
A Tool-Supported Method
for the Design and Implementation
of Secure Distributed Applications

Linda Ariani Gunawan, Frank Alexander Kraemer, and Peter Herrmann

Department of Telematics
Norwegian University of Science and Technology (NTNU)

Trondheim, Norway
{gunawan,kraemer,herrmann}@item.ntnu.no

Abstract. We describe a highly automated and tool-supported method
for the correct integration of security mechanisms into distributed ap-
plications. Security functions to establish and release secure connections
are provided as self-contained, collaborative building blocks specifying
the behavior of several parties. For the security mechanisms to be ef-
fective, the application-specific model needs to fulfill certain behavioral
properties, for instance, a consistent start and termination. We identify
these properties and show how they lead to correct secured applications.

1 Introduction

Security is a significant aspect in the design and implementation of networked
systems. Despite this fact, security is still an aspect that many developers con-
sider as one of the last steps during system development [1]. One of the reasons is
that developing secure applications needs substantial expertise [2, 3]. This level
of expertise may exceed what one can expect from average developers who are
rather experts in their specific application domains. For security experts, on the
other side, it may likewise be difficult to cope with the domain-specific appli-
cations. In addition, even when security mechanisms themselves are sufficiently
understood, their integration into an application needs careful consideration in
order to be effective (see, for instance, [4] for integrating TLS [5] into applica-
tion layer protocols). This means that both knowledge of a specific application
domain and of the appropriate security mechanisms are needed.

Since security is an aspect that spreads and entangles with many components
in an application [6, 7], it can be difficult to separate this aspect from the appli-
cation’s functional part. However, from our experience with model-driven design,
analysis and refinement of distributed applications, we see that there are cases
in which, given that certain preconditions hold, some security mechanisms can
be effectively integrated into the system by a highly automated process which
we can support by tools. The employed strategy here is three-fold:

1. We check that an initially unsecured system fulfills certain necessary struc-
tural and behavioral properties.



2. We automatically encapsulate parts of the specification with security mech-
anisms.

3. The protected specifications are integrated into the complete system model.

The preconditions address mainly functional properties and can be easily
understood by domain experts and checked by tools. Due to the high degree of
automation, the process of introducing the security mechanisms only requires
basic knowledge. As a result, domain experts can spend most of their attention
on their respective fields, while security experts may focus on the provision of
general security mechanisms that can be applied to an entire class of systems.

In this paper, we present a highly automated and tool-supported approach
that extends our previous method on model-driven engineering SPACE [8] with
its tool-suite Arctis [9] and implements the strategy described above. As will be
detailed later, the method benefits from the collaborative specification style of
SPACE to model both functional and security aspects. We show that the secured
applications produced by the method fulfill important security goals and hence
the method correctly integrates security mechanisms into functional models.

1.1 Collaborative Specification Style

To specify a distributed application, we use a specification style that is based
on collaborative building blocks [8]. These are the major design units which can
cover both local behavior within components and interactions between them.
As we will later see, this has the benefit that security mechanisms for commu-
nication, which are inherently collaborative, can be expressed by self-contained
building blocks. Moreover, the specification style enables a rapid application
development since, as shown in [10], on average more than 70 % of a system
specification can be taken from reusable building blocks provided in various li-
braries [11]. The semantics of the specification is formally defined in [12] which
makes it possible to guarantee important system properties, e.g., the correct
usage of building blocks and the boundedness of communication, by the model
checker included in Arctis [9].

As an example, we built an application for a telemedical consultation that
enables patients to consult a physician by chat. Since the physician cannot de-
termine the exact time when a patient can be served, the application contains
an active waiting queue, in which the patient registers and gets informed about
when the consultation begins. Figure 1 shows the specification of the application.
It is a UML 2.0 activity consisting of two partitions, patient and physician, which
denote the two participating entities for this system. The activity is composed
from six building blocks that refer to subordinate activity diagrams (ignore for
now the one labelled SecureChat). The blocks have pins on their frames that are
used to compose their behavior. A starting pin (see the legend in Fig. 1) is used
to start a block which is only allowed when it is idle. Once a block is started,
data can be passed in either direction via streaming pins. Termination of a block
is modeled by terminating pins. The blocks u1:QueueUI and u2: ChatUI on the
patient side encapsulate the user interfaces for the queueing function and the



