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Abstract. Automatic model checking can be employed to verify that
security properties are fulfilled by a system model. However, since se-
curity requirements constrain most, if not all, functional modules of a
system, such a proof needs to consider nearly all of the system’s control
and data flows. For complex real-life applications, that leads to a large
state space to be explored effectively restricting the applicability of a
model checker. To deal with this problem, we advocate a compositional
approach utilizing the features of our model-based engineering technique
SPACE. Both functional behavior and security-related aspects are spec-
ified using UML 2 activities. Further, we supplement each activity with
an interface behavior description which will be extended by a security
contract modeling certain security properties to be fulfilled by the ac-
tivity. This enables us to verify application-level security properties by
using contracts instead of their respective activities in model checker
runs so that the number of states to be checked is significantly reduced.
The approach is exemplified by an Android application example in which
one’s location must only be shared with certain recipients.

1 Introduction

An often underestimated reason for vulnerabilities and risks in application-level
security is that development flaws in real-life software systems are overlooked.
For instance, Iyer et al. [1] found out that 18% of all vulnerabilities listed in
the Bugtraq database resulted from design errors. To avoid such development
flaws, we extended our model-based approach SPACE for the development of
reactive systems [2] and its tool-set Arctis [3] to support also the creation of
secure software [4]. Engineering with SPACE and Arctis profits from the fact
that models are a clearer and more concise way to express a system than tradi-
tional program code. That makes it easier to keep track of the system behavior.
Moreover, due to its formal semantics [5], one can verify by syntactic inspection
and model checking that application-level security goals are kept by the system
model [6]. Finally, SPACE uses automatic code generation guaranteeing that the
implementation is a correct realization of the model [2]. Thus, we can be sure
that also the executed code complies with the proven security properties.
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Fig. 1. Security-enhanced Development Method (taken from [4])

While model checking can be executed with a high degree of automatism,
its weak point is the state explosion problem [7] which, in effect, constitutes the
limiting factor for applying it to large systems. That is especially relevant if one
wants to prove security requirements that often define and constrain all func-
tional modules of a system such that its whole state space has to be considered
(see [8]).

To tackle the state explosion problem, we advocate compositional verification
that is already used to verify properties related to the functionality [3] and
reliability [9] of a system. Here, we utilize the model composition mechanism
of SPACE in which behavior is specified by an arbitrary number of UML 2
activities [10]. Like Petri-nets, those are graphs modeling behavior as a flow
of tokens between the vertices via the edges. Activities are coupled with one
another by call behavior actions that we call building blocks. From one viewpoint,
a building block refers to a particular behavior expressed by an activity. From
the other viewpoint, a designator of a block may be incorporated in another
activity, and by so-called pins, tokens may flow between activities. Further, a
building block is amended with a behavioral interface description specifying the
order of token flows through its pins. One advantage of the approach is a high
degree of reuse. A block modeling recurrent behavior can be created once and
stored in a library. Thereafter, by adding its designator to other activities in a
drag and drop fashion, the behavior modeled by the block can easily be added to
various system models. According to our experience, on average 70% of a system
model corresponds to building blocks taken from assorted libraries [5].

The other advantage of using building blocks is compositional verification [3].
Here, when proving that an activity fulfills a certain property, we can replace
the activity of each of its building blocks by the block’s behavioral interface
description. As the interface description usually models a much simpler func-
tionality than the activity, the number of states to be checked is vastly reduced
(see, e.g., [9]). To use compositional verification also for the proof of security
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Fig. 2. The Location Application

properties, however, we have to extend the behavioral interface descriptions by
so-called security contracts modeling security properties to be fulfilled by a block.
In the model checker runs, we can then use these block-wise security properties
to verify that the overall system fulfills the system-wide ones.

Our approach facilitates the cooperation of application domain engineers
with security experts (see Fig. 1). In a first step, the domain engineers develop
a system specification utilizing blocks from the domain specific libraries. When
the model passes all checks for functional correctness [3], it is handed over to the
security experts who subject it to a security analysis. The outcome of this analy-
sis is an amended system specification containing only application-level security
risks that seem bearable. In a final step, the extended model is automatically
transformed to executable code in a two-step process.

In the context of security analysis, the verification of system security prop-
erties is used to detect potential flaws in the design which make the system
vulnerable against malicious attacks threatening its assets. Of course, such flaws
form a formidable risk for the system and the obvious countermeasure is to
change the system model such that its behavior fulfills the security properties.

