
Generation and Enactment of Controllers for

Business Architectures using MDA

Günter Graw1 and Peter Herrmann2

1 ARGE IS KV, graw@iskv.de
2 University of Dortmund, Peter.Herrmann@udo.edu

Abstract. Model Driven Architecture (MDA) is an initiative of the
OMG in which the software development process is driven by various
software-related models describing the software to be generated. More-
over, the new upcoming UML 2.0 standard promises to support the
execution of models based on several types of actions as well as the
inheritance of statecharts. We adapt this new technology in order to
generate business controllers. By application of the popular Model View
Controller (MVC) architecture, these controllers separate core business
model functionality like database management from the presentation and
control logic that uses this functionality (i.e., interactive user access). In
particular, a controller translates user interactions realized by means of
an interactive view into actions on the core business model.

This paper deals with the generation of business controllers applying
MDA and UML 2.0 concepts and presents experiences gained in the
background of a bigger industrial project. The focus is on statecharts
and actions used for the specification and execution of controllers. In
particular, in order to deal with the inheritance of statechart diagrams
specified for business controllers, we define a couple of transformation
rules. These rules support the transformation of abstract PIM state-
charts modelling the functionality of business controllers to a flat PSM
statechart describing a business controller in a more implementation-like
fashion. We outline the application of the transformation rules by means
of a business controller example application.

1 Introduction

The Model Driven Architecture (MDA) [5, 12] is the most recent initiative of the
Object Management Group (OMG) to facilitate the creation of object-oriented
software. This approach has the goal to specify software for different independent
domains using abstract high level models. These high level models are specified
by means of the UML (Unified Modeling Language, cf. [3]) as specification lan-
guage, which is another standard adopted by the OMG. The UML models are
used as input for the generation of code. MDA distinguishes two different kinds
of models: platform independent models (PIM) and platform specific models
(PSM). Unfortunately, a drawback of traditional UML was the absence of a suf-
ficiently powerful semantics to specify dynamic behavior, in particular actions.

This disadvantage, however, was overcome in 2001 when the UML 1.4 [15] se-
mantics was extended by an action specification language (ASL) [11], which has
the aim to enrich the action semantics of the UML.

As if this breath-taking progress is not enough, the new UML major release
for UML 2.0 is currently under standardization. Moreover, there exists a proposal
for the UML superstructure [14] describing in particular the dynamic aspects of
UML models. This draft contains a rich actions semantics refining the results
of [11]. Moreover, the syntax and semantics of interaction diagrams were im-
proved based on experiences of the Message Sequence Chart (MSC) community
(cf. [10]).

Since actions of the ASL language are declarative by nature, due to the in-
novations of UML 1.4 and UML 2.0 the generation of executable models based
on UML specifications is possible now. This ability is utilized by the xUML (ex-
ecutable UML) profile [13] which enables the execution of UML models. Mean-
while several companies created tools (e.g., bridgepoint, iCCG) which support
the execution of xUML models.

Like us, Agrawal et al. [1] concentrate on generative programming of source
code based on MDA. In contrast to us, however, they do not focus on behavioral
aspects but on the software process of PIM to PSM transformation which is
mainly performed by applying graph grammars on UML class diagrams.

This paper concentrates on the application of MDA and UML 1.4 to UML
2.0 concepts for the synthesis of controllers in business software reflecting our
experiences in a bigger project of German health care insurances. A controller is
used to influence the interaction of views-based graphical user interfaces (GUI)
according to business rules and style guides. In particular, it is responsible for
the interchange of data between a view defining a user interface and a model
describing the business model. Thus, a controller is a main component of the
architecture. It is possible to compose controllers of sub-controllers. The archi-
tecture of our business system is based on the well-known Model View Controller
(MVC, cf. [4]) pattern which is an important architectural pattern for the ful-
fillment of business system requirements. In a three tier architecture typical for
business applications, controllers responsible for database and workflow access
are located in the middle tier which is also called application layer. The inter-
action between the views, which are residing in the presentation layer (i.e., the
upper tier), and the controllers are realized by commands from the views to the
controllers (i.e., they follow the so-called command concept).