«system» Telemedical Consultation
patient physician

q: Queue Handler
start

q-update: 
QInfo

c: Chat
start

started
in-init: Msgin-resp: Msg

out-init:Msgout-resp: Msg
end-req-initend-req-resp
end-ind-initend-ind-resp
end-cnf-initend-cnf-resp

start-ind

u1: Queue UI
start

request

info:
PQInfo

info:
PQInfo

started
r: Req Handler
start
update:
QInfo

accept

close

close

closing closedclosed

u3: Chat UI
start
out: Msg
in: Msg

close closed

stop-req
stop-ind

u2: Chat UI
start

out: Msg
in: Msg

closeclosed

stop-req
stop-ind

t: PQInfo

isNew

get t
[true]

[false]

c: Secure Chat

start
started

in-init: Msgin-resp: Msg

out-init:Msgout-resp: Msg

end-req-initend-req-resp
end-ind-initend-ind-resp
end-cnf-initend-cnf-resp

start-ind

error-initerror-resp

starting
streaming input
streaming output
terminating

Legend:

Fig. 1. Medical Consultation System

actual chat. The physician part has similar blocks, i.e., r and u3. The build-
ing blocks q:QueueHandler and c: Chat are assigned to both participants. They
are collaborations, and their task is to manage interactions between the pa-
tient and the physician. The protocol to handle the queueing is encapsulated in
q:QueueHandler, while c: Chat contains the necessary interactions for the chat.

The application is initiated on the patient side with the initial node (•) that
starts u1:QueueUI. Then, via this UI, the patient can issue a request to get
medical consultation, which is expressed by a flow from the streaming output
request to the starting pin of q:QueueHandler. A signal carrying this request is
sent to the physician part which further starts block r: ReqHandler. Thereafter,
the queue information in this block is appended, encapsulated in an QInfo object,
and sent via pin update. Block q receives this, extracts necessary data, and
forwards the data via streaming output info. This information is futher displayed
to the patient. Updates on the queue information are also sent periodically in the
same manner. However, an update is forwarded to the patient UI only if it is new,
as denoted by operation isNew which contains a corresponding Java method and
the two choices following a decision node (�). When it is the patient’s turn to
be served, the block r emits an event accept and terminates. This event triggers
the closing of blocks u1 and q. Then, the c: Chat block is started.

As depicted in Fig. 1, the start of the chat collaboration also initiates the
related UIs. Thereafter, both participants can send and receive messages at will
via pins in and out on their respective UIs. This message exchange is governed
by block c: Chat as shown by the flows through the corresponding pins. One
side may decide at any time to terminate the chat, which is also managed by
the chat block. To handle the termination consistently, it declares its intention
via either pin end-req-resp or end-req-init, whereupon the other side receives an



indication. Any remaining chat messages that are obtained by the block before
the indication are sent. Thereafter, the patient and subsequently the physician
sides of the chat collaboration are closed. This also accounts for a situation in
which both sides decide to terminate at the same time.

1.2 Security Goals

In the following, we focus on the protection of signals carrying sensitive or pri-
vate information exchanged between two entities. Our method to integrate this
protection into a distributed application such as the telemedical consultation in
Fig. 1 ensures the fulfillment of three security goals as motivated below.

Due to the computation and resource penalty from executing cryptographic
operations (like encryption or digital signature generation), the secure connec-
tion is generally only used as long as required. Therefore, in the life span of a
distributed application, there may exist unsecure and secure phases. It is impor-
tant to ensure all signals that require protection are only transferred in a secure
mode. We formulate this goal as follows:

G1 While in secure mode, all signals are transferred with protection. In other
words, during the secure mode either a correct, secured transmission of
flows occurs or an attack is detected.