2 Location Application – an Example

The system specification of our example is depicted in Fig. 2. It is an Android
application that allows one to share one’s current location, but only to a set of in-
tended recipients, i.e., friends. The specification consists of four building blocks
implementing various functionalities. The graphical user interface (UI) block
mui: Main UI handles the user’s input and displays relevant information for the
user on the device interface. Block c: Communication handles the exchange of
messages with peer applications running on other devices. This block encapsu-
lates the XMPP Client Android block which allows one to transmit messages



through an XMPP server. The current location of a device executing this appli-
cation is reported by block lu: Location Update. Finally, block pl: Proximity Logic
is responsible to manage location sharing, e.g., to respond to a location request
from a friend. It contains three inner blocks as shown in Fig. 3.

The Petri-net like semantics of the UML activities models states as tokens
resting in token places and state transitions as moving tokens along directed ac-
tivity edges [10]. In SPACE, all behavior follows the run-to-completion charac-
teristics [5]. This means, transitions are triggered by observable events, namely,
the reception of signals and the expiration of local timers, and completed by
reaching a stable state from which the next transition may be carried out.

The location application in Fig. 2 begins with a token flowing from the ini-
tial node (•) and activating the UI block. Thereafter, the system waits until
the device user enters the necessary credentials to use an XMPP server. As
soon as the credentials are received, a token carrying the data (in an object
of type Login) moves from pin login to the starting pin of the communica-
tion block. Upon successful login, the application proceeds by initiating block
lu: Location Update to obtain the present geographical location. Subsequently, a
token carrying the location data emits from pin started of block lu and passes
through a fork node which duplicates the token. One token is directed to pin
start of block pl: Proximity Logic, while the other one is forwarded to pin ready
of the UI block. Updates on the current position are reported by block lu via
pin loc and consumed by block pl through pin newLoc.

The specification shown in Fig. 2 also includes behavior that handles unsuc-
cessful credential verification and an input from the user to stop the application.
However, for brevity we do not detail this here, but rather focus on the location
sharing functionality which is handled mainly by block Proximity Logic.

As depicted on the left side of Fig. 3, block Proximity Logic becomes active
when a token carrying location data flows from parameter node start and passes
through a fork node. The downward pointing edge leaving the fork node shows
that a token with the location data initializes block h: Message Handler. The
other outgoing edge indicates that the Java operation getFriendList is executed.
The output of this operation is a list of friends which is stored locally. This list
is forwarded to a fork node with three outgoing edges, one of which initializes
block g: Req Generator. The second one sends the list of friends to block h while
the third directs a token through a merge node (�) to a timer which is started.
When the timer expires, block g generates location requests, one for each friend
in the list, and emits them one-by-one via pin aReq. A token flowing through pin
done indicates that all requests have been yielded and the next batch of requests
can be generated when the timer expires again.

The inner block b: Reactive Buffer decouples message reception from message
handling and, hence, is used to buffer messages while block h is busy process-
ing one message. A message is received through pin add of the buffer. When the
buffer is empty, it is emitted immediately via pin out ; otherwise, it is buffered. In-
voking pin next will get either the subsequent message in the buffer (via pin out)
or an indication that the buffer is empty (pin empty). Three types of messages
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Fig. 3. Block Proximity Logic

are buffered and handled, namely, generated requests, requests from peer appli-
cations running in different devices, and responses to the generated requests. A
message is received by the message handler block via pin in. Depending on the
message type and additional constraints, one of the following four alternative
behaviors is taken: (1) If the message is a generated request, it is emitted via
pin outReq. (2) If the message is a request from a person in the friend list, a
response containing the latest location is created and emitted via pin outResp.
(3) If the message is a response to a generated request and the friend’s location
is near, a notification is emitted via pin info (4) For all other cases, the message
is dropped. In addition, a token is emitted via the output pin next which after
a certain latency guaranteed by a timer leads to obtaining the subsequent mes-
sage from the buffer. The flows via the pins outReq, outResp and info of building
block h are forwarded to the pins of the same name of the block Proximity Logic
such that outgoing requests and responds are further sent to the communication
block while notifications are forwarded to the UI block (see Fig. 2).

