similar to their detailed counterparts and the mapping of their respective

G. Graw, P. Herrmann / Electronic Notes in Theoretical Computer Science 101 (2004) 3–24 19



variables is straightforward. The mapping of the proxy and adapter variables
is a little more subtle since they do not have counterparts in the abstract spec-
ification Ψ. A glance into Ψ, however, shows that, for instance, a getValue

call of the abstract controller leads to the enqueueing of a call event into the
message queue of the abstract sensor. In contrast, in Φ the call of getValue
leads to a sequence of operations in which the call event is forwarded through
the proxy and adapter objects before it can finally be enqueued into the mes-
sage queue of the detailed sensor. Therefore, one should map all states of Φ,
in which the proxy and adapter objects are involved in the transmission of the
call event to the sensor, to the state of Ψ where the call event is waiting in the
message queue of the abstract sensor. Likewise, one can treat the reply of the
call event as well as the events for manipulating the actuator. In consequence,
the refinement mapping for the variable qu describing the message queue of the
abstract sensor 5 is defined as outlined in Fig. 9. When in the detailed system
a call message is in the queues of the proxy, adapter, or the sensor resp. the
proxy or adapter are processing or transmitting the call message (their main
states are either in the state "decCall" or "proveCall", the message queue
qu of the abstract sensor contains a call message of type <<SensorCall>>.
Otherwise, qu is empty. By means of the refinement mapping, we can replace
the variables of the cTLA processes in the abstract system specification Ψ by
those of Φ achieving the modified specification Ψ. Lamport proved in [23] that
the proof Φ ⇒ Ψ is sufficient to verify the refinement between Φ and Ψ.

In the example proof we verify at first, that the safety properties (cf. [2])
of Φ and Ψ are consistent. Here, we have to prove that the initial condition of
Φ implies the initial condition of Ψ. Moreover, every system action of Φ has
to imply either a system action or a stuttering step of Ψ. As an example, we
look at the system action adapterDequeueCall of Φ which is coupled from
the process action dequeueCall in the adapter (cf. Fig. 6) while the other
processes of Φ perform a stuttering step. adapterDequeueCall is mapped to
a stuttering step in Ψ since according to the refinement mapping the vari-
able abstractSensor is not altered by the execution of the system action and
the other variables of Ψ do not depend on the variables of the cTLA process
Adapter. Since in our example, Φ consists only of a relatively small number
of reachable states, the proof of all safety properties could be performed auto-
matically by application of the model checker TLC [24,33] which finished the
proof within 4 seconds on a standard PC.

Liveness verifications are the second part of the refinement proof. By these
proof steps we guarantee, that the detailed system Φ fulfills the liveness con-

5 The complete refinement mapping as well as the specification and proof steps of the
refinement verification are depicted in the WWW (URL: ls4-www.cs.uni-dortmund.de
/RVS/P-OORT/ExampleProof).
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straints of the abstract system Ψ. As an example, we look on the system action
abstractSensorDequeueCall of Ψ which models the dequeueing of call events
from the message queue in the abstract sensor. This weak-fair action is real-
ized by the action sensorDequeueCall in Φ. Since sensorDequeueCall is also
provided by a weak fairness constraint, we have only to prove that, whenever
abstractSensorDequeueCall is constantly enabled, also sensorDequeueCall

will eventually be enabled. Moreover, sensorDequeueCall has to be enabled
until being executed. As outlined above, however, abstractSensorDequeue-
Call is enabled in all states when in the design pattern a getValue call event
is forwarded through the proxy and adapter objects. Thus, we have to prove
that the call event passes the proxy and the adapter in a lively manner and
will be eventually enqueued in the message queue of the detailed sensor ob-
ject enabling the action sensorDequeueCall. We have to find a sequence of
system states which are passed in the transmission process of the call event.
For example, after passing the event from the proxy to the adapter, the sys-
tem in succession passes states in which the variable sAdapter gets the values
"deqCall", "procCall", and "called" (cf. Fig. 5). When it is in the state
"called", the action sensorDequeueCall is enabled. Finally, we have to
prove that Φ may not last forever in a state of the sequence but eventually
proceeds to a successor state. Here, we can apply the fairness constraints of
Φ. For instance, the weak fairness assumption of the action dequeueCall in
the process Adapter guarantees that the action will eventually be executed if
sAdapter is in the state "init" passing to the state where sAdapter contains
the value "deqCall". This proof was also performed by TLC but due to the
large amount of states to check, the proof run lasts for about 80 seconds. By
application of TLC we proved at first that each initial state of Φ is mapped
to an initial state of Ψ and each state change of Φ corresponds either to a
state change or to a stuttering step of Ψ. Moreover, we proved that each
state change in Ψ enforced by a fairness assumption is fulfilled by the fairness-
enforced state changes of Φ. According to Abadi’s and Lamport’s refinement
mapping proof [1], this is sufficient to verify that Φ implies Ψ.

9 Concluding Remarks

We discussed that it is possible to formalize UML 2.0 diagrams on the base of
cTLA with an emphasis on new features of the upcoming standard. Moreover,
we showed how to prove properties of UML models applying the TLA proof
rules and the according calculus. Based on the experience of one author in a
software development enterprise, we are convinced that the specification lan-
guage cTLA is a suitable means to formalize actions and the different kinds
of diagrams of UML 2.0. Future research will concentrate on the following
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goals. Firstly, existing tools which are used for the transformation of UML
1.4 models into cTLA will be adapted (e.g., the adaption to the new action
semantics and to sequence diagrams based on MSCs). Furthermore, the for-
malization of sequence diagrams and activity diagrams using cTLA has to be
broadened. The CombinedFragments of sequence diagrams supporting several
different InteractionOperators offer new perspectives for research. Moreover,
the composition of actions in an activity should be investigated. We are going
to extend our approach to symbolic model proving (cf. [4]) which is a combi-
nation of model checking and theorem proving. Model proving seems to be
a promising approach for the automatic verification of software. Finally, we
will continue to provide analysis, design, and refinement patterns for several
application domains.
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