To avoid vulnerabilities due to the interference of application-specific commu-
nication with the security functions, no application signals can be transferred
during secure mode establishment and termination. Therefore, our method real-
izes the following goal:

G2 The four phases, namely unsecure mode, secure mode establishment, se-
cure mode and secure mode termination, are all distinct, i.e., signal trans-
missions belonging to different phases do not interleave.

As shown in [13–15], combining several secured security mechanisms can poten-
tially lead to vulnerabilities. To avoid this problem, the applications obtained
by using our method must not contain duplication of security mechanisms. We
formulate this last goal as follows:

G3 The protected system specifications do not contain duplication of security
mechanisms.

1.3 Overview of the Method

Figure 2 illustrates how our method transforms a functionally correct but un-
protected system specification through three systematic steps into a protected
one that fulfills the goals listed above. As a first step, the specification is assessed
in order to determine which collaborations need to be protected. Risk-based as-
sessment like in [16] can be applied here. This step is performed manually since
the information to be protected is different in each application. Thereafter, using
our analysis tools, both the system specification and the to-be-secured collabo-
rations are checked for the fulfillment of properties which we will later discuss
in detail.



System 
Specification

Assessment

Check

Properties

Collaborations 
to protect

Embedding

Secured 
Collaborations

Security Library

Integration

Secured System 
Specification

G1 - G3

System 
Specification

Collaborations 
to protect

System 
Specification

Secured 
Collaborations

=>

STEP 1 STEP 2 STEP 3

Legend: ... manual ... tool-supported

Fig. 2. Security Integration Method with Tool-Support

When all the properties are fulfilled, the next step is to embed security mech-
anisms into the collaborations to protect. These mechanisms that are also mod-
eled as reusable collaborative building blocks are taken from a security library.
This step is highly automated utilizing graph transformation techniques and
produces, for each block to protect, a secured one that integrates the security
blocks with the corresponding original block.

The last step to obtain a protected system specification is to integrate secured
collaborations into the unprotected blocks. This step includes replacing the col-
laborations to be secured with their corresponding protected collaborations as
illustrated by the SecureChat block in Fig. 1. The substitution process is also
highly automated. However, a manual inspection may still be needed since the
new block contains additional pins as will be described further in Sect. 3.3.

In the following, we will describe the dedicated building blocks used to protect
collaborations in Sect. 2. Thereafter, in Sect. 3 we detail the integration method
illustrated in Fig. 2 and apply it to our telemedical consultation example. The
discussion in Sect. 4 provides a proof-sketch that shows how specifications treated
by our method fulfill the security goals stated above. We end with a discussion
of related approaches in Sect. 5 and concluding remarks in Sect. 6.

2 Building Blocks for Secure Connections

As shown in Fig. 2, security functions are integrated by dedicated blocks. These
blocks require certain mechanisms integrated into the underlying runtime-support
system responsible for executing components, which we describe first.

2.1 Preparing the Runtime Support-System

To execute an application, our tool Arctis [9] automatically generates a software
component for each partition of a system specification [17, 18]. As an example,



Endpoint

Security

Transport

Signals

Signals,
protected in
secure mode

Notifications

Untrusted Channel

Schedulers
State Machines

Fig. 3. An Endpoint

the system in Fig. 1 is realized by one component for the patient and one for the
physician. Each component consists of four parts, namely state machines, sched-
ulers, a security module, and a transport module, as depicted in Fig. 3. State Ma-
chines are automatically generated from the collaboration-oriented models and
contain the application-specific execution logic in the form of states and tran-
sitions. Every transition is triggered by an event dispatched by the Schedulers.
The Transport Module simply sends and receives signals using the underlying
channels and performs the necessary serialization of data.

To protect signals conveyed by the untrusted channel, we use the Security
Module between the schedulers and the transporter. This module handles the
establishment and termination of secure modes with other endpoints. When
operating in a secure mode, all signals between any state machine handled by
a pair of endpoints are protected by encryption and integrity measures. We
employ symmetric encryption and keyed message authentication code which use
generated keys derived from a shared secret that is negotiated during a secure
mode creation. SSLEngine [19], a transport-independent Java implementation
of TLS [5], is used to provide this security feature.