3 Interface Contracts

Except for system-level blocks like the one in Fig. 2, building blocks are sup-
plemented with behavioral interface descriptions. As modeling technique for the
interface behavior, we use so-called External State Machines (ESMs) [11] that
specify the possible ordering of events visible on the activity pins. The ESM of
the block Req Generator is depicted on the right side of Fig. 3. It shows that
this block starts by receiving a token through pin init and entering state idle.
Thereafter, the block can receive a token via pin generate upon which it will
emit requests, one at a time, via pin aReq. After having generated requests to a
list of recipients, the block returns to state idle emitting a token via pin done.
Later, the next batch of requests can be created upon receiving a new generate



event. The transitions labeled with / show that block Req Generator allows its
surrounding block, in our case the Proximity Logic, to terminate it anytime.

An ESM must be respected both by the activity and its environment in order
to guarantee a correct interaction between them. Such property can be verified
automatically by a model checker due to the formal semantics of the activities [5].
As mentioned in the introduction, the ESMs enable compositional verification
of a system specification: After proving that an activity and its corresponding
ESM are consistent, we can represent the blocks of an enclosing activity by their
ESMs instead of their activities when model checking that the enclosing activity
fulfills certain properties.

Compositional verification is also applied for the verification of reliability
and dependability issues. Since the reliability of systems is often guaranteed by
using several instances of a critical component and the ESMs are not suited
to describe the interface behavior of such multi-instance components, we ex-
tended them with auxiliary variables which can be used in transition guards
and effects. The resulting interface descriptions are named Extended External
State Machines (EESMs) [12]. Further, an extension of the EESMs enables us
to specify indeterministic interface behavior following from component failures,
e.g., non-responsiveness or a reset to the initial state. In consequence, we could
reduce the number of states to be model checked by several orders of magnitude
(see [9]). This encouraging result has lead us to use compositional verification
also for security properties which will be discussed in the following.

4 Modeling Security-Relevant Aspects

A highly relevant asset of applications running on modern smartphones is the
phone’s location which can be retrieved by the built-in GPS receiver or by tri-
angulation of WiFi base stations. Of course, the location data must not leak to
unauthorized principals since that would violate the privacy of the phone user
and might also be a severe risk for her/his personal safety. Thus, with respect to
application-level security we have to avoid that an erroneous system layout may
lead to the unauthorized transmission of the location information. In the exam-
ple presented in Sect. 2, for instance, we have to guarantee a security property P
expressing that “one’s geographical position may only be sent to one’s friends”.

As described in [3], the semantics of the SPACE approach and its tool-set
Arctis is based on Leslie Lamport’s Temporal Logic of Actions (TLA) [13]. This
enables us to specify security properties like P by abstract system specifications
or invariants in TLA and use the model checker TLC [14] to verify that they are
fulfilled by the TLA representation of a SPACE model.

A suitable notation for the security contracts used to add security properties
to the interface contracts are the EESMs [12]. They allow to insert additional
variables and constants in transition guards and effects. As an example, we list
the EESM of the block Proximity Logic in Fig. 4. It uses three control states,
i.e., the initial state (•), idle and pl active. Besides of the pin identifiers similar
to those used in the ESMs (see Sect. 3), a transition can be provided by a guard
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consisting of a logical predicate framed by square brackets as well as operations
on the variables which are described using Java-like statements in lined boxes.
The EESM in Fig. 4 contains a variable v loc storing the current location of the
own device. The initial transition is carried out during system start and leads
from the initial state to idle. In its effect part, the variable v loc is set to an
initial value expressed by the constant IV. The activation of the block takes
place when a token containing the current location as a parameter l reaches
the pin start. The corresponding transition switches the control state from idle
to pl active. Further, it demands that l is indeed location information which is
described in the transition guard and sets the variable v loc to l . The block can
only be terminated implicitly by closing down the overall system which, like in
the ESMs, is expressed by the transition /. Here, the control state is set back to
idle again and v loc to the initial value IV.