The controller behavior is specified in a platform-independent fashion by
means of UML statechart models. Statechart inheritance is used to refine the
models facilitating their reuse. Moreover, we use PIM to PSM transformations
of UML models to get platform-specific controller models. These PIM to PSM
transformations are carried out by means of graph transformation systems (cf. [2]).
Finally, the PSM models are used as input for a code generator creating exe-
cutable Java code. The generated code realizes the complete state machine of
the controller and most of the actions specified in the original UML state chart
models. For actions which cannot be generated automatically, code fragments

Activated

ExpectConfirmation

Cancel

do/ handleCancel

Ok

do/ handleConfirm

HistorizedRunning

Running

H*

ExpectConfirmation

Cancel

do/ handleCancel

Ok

do/ handleConfirm

Cancel

do/ handleCancel

Ok

do/ handleConfirm

HistorizedRunning

Running

H*

Running

H*

{isFinal=false}

{isFinal=true}
{isFinal=true}

Confirm / actionClearIntermediateResults

Abort[

!guardSameStateMachine]

{isFinal=false}

{extended}

Abort[

!guardDataUnchanged]

Confirm[

!guardDataUnchanged]

Confirm / actionSave

Abort()[

!guardSomeStatemachine]

GeneralActivity

© IS KV

Fig. 1. State chart of the General Activity Controller

are created which, in principle, have to be filled by manually programmed code.
Since the tasks realized by this code, however, are often similar, we can avoid
additional programming efforts by applying reusable code libraries.

2 State Charts in UML

States can be used in the UML to define the attributes of an object and its
behavior in a rather fine-grained way. Here, we apply them in a more abstract
fashion in order to model the current situation of an object and its reaction
on incoming events. As depicted in Fig. 1, a state description in UML (e.g.,
Cancel or Ok) contains an unambiguous name. Moreover, one can add action
identifiers which are accompanied by the keywords entry, exit, or do. Based
on these keywords the actions are carried out during entering, leaving, resp.
remaining in the current state.

In UML, transitions between states can be provided with a statement con-
taining an event name, a guard condition, and action identifiers. A transition
is executed if the event specified, in the event name, occurs and the guard con-
dition specified in the statement holds as well. Here, a call resp. send event is
triggered if a call or send action is fired (cf. Sec. 3). In contrast, a change of an
object attribute leads to a change event whereas a timed event refers to a certain
real time constraint. In contrast, so-called completion transitions or triggerless
transitions depending on a completion event are carried out without an external

trigger. A completion event fires if an entry or do action terminates. It is pre-
ferred against other events in order to prevent deadlocks. Furthermore, one can
allow the deferral of events. If an event cannot be processed in the current state,
it is stored in an event queue and can be used later. During the execution of a
transition, the actions identified in the transition statement are carried out.

Similar to Harel’s statechart diagrams [8], one can define so-called composite
states composed from substates (e.g., the state ExpectConfirmation consisting of
the substates Cancel and Ok) which can contain substates as well. A composite
state can be a nested state corresponding to the OR-states in statechart diagrams.
If an incoming transition of the nested state is fired, exactly one of its substates
gets active.

A special class of states are pseudostates which have to be left immediately
after being reached. Therefore, pseudostates must not contain do actions which
are only executed if the state remains active for a while. Well-known pseudo
nodes are initial states. In contrast, termination states are not pseudostates
since an object remains in this state after reaching it. In nested states, history
states (e.g., the state H

∗ in state HistorizedRunning) can be applied to store the
lastly visited substate of a nested state. By executing an incoming transition of
a history state the substate stored by it is reached.

To model the processing of events and, correspondingly, the selection of tran-
sitions, UML [14] defines a special state machine which is based on the run-
to-completion semantics. According to this semantics, only one event may be
processed at a point in time and the processing cannot be interrupted by other
events. By special state configuration information the state machine describes
which state resp. substates are currently active.

Statecharts in UML 2.0 can be inherited. This is reflected in the statechart
diagrams by marking the states which are subject to effects of inheritance by
dashed lines.

3 Actions in UML 2.0

A major improvement of UML 2.0 is the new Action Semantics defining a meta-
model (cf. [14]) for action-based description languages. In contrast to traditional
OCL, it facilitates the description of dynamic behavior enabling the generation
of implementation code from UML models (cf. [5]). The Action Semantics does
not define a particular syntax for action statements but more abstract action
class definitions which can be realized by applying various different syntaxes.
The standard distinguishes concrete actions from abstract metamodel action
class definitions which refer to sets of similar but different action definitions.
In concrete syntaxes only concrete actions may be used. Altogether, three main
action classes are defined:

– Invocation-oriented actions refer to the object operation calls.
– Read- and write-oriented actions are devoted to the management of object

attributes and links.