In order to correctly apply the protection, the security module needs to com-
municate with the application logic through the following two mechanisms:

1. The application may obtain a handle to the security module and invoke
particular methods.

2. The security module may send a notification about an occurrence of a
certain event to the application. This notification is sent by using an
internal signal to a specified state machine via its corresponding scheduler.

2.2 Building Block for the Secure Mode Establishment

The establishment of a secure mode (SM) between two components needs the
cooperation of the security modules in both endpoints, which is why it is encap-
sulated as the collaboration shown in Fig. 4. After the block is activated, the
initiator gets the required parameters which are encapsulated in an SMParam
object and obtained via the block m1:KeyManager.1 Next, the operation pre-

1 This block manages the public/private keys of an entity and thus is part of a public
key infrastructure. For brevity, this block is not discussed further in this paper.



SM Establisher
initiator

start prepare

responder

readysucceed error-init:String

establish

reason: String reason: String
SM_READY

m1: Key Manager
key: SMParamget

m2: Key Manager
key: SMParamget prepare

SM_ERROR SM_ERROR

error-resp:String

SM_READY

Fig. 4. Secure Mode Establisher Block

pare is invoked in which the parameters are passed to the corresponding secu-
rity module as described by the first mechanism of communication explained
in Sect. 2.1. Subsequently, the responder also obtains and sets its parameters,
and is then ready to receive a notification from its own security module using
the second communication mechanism. This notification is either SM READY
or SM ERROR, indicating a successful respective failed attempt. Since these
events are mutually exclusive, the terminating pins following these nodes are
shown with additional boxes. After the preparation, the initiator starts the setup
via operation establish that obtains a handler of its security module and invokes
a provided method in the module. Thereafter, it is ready to receive a signal
communicating the result.

The outcome of the establishment is communicated consistently by the se-
curity modules of both participants to their respective application partitions. If
the secure connection is successfully established, the responder and subsequently
the initiator get signal SM READY. When the security module on the initia-
tor side detects an error, the initiator and later the responder get SM ERROR.
Conversely, the responder and thereafter the initiator receive notifications if an
error is detected by the responder’s security module.

The establishment process implements the TLS Handshake protocol [5]. Dur-
ing the handshake, both communicating entities are mutually authenticated by
means of a public key certification mechanism. Moreover, a shared secret is
negotiated, from which the symmetric keys are generated. The TLS protocol
guarantees that the negotiation is secure and reliable, i.e., the shared secret is
only accessible to the participants and a modification in the messages is detected.

2.3 Building Block for the Secure Mode Termination

Termination of an SM must be handled carefully in order to thwart a truncation
attack [5]. In our method, this process is executed by a pair of security mod-
ules implementing the TLS Close Alert protocol [5], and encapsulated in block
SM Terminator. Similarly to the establisher block, the terminator block is also a
collaboration between an initiator and a responder. However, it does not neces-
sarily mean that an entity that takes the initiator role for the setup must also be



the initiator of termination, since these roles can be assigned independently. The
details of block SMTerminator is not shown here as it resembles the successful
case of the establishment block. It is worth pointing out that this termination
does not necessarily stop the transport module. Depending on its specification,
the application may continue to communicate in the unprotected mode.

2.4 Building Block for the Secure Mode Error Listener

A security exception, such as a failed integrity check, may occur when trans-
ferring protected signals. If a security module of an endpoint detects this, it
discards subsequent messages, sends an error alert to its peer, and informs the
related application. Thus, the application must be prepared to receive this no-
tification. We provide the SMErr Listener block (see Fig. 5) to implement this
functionality. Upon activation, the block is ready to listen for a notification until
it is stopped or a security exception does take place.

3 Integration of the Security Mechanisms

As outlined in Sect. 1.3, the integration of the security mechanisms is a process
of three steps, which we will describe below.

3.1 Step 1: Risk Assessment and Check of Preconditions

First, a risk-based assessment is performed in order to determine which collab-
orations need protection. For the system in Fig. 1, block t: QueueHandler does
not need to be secured due to the low value of information contained in the
block. In contrast, collaboration c: Chat may transfer private information, e.g.,
medical records, and thus must be protected.