Particularly interesting for the security proof of property P are the transitions
outResp and outReq since the tokens leaving through them contain the messages
to be sent by the communication block. The transition outResp uses a parameter
resp specifying the message to be sent in the token. According to the guard of the
transition, resp is a triple containing the address from the friends list expressed
by the constant FList as the recipient address t (to). The sender address f (from)
contains the user’s address which is described by the constant ME while the
content c includes the device’s location data which is stored in the variable v loc.
The transition outReq is similar with the exception that the message content is a
request (expressed by the constant REQ) asking the recipient for its geographical
position. Thus, the EESM specifies that all messages passing pins outResp and
outReq have a friend as a recipient address.



module EESMProximityLogic

extends Naturals
variables state, v loc
constants FList ,ME ,REQ ,LOC , IV

Init
∆
= state = “ idle” ∧ v loc = IV

start(l)
∆
= state = “ idle” ∧ l ∈ LOC ∧ state ′ = “pl active” ∧ v loc′ = l

newLoc(l)
∆
= state = “pl active” ∧ l ∈ LOC ∧ v loc′ = l ∧ unchanged state

incReq(req)
∆
= state = “pl active” ∧ req .t = ME ∧ req .c = REQ

∧ unchanged 〈 state, v loc 〉

incResp(resp)
∆
= state = “pl active” ∧ resp.t = ME ∧ resp.c ∈ LOC

∧ unchanged 〈 state, v loc 〉

outReq(req)
∆
= state = “pl active” ∧ req .t ∈ FList ∧ req .f = ME ∧ req .c = REQ

∧ unchanged 〈 state, v loc 〉

outResp(resp)
∆
= state = “pl active” ∧ resp.t ∈ FList ∧ resp.f = ME

∧ resp.c = v loc ∧ unchanged 〈 state, v loc 〉

implicit termination
∆
= state = “pl active” ∧ state ′ = “ idle” ∧ v loc′ = IV

Fig. 5. Security Contract expressed as a TLA+ specification

EESMs can be automatically transformed into specifications in TLA+ [13],
the notation of TLA and the input language of the model checker TLC (see [12]).
TLA is a linear-time temporal logic in which state transition systems are speci-
fied using variables for the states and actions (i.e., predicates on pairs of states)
for the transitions. The TLA+ specification of the EESM of the block Proximity
Logic is listed in Fig. 5. It uses the variables state denoting the current control
state of the EESM as well as the additional variable v loc. Init is a predicate
specifying the beginning state of the block, i.e., idle. The other seven definitions
model the transitions of the EESM in form of actions. Here, a simple variable
identifier refers to the state before carrying out an action, whereas an identifier
marked by a prime symbol (′) points to the state after its execution. For exam-
ple, before triggering the action start, the variable state is equal to idle while
afterwards it carries the value pl active. Further, this action is only enabled if
its parameter l is of type LOC and the variable v loc in the next state is l .

5 Compositional Verification

In TLA, the verification, that an application specification Spec fulfills a secu-
rity property P, corresponds to the implication proof Spec ⇒ P. To carry out
this proof, we transform the SPACE model of the application into TLA+ spec-
ifications of the activities and EESMs that are coupled with each other in a
constraint-oriented way (see [15]), forming the system specification Spec. The



security property P is modeled as an abstract system specification or an invari-
ant in TLA+ as well. As discussed above, a system-level activity can contain
any number of building blocks referring to other activities which in turn may
encapsulate other activities (see Fig. 2 and Fig. 3 as an example). Reflecting
that constraint-oriented composition corresponds to conjoining TLA formulas,
Spec is defined as the conjunction of the TLA+ specifications of all activities
modeling the application:

Spec , As ∧
∧

b∈BlocksAb (1)

Here, Blocks is the set of all building blocks, while Ab denotes the TLA+ spec-
ification of the activity referenced by block b. With As , we refer to the system
activity. For our location application in Fig. 2, As corresponds to activity Loca-
tion App while the set Blocks contains eight elements, namely, mui, c, lu, pl, h, b,
g, and x. The first four elements refer to the activities Main UI, Communication,
Location Update, and Proximity Logic respectively (see Fig. 2). The elements h, b
and g point to the activities enclosed by the block pl (see Fig. 3), while x marks
the activity XMPP Client which is enclosed by the communication block c.

To prove Spec ⇒ P by compositional verification, we have to conduct two
major steps. First, we verify that all activities Ab (except the one on system
level) are consistent with their corresponding EESMs. To clarify this proof, we
perceive a system specification as a tree of activities. Here, an activity Ab is the
parent of another activity Ac if the designator of the building block c referring
to Ac is enclosed in Ab . The system activity As forms the root of this tree, while
those activities not containing any building blocks are the leaves.

We prove now for every activity Ab in the tree except for the root that
it fulfills its EESM Eb whereupon we represent its children activities by their
EESMs:

Ab ∧
∧

c∈Children(b)Ec ⇒ Eb (2)

Proving equation (2) for all activities except for the system activity is suffi-
cient since one can deduce by induction that all activities fulfill also the equation

Ab ∧
∧

c∈Descendants(b)Ac ⇒ Eb (3)

in which Descendants refer to all the descendants of an activity in the tree. The
starting step of the induction is the verification that equation (3) follows from (2)
for all leaves of the tree. This proof is trivial since the leaf activities do not have
any descendants at all. In the inductive step, we have to verify that an activity
Ab fulfilling equation (2) also guarantees equation (3) as long as (3) holds also
for all of its children. Likewise, this proof is easy since the descendants of the
children of Ab are also its own descendants. Therefore,

∀k ∈ Children(b) : Ab ∧
∧

c∈Descendants(b)Ac ⇒ Ek

holds and equation (3) can be directly deduced from (2).



In TLA, a verification of equation (2) is achieved by employing a refinement
mapping [16], i.e., a mapping between the state spaces of Ab and Eb guaranteeing
that an initial state of Ab is mapped to an initial state of Eb , and that a TLA
action of Ab is either mapped to an action in Eb or to a stuttering step in
which the variables in Eb do not change. The refinement mapping proof can
be automated by the model checker TLC, whereat the use of the EESMs of
Ab ’s children keeps the number of states to check low. We cannot detail the
verification process here, but the proofs are similar to the ones presented in [12].
One of the EESM proofs in our location example was Apl ∧ Eg ∧ Eh ∧ Eb ⇒
Epl stating that the activity Proximity Logic in Fig. 3 fulfills its EESM that is
depicted in Fig. 4.

In the second major proof-step, we use the EESMs of the children of the root
activity As to verify the security property P:

As ∧
∧

c∈Children(s)Ec ⇒ P (4)

From this equation and the fact that the children of As are blocks in the system
specification Spec, we can infer Spec ⇒ P since for all the children of As equation
(3) holds as well. For the proof of equation (4), we use the model checker TLC
which again profits from using the EESMs of the inner blocks instead of their
activities such that the number of states to be checked can be reduced in all of
our TLC model checker runs.

An excerpt of the TLA+ specification of our location application is depicted
in Fig. 6, in particular, ALocationApp ∧ Emui ∧ Ec ∧ E lu ∧ Epl ⇒ P. Variables
and constants used in the specification are declared in the section Variables
and Constants Declaration. Most of them represent the variables and constants
defined in the EESMs, including the ones modeling security related aspects.
The section Using the EESMs of Inner Blocks contains four instantiation state-
ments used to couple TLA+ specifications into the system description. For in-
stance, in the last statement, module EESMProximityLogic (see Fig. 5) is in-
stantiated and denoted as pl . Here, the variables state and v loc of the instanti-
ated module are respectively substituted by variables pl state and pl v loc of the
application specification. Likewise, all the constants in the EESM are instan-
tiated, albeit implicitly since they are substituted with constants of the same
name. By the other three statements, the EESMs of the block instances mui ,
c, and lui are composed. The instances enable us to refer to EESM transitions
by 〈instance〉 !〈EESM transition〉 (e.g., pl !outResp(resp)). These references are
used to specify events in an enclosing activity as exemplified in Fig. 6 by the
section labeled with System Actions. The TLA action pl outResp(resp) defines
that response resp emitted by block Proximity Logic (pl !outResp(resp)) is sent
by block Communication (c !send(resp)) which, among others, stores a mes-
sage sent to another station in the auxiliary variable1 c v out . Moreover, the
unchanged statement points out that the blocks Main UI and Location Update
are not involved in the action and do not change their variables.

1 Auxiliary variables do not influence the behavior of a system but support verification.



module Location App

Variables and Constants Declaration
variables pl state, c state,mui state, lu state, pl v loc, c v out , c v enOut , c v enLgn
constants FList ,ME ,REQ ,LOC , IV ,Any ,Ciphertext ,Login

Using the EESMs of Inner Blocks

mui
∆
= instance EESMMainUI with state ← mui state

c
∆
= instance EESMCommunication with state ← c state, v out ← c v out ,

v enOut ← c v enOut , v enLgn ← c v enLgn,Recepient ← FList ∪Any

lu
∆
= instance EESMLocationUpdate with state ← lu state

pl
∆
= instance EESMProximityLogic with state ← pl state, v loc ← pl v loc

System Actions

pl outResp(resp)
∆
= pl !outResp(resp) ∧ c !send(resp)

∧ unchanged 〈mui state, lu state 〉
. . .