Next, the system level specification and the collaborations to be secured are
checked for some properties. In order to apply our method of integrating security
blocks in a highly automated way, we require that the system level specification
fulfills the following properties:

S1 The system level does not directly contain any flows that cross partitions,
i.e., all communication is encapsulated by collaborations.

S2 All collaborations have exactly two participants.
S3 While a collaboration to be secured is active, no other collaboration be-

tween the same pair of participants may be active as well.

Properties S1 and S2 are structural and can be checked by the syntactic
inspection tool in Arctis, while the behavioral property S3 is ensured by model
checking. Our experience shows that many applications, including the one de-
picted in Fig. 1, can be designed to satisfy these properties. A specification that
does not conform to the rules can be changed by, for instance, introducing col-
laborations that encapsulate other building blocks and direct communications.

In order to ensure that all application-specific signals of a secured collabora-
tion are protected effectively, we identify the following properties that a collab-
oration to be protected must fulfill:



Secure Chat
initiator

start

responder

error-init:
String

t: SM Terminator
start terminating
terminated

e: SM Establisher
start

succeed
ready

error-resp:
String

error-init:
String

c: Chat
start started

in-init: Msg in-resp: Msg
out-init: Msg out-resp: Msg
end-req-init end-req-resp
end-ind-init end-ind-resp
end-cnf-init

error-resp:
String

in-init: Msg in-resp: Msg
out-resp: Msgout-init:Msg

end-req-init end-req-resp
end-ind-init end-ind-resp

end-cnf-resp

end-cnf-resp
end-cnf-init

started
start-indstart-ind

l1: SM Err Listener

error: String
start
stop

stopped

l2: SM Err Listener

error: String
start

stop
stopped

Fig. 5. Building Block for the Secure Chat

C1 The collaboration must have exactly one starting pin, which means that
the collaboration is initiated by one party only.

C2 When a terminating pin of an activity partition is reached, there must
not be any signals in the input queue of the partition or any other activity
node that could trigger further behavior.

C3 The collaboration to be secured does not directly or indirectly contain
any security blocks.

The structural properties C1 and C3 can be checked by a syntactic inspec-
tion, while property C2 is behavioral and is ensured by model checking. An
analysis of the telemedical example shows that the system specification fulfills
the properties S1 .. S3, and while C1 .. C3 are satisfied by the Chat block.

3.2 Step 2: Embedding Security Functions

Once all properties are satisfied, a collaboration to be protected and the blocks
from Sect. 2 are automatically composed into a larger collaboration. Applying
this step to block Chat results in the SecureChat collaboration depicted in Fig. 5.
e: SMEstablisher and t: SMTerminator are built-in before and after c: Chat. The
flow from the pin succeed of the establisher block to the starting pin of the appli-
cation shows that the chat can only begin after a successful secure mode setup.
Likewise, the termination is started when the c: Chat block is fully terminated,
i.e., on the initiator side. In each partition, a local block SMErr Listener is added
to make the collaboration ready to receive an error notification.

Note that the pins of block SecureChat are the same as c: Chat ’s plus pins
error-init and error-resp. These additional terminating pins are used to report
a security exception that may occur. Through them, a notification may indicate



either a failure during SM establishment or when the blocks SMErr Listener
report exceptions between a successful setup and a normal termination. Thus,
after being started, collaboration SecureChat may proceed normally as the chat
application or is stopped at any time due to an error.

3.3 Step 3: Integrating the Secured Collaborations

The collaborations marked for protection in the system specification are replaced
by their secured counterparts, as illustrated with collaboration Chat in Fig. 1,
which is replaced by the Secure Chat. As noted above, the secured blocks are from
the outside structurally and behaviorally similar, but with exception pins added.
In general, it is up to the application to decide, what should happen upon such an
exception. For the given example, one solution would be to inform users locally
via the UIs and terminate both user clients. Since the collaborations to protect
are on system level, the changes due to the additional pins are manageable;
in the end, this is the necessary join point between a security function and an
application logic that cannot be hidden.

4 Discussion and Proof

We ensure the correct integration of the secure mode solution by showing that
the integration result, e.g., a secured, distributed application, fulfills the three
security goals stated in Sect. 1.2. Before sketching the proof, we summarize the
structural details of integrating the solution into an application-specific collab-
orative block C in so-called implementation directives as follows:

I1 Establishment: Block SMEstablisher is built-in directly before the start
of collaboration C, i.e., the termination of the block directly triggers the
start of C. In particular,

I1.1 Pins error-init and error-resp of block SMEstablisher must never
lead to the start of collaboration C.

I1.2 Pin succeed of block SMEstablisher must directly lead to the start
of a local block SMErr Listener.

I1.3 Pin ready of block SMEstablisher must directly lead to the start of
another local block SMErr Listener.

I1.4 Pin error of both local blocks from I1.2 and I1.3 must not lead to
the start of any other collaboration between the two participants of
C including block SMTerminator.

I2 Termination: Block SMTerminator is built-in after the termination of
collaboration C and before any other collaboration attached to the same
pairs of participants is activated. In particular,

I2.1 Pin terminated of block SMTerminator leads to the termination of
local block SMErr Listener from I1.2.

I2.2 Pin terminating of block SMTerminator leads to the termination of
local block SMErr Listener from I1.3.



The property S2 which states that all collaborations have exactly two par-
ticipants guarantees that our integration method correctly applies the security
functions designed for two entities. The rest of the properties for the system
level specification and for the collaborations to be protected (Sect. 3.1) together
with the implementation directives and the behavior of the security module in
the execution environment satisfy the security goals G1 to G3 (Sect. 1.2). In
the following, we will give the sketches of the corresponding refinement proofs:

The fulfillment of G1 that ensures all signals are transferred protected during
a secure mode phase is as follows: Due to S3, during the activity of a secured
collaboration, no other collaboration between the same participants is active.
Further, S1 guarantees that there is no direct flow between those participants.
Therefore, all communication between the two participants takes place in the
secured collaboration. Due to I1 and I2, the secured collaboration is only active
after a successful SM establishment and before the start of SM termination. The
security module of the execution environment assures that all signals exchanged
between the participants of the secured collaboration are protected and a re-
ception without resulting in the sending of error notification to the application
means that no attack was detected.

A security attack can be detected by the application since I1.2 and I1.3
guarantee that during the lifetime of a secured collaboration the two local blocks
of type SMErr Listener on both participants of the secured collaboration are
active. Thus, an error will be detected due to the behavior of the security module
in the execution environment. Furthermore, I1.4 guarantees that the error leads
to an error state and not into the normal proceeding of the function. �

To prove G2 claiming that all four phases are distinct, we show that in a
normal condition they occur in sequence as follows:

– unsecure mode → secure mode establishment
Due to I1, the secure mode establishment phase occurs before the secured
collaboration is active. Further, S3 guarantees that during this establish-
ment process, no other collaboration between the participants of the secured
collaboration is active. Due to S1, there is no other communication between
the participants. Consequently, phases unsecure mode and secure mode es-
tablishment are mutually exclusive and the former leads directly to the later.

– secure mode establishment → secure mode
Because of I1 and I1.1, the secured collaboration is only started upon suc-
cessful finishing of the SM establishment process.

– secure mode → secure mode termination
This is guaranteed by I2 and C2. Due to I2, the SM termination only begins
when the secured collaboration is inactive. Moreover, C2 guarantees that the
secured collaboration contains no other signal in its queues.

– secure mode termination → unsecure mode
Due to I2 and S3, any collaboration between the participants of the secured
collaboration can only be activated when SM termination process ends prop-
erly. Further, I2.1 and I2.2 guarantee that the remaining security function,



i.e., listening for exception, is terminated as well. This shows the sequence
of phase secure mode termination to phase unsecure mode. �

The no-duplication mechanism goal of G3 is fulfilled by C3 that guarantees
neither SM setup nor termination is executed more than once in order. �

Employing the highly automated method described above contributes to
make the task of developing secure applications less daunting. The integration
of the secure mode solution can be applied to various application domains since
protection of sensitive data is generally required in distributed systems. More-
over, the specification style makes changes in both functionalities and security
aspects manageable. However, further investigation is needed to determine the
applicability of the method for integrating other protections effectively.