TLA+ System Specification

Init
∆
= pl !Init ∧ c !Init ∧ mui !Init ∧ lu !Init

Next
∆
=

∨ ∃ r ∈ [t :FList ∪Any, f : {ME} ∪Any, c : {REQ} ∪ LOC ∪Any ] : pl outResp(r)
∨ . . .
vars

∆
= 〈 pl state, c state,mui state, lu state, pl v loc, c v out , c v enOut , c v enLgn 〉

Spec
∆
= Init ∧�[Next ]〈vars〉

P ∆
= �((c v out = IV ) ∨ (c v out .c ∈ LOC ⇒ c v out .t ∈ FList))

Fig. 6. Excerpt from the TLA+ specification of the Location App

In section TLA+ System Specification of Fig. 6, the TLA+ specification mod-

eling block Location App is written as the so-called canonical formula Spec
∆
=

Init ∧ �[Next ]〈vars〉. It expresses that the initial state of the application fulfills
the predicate Init and that every state change follows one of the system actions
which are disjuncts of the next state relation Next . By [. . .]〈vars〉, one models
that stuttering steps in which the list of variables vars do not change are also
allowed.

The security property P, i.e., “one’s locations are only sent to one’s friends”
is expressed by the TLA invariant that is listed in the bottom part of Fig. 6.
It states that at all times the variable c v out storing the messages sent to
other recipients carries either the initial value IV (i.e., no message has been
sent yet) or that a sent message containing location information is sent to the
address of a friend. We use the TLC model checker to verify both, P and the
security property “the credentials used to login to an XMPP server are sent via
a secure communication channel”. The performance issues of the model checker
runs proving these two security properties will be discussed below.



Table 1. Verification effort: compositional approach vs. direct approach

compositional 
approach

Number of elements for each set

states (largest)

time (total)

states

time

states (x largest)
direct 
approach 

time (x total)

1 047 503

! buffer size = 2

12 sec

19.45 x

224 sec

18.67 x

6 248

984 53 855 823 174 6 568 677

2 sec 44 sec 331 sec

> 25 M -

6.35 x > 30 x -

-

-

6 sec

3 x

> 2 hours

>  163 x

1 2 3 4

states (total)

states (x total)

1 204 56 200 837 810 6 630 076

5.19 x 18.64 x > 29 x -

6 Model Checking Performance

To evaluate the advantage of employing EESMs for verification of security prop-
erties, we compare the result of model checking the example application with
two approaches: The first one is the compositional technique described above,
i.e., proving formula (4) for the system block Location App in Fig. 2 and formula
(2) for the eight inner blocks mui, c, lu, pl, h, b, g, and x. The other one is the
direct method in which the TLA+ specifications of all activities of the system
are used, i.e., equation (1).

We model checked the compositional and direct approaches on a 2.4 GHz,
8 GB personal computer. The result is presented in Tab. 1. Both versions use the
same sets representing various types of data (e.g., FList denotes a list of friends).
Since TLC works by generating behaviors that satisfy a specification, we needed
to declare the elements of those sets. We used the same elements for each set
in the specifications of both approaches and decided to use the size of a set as
the parameter to compare the verification effort. Further, one restriction, i.e.,
a maximum buffer size, was required since, otherwise, the specifications related
to the reactive buffer would have infinitely many reachable states due to arbi-
trarily many sequences of messages stored by the buffer. For the compositional
approach, we present three types of data in Tab. 1: The values in the first row,
obtained from proving formula (2) for block pl: Proximity Logic, show the largest
number of states created in a single model checker run reflecting the maximum
amount of memory needed. In the second row, we simply add the number of
states checked in all nine runs. Similarly, the total amount of time to model
check all nine blocks is shown in the third row. These values are compared with
the respective number of states and verification time of the direct approach.

Observing Tab. 1, we see that the number of states found by the model
checker for the direct version is much higher compared to the compositional
version. In consequence, also the execution time of the model checker runs grew.
For example, using sets consisting of two elements, the state space of the direct



version is more than 18 times larger than the composed version’s. Further, it also
takes about 18 times longer to verify the direct version than the compositional
one. Moreover, the state and time differences between the compositional and the
direct verification increase with a growing set size. Indeed, the direct approach
effectively fails when the set size reaches the value 4 while the compositional
verification is still manageable in a few minutes.