As a proof of the practicability of our method, we also implemented the
presented example using Arctis. The c: Chat block in Fig. 1 is replaced with
block c: SecureChat. To inform the users about an event of security exception
(Sect. 3.3), the additional pins need to be connected to the UI blocks. Therefore,
a streaming input that is connected to the pin closed is added to block ChatUI.
Then, two components are generated automatically using Arctis. The component
for the physician is running on the Java SE platform and the one for the patient
on an Android phone.

5 Related Work

Some approaches and tool supports have been proposed to integrate security as-
pects in distributed applications. Middleware technologies such as Java RMI [20],
Web Services and CORBA [21] are extended with protection support in order
to create secure applications. Li et al. develop the RMI toolkit [22] that en-
ables developers of RMI-based application to adopt security feature. Security
standards are defined for CORBA in [23] and Web Services in [24]. The imple-
mentation of these approaches is different from our model-based method, since
manual changes in the code is required.

Model-based secure system development methods have also been suggested.
UMLsec [25] is a profile on security requirements that can be attached to UML
diagrams to evaluate a specification for security. SecureUML [26] is an extension
of UML to specify role-based access control policies. These approaches may still
require much expertise on security since security solutions are developed manu-
ally. However, tools are also developed to help analysing the secured system.

Other work that attempts to integrate security concerns is aspect-oriented
modeling. Here, security mechanisms are specified as aspects, and weaved into
base specifications at join points. Although there is no standard, some ap-
proaches and tool-support have been proposed, see for example [6, 7, 27]. Both
our method and aspect orientation try to integrate protection mechanism in a
highly automated way. However, many of aspect-oriented approaches do not con-
sider the functional changes after the integration. Our method limits the changes
only on the system level specifications so that they are manageable.



6 Concluding Remarks

We presented a comprehensive method to integrate a secure communication
mechanism, in which building blocks realizing dedicated security functions could
be automatically and consistently integrated into an application if certain pre-
conditions are met. We have shown that, given that these preconditions hold,
the security goals are in fact fulfilled.

In the future, we will extend our method in several ways. Similar to the build-
ing blocks facilitating the secure mode, we will add further blocks to our security
library to support also other security mechanisms like access control. Due to the
formal basis of our method, we can analyze the specifications expressed by UML
activities thoroughly. This enables tool support that can ensure the correct in-
tegration of security patterns [28], so that they are effective.

We will also exploit the formal nature of our collaboration-oriented models
for the security analysis. The strategy here is two-fold: We analyze an existing
functional specification for behavioral and structural properties that are relevant
for the security aspect and provide a recommendation of adequate protection
mechanisms based on these properties. To reveal other weaknesses, the models
are translated to input for other security analysis tools such as Scyther [29].

References

1. Mouratidis, H., Giorgini, P.: Integrating Security and Software Engineering: Ad-
vances and Future Vision. IGI Global (2006)

2. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed
Systems. John Wiley & Sons, Inc. (2008)

3. Lampson, B.W.: Computer Security in the Real World. Computer 37 (2004) 37–46
4. Rescorla, E.: SSL and TLS: Designing and Building Secure Systems. Addison-

Wesley (2001)
5. Dierks, T., Rescorla, E.: The Transport Layer Security Protocol (TLS) version 1.2.

The Internet Engineering Task Force (IETF). (August 2008) RFC 5246.
6. Georg, G., Ray, I., Anastasakis, K., Bordbar, B., Toahchoodee, M., Houmb, S.H.:

An Aspect-Oriented Methodology for Designing Secure Applications. Information
and Software Technology 51(5) (2009) 846 – 864 Special Issue: Model-Driven De-
velopment for Secure Information Systems.