Altogether, these results confirm our experience with functional and reliabil-
ity checks mentioned above that utilizing the SPACE building blocks and their
interface descriptions for model checking effectively reduces the state explosion
problem. Thus, it helps to make automatic analysis more feasible for real-life
systems. In addition, the effort to verify systems that are developed with al-
ready proven blocks is further reduced since ensuring the conformity of a block
to its interface contract only needs to be done once.

7 Related Work

Various methods have been proposed to support the development of secure sys-
tems. UMLsec [17] is a UML profile that is used to incorporate security-related
information such as fair exchange and secure communication links in various
UML diagrams. SecureUML [18] is a modeling language tailored to integrate
Role-Based Access Control policies into application models defined with the
UML. Similarly, integration of Mandatory Access Control with UML is proposed
in [19]. Approaches based on aspect-orientation, modeling security mechanisms
as aspects which are automatically weaved in at joint points of a specification,
have also been proposed (see, e.g., [20–23]). The CORAS approach [24] defines
a modeling language to support security risk analysis for systems designed with
UML. Its UML diagrams are mainly devoted to model the various steps of a
security analysis while the purpose of ours is to express system behavior.

Since systems are usually composed from numerous parts, specifying secu-
rity aspects in the components and verifying system-wide security properties
has been the focus of a number of approaches. To support the development
of security-critical applications, Moebius et al. proposed SecureMDD, a model-
driven technique that includes verification of application-specific properties [25].
For large systems, they take an incremental approach for which some functional-
ity is added in every step such that security proof needs to be repeated in every
iteration [26]. In contrast, in our approach functional behaviors are composed in
a constraint-oriented way. Deng et al. proposed a method to model security sys-
tem architectures and verify whether required security constraints are assured by
the composition of the components [27]. However, unlike our work, it employs a
top-down approach. Security policies are specified as application-wide constraint
patterns which are further decomposed onto the individual components of the
system. In [28], Khan et al. present a framework to construct compositional se-
curity contracts based on the required and ensured security properties exposed
by the atomic components. Although the contracts help engineers to character-
ize the security aspects of a composed system, the framework does not include



validation whether the contracts fulfill the security requirements of the system.
Other work that aims to address security issues in software systems consisting
of simpler components can be found in [29–31].

8 Conclusion

In this paper, we introduced security contracts that encapsulate both functional
and security aspects of a building block. Due to the formal semantics of the con-
tracts, model checking can be employed to ensure that the contracts and their
corresponding blocks are consistent. Furthermore, we showed that such contracts
enable compositional verification of application-level security properties which
significantly reduces the number of states to be checked and, consequently, also
the verification time. On the whole, these behavior and security interface descrip-
tions facilitate model-based development of secure systems: Security mechanisms
enclosed in building blocks [4, 6] are easily integrated with blocks modeling other
functionalities, and both kinds of blocks can be (re-)used in various application
designs. The security contracts specify security properties fulfilled by the blocks.

Currently, we are investigating in separating the development of the security
contracts from using them in proofs of system-wide security properties. This sup-
ports the nature of SPACE-based system engineering that building blocks are
often developed independently from the applications and stored in libraries. To
achieve that, we need to find a way that relevant security aspects of a block can
be anticipated, modeled in a security contract, and proven without knowing the
applications using the block. As a solution, we consider to employ application
domain-oriented information security ontologies stating relevant assets, vulner-
abilities and threats (see also [32]). For example, an ontology for Android may
contain passwords and location information as typical assets of Android devices
and leaking them as a typical confidentiality threat. Based on that, a security
expert might annotate the building blocks of the Android library by security
contracts addressing the elements of this ontology. Moreover, an ontology may
contain a list of system-wide security properties to be fulfilled by systems of that
domain (e.g., an Android device may never send a password to anybody).

Like the security contracts which are represented by EESMs, one can also
define the system-wide security properties in a more comprehensible syntax than
plain TLA+ effectively reducing the required expertise in formal methods. This
complements our experience with functional system development in which engi-
neers analyze their models by just pushing a button which leads to a message
containing that everything is correct or a list of errors in an easily understand-
able format. Further, the trace towards a state violating a property is animated
directly on the SPACE models [3] such that the engineer does not need to under-
stand the formalism of the model checker running in the background at all. We
want to achieve a similar procedure for the verification of security properties.
By describing the system security properties in an easily understandable way,
at least basic security protection can be done directly by the domain engineers



without involving the security experts in excess of the creation of the building
block security contracts. This will ease the development of more secure software.
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