7. Mouheb, D., Talhi, C., Lima, V., Debbabi, M., Wang, L., Pourzandi, M.: Weaving
security aspects into uml 2.0 design models. In: AOM ’09: Proceedings of the 13th
workshop on Aspect-Oriented Modeling, ACM (2009) 7–12

8. Kraemer, F.A.: Engineering Reactive Systems: A Compositional and Model-Driven
Method Based on Collaborative Building Blocks. PhD thesis, Norwegian University
of Science and Technology (August 2008)

9. Kraemer, F.A., Sl̊atten, V., Herrmann, P.: Tool Support for the Rapid Composi-
tion, Analysis and Implementation of Reactive Services. Journal of Systems and
Software 82(12) (December 2009) 2068–2080

10. Kraemer, F.A., Herrmann, P.: Automated Encapsulation of UML Activities for
Incremental Development and Verification. In: Proceedings of the 12th Int. Con-
ference on Model Driven Engineering, Languages and Systems (Models). Volume
5795 of LNCS., Springer (2009) 571–585



11. Arctis Website. http://www.arctis.item.ntnu.no/
12. Kraemer, F.A., Herrmann, P.: Reactive Semantics for Distributed UML Activities.

In: Formal Techniques for Distributed Systems. Volume 6117 of LNCS. Springer
(2010) 17–31

13. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: Secure Protocol Composition.
In: FMSE ’03: Proceedings of the 2003 ACM workshop on Formal Methods in
Security Engineering, ACM (2003) 11–23

14. Krawczyk, H.: The Order of Encryption and Authentication for Protecting Com-
munications (or: How Secure Is SSL?). In: CRYPTO ’01: Proceedings of the 21st
Annual International Cryptology Conference on Advances in Cryptology, Springer
(2001) 310–331

15. Cremers, C.: Compositionality of Security Protocols: A Research Agenda. Elec-
tronic Notes Theoretical Computer Science 142 (January 2006) 99–110

16. Baskerville, R.: Information Systems Security Design Methods: Implications for
Information Systems Development. ACM Computing Surveys 25(4) (1993) 375–
414

17. Kraemer, F.A., Herrmann, P.: Transforming Collaborative Service Specifications
into Efficiently Executable State Machines. In: Proceedings of the 6th International
Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT
2007). Volume 7 of Electronic Communications of the EASST., EASST (2007)

18. Kraemer, F.A., Herrmann, P., Bræk, R.: Aligning UML 2.0 State Machines and
Temporal Logic for the Efficient Execution of Services. In: Proceedings of the 8th
International Symposium on Distributed Objects and Applications (DOA). Volume
4276 of LNCS., Springer (2006) 1613–1632

19. SSLEngine from JSSE. http://java.sun.com/javase/6/docs/api/javax/net/

ssl/SSLEngine.html

20. Java Remote Method Invocation. http://java.sun.com/javase/technologies/

core/basic/rmi/

21. Object Management Group: Common Object Request Broker Architecture
(CORBA/IIOP), version 3.1. (January 2008) formal/2008-01-08.

22. Li, N., Mitchell, J.C., Tong, D.: Securing Java RMI-Based Distributed Applica-
tions. In: Proceedings of the 20th Annual Computer Security Applications Con-
ference, ACSAC’04, IEEE Computer Society (2004) 262–271

23. Object Management Group: CORBA Security Service, version 1.8. (March 2002)
formal/2002-03-11.

24. OASIS: Web Services Security, version 1.1. (February 2006)
25. Jürjens, J.: Secure System Development with UML. Springer-Verlag (2004)
26. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Security: From UML Models

to Access Control Infrastructures. ACM Transactions on Software Engineering and
Methodology 15(1) (2006) 39–91

27. Pavlich-Mariscal, J., Michel, L., Demurjian, S.: Enhancing UML to Model Custom
Security Aspects. In: AOM ’07: Proceedings of the 11th Workshop on Aspect-
Oriented Modeling. (2007)

28. Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Som-
merlad: Security Patterns : Integrating Security and Systems Engineering (Wiley
Software Patterns Series). John Wiley & Sons (March 2006)

29. Cremers, C.J.: The Scyther Tool: Verification, Falsification, and Analysis of Secu-
rity Protocols. In: CAV ’08: Proceedings of the 20th International Conference on
Computer Aided Verification, Springer (2008) 414–418