– Computation-oriented actions are used to compute output values from a set
of input arguments.

The invocation-oriented actions are described by an abstract metamodel ac-
tion class InvocationAction. Another, more specialized abstract action class is
CallAction which is inherited from InvocationAction. CallAction describes ob-
ject operations with call parameters and return values. CallOperationAction is a
relevant concrete action inherited from CallAction which realizes operation calls
at other objects by triggering the behavioral steps (e.g., a transition of the state
machine introduced in Sec. 2) related to the operation in the called object.

Read- and write-oriented actions are distinguished in actions to maintain
object attributes and in actions managing object references.

Computation-oriented actions map input arguments directly to output val-
ues. An important computation-oriented action is ApplyFunctionAction which
encapsulates a primitive function. The action arguments are mapped to function
arguments and the function result is made available at the output pins (i.e., pa-
rameters) of the action. During the computation of the primitive function the
executing object is blocked and cannot interact with its environment.

4 Transformation and Generation in MDA

In the Model Driven Architecture (MDA) [12], a PIM (Platform Independent
Model) is a model based specification of the structure and functionality on an
abstract level neglecting technical details. In our project the PIM, which stems
from the domain of health care insurance, can be used for implementations on
the platforms of different insurance companies. Moreover, the validation of model
correctness is supported, since a PIM supports the technology independent spec-
ification of the system. In contrast to this, the PSM (Platform Specific Model)
is technology dependent with respect to a certain operating system, program-
ming language, middleware, or application server. Source code of a particular
application is generated based on the technology-depending data contained in a
PSM.

Transformations are important in MDA. A transformation consists of a set
of techniques and rules which are used for the modification of a model m1 in
order to obtain a model m2. We distinguish three kinds of transformations:

– PIM to PIM transformations are used to get different representations of the
same PIM.

– PIM to PSM transformations are applied to obtain the PSM representing a
refinement of a specific PIM. This kind of transformation is sometimes called
mapping.

– PSM to PSM transformations represent a means to get a different represen-
tation of a PSM.

Transformations may either be performed manually in iterative elaborations or
be automated by means of transformation tools. Often, the automatic transfor-
mation of models is performed on the base of templates.

UML tool

with

scripting
language.

Supporting

XMI-Export

XMI-File of

PIM of

Controller

Class and

state chart

models

Code

Generator

for Java

&EJB

Stateless

Session Bean

of a Controller

XMI-File of

PSM of

Controller

Class and

state chart

models

PIM2

PSM

trans-

lation

Deployment

Deskriptor

Local

Interface of

the EJB

Remote

Interface of the

EJB

Home

Interface of

the EJB

Controller-Generator

Controller

calculator

Fig. 2. Integration of Transformation and Generation Tools

In our approach, we apply a set of tools as depicted in Fig. 2 which are
tightly integrated. The integration of a UML modelling tool and the controller
generator is performed by means of the XML Metadata Interface (XMI). XMI
is a standardized format to represent UML models (cf. [16]). We use a standard
UML tool for the export of class and statechart diagrams representing the PIMs
of business controllers in the XMI format. In particular, by means of UML
class diagrams we define inheritance trees of business controller classes each
describing a business controller with a specific functionality defined by the user
requirements. Moreover, for each controller class we design a statechart diagram
modelling the behavior (cf. Sec. 7).

The second tool is the controller generator consisting of several transforma-
tion and generation tools developed within the project. One of these transfor-
mation tools is used to perform PIM to PSM transformations by the application
of graph rewriting rules. Since it exports the resulting PSM models as XMI files,
these can be displayed by an appropriate modelling tool.

Finally, the code generator is used to generate executable Java code from the
PSM. It is able to generate distributed applications based on Enterprise Java
Bean (EJB) 2.0 technology (cf. [17, 18]) and creates the artifacts like interface
and descriptor files. The transformation tool is tightly coupled with the Java
Code generator.

Moreover, we are experimenting with tools supporting a developer in getting
special views of the code generated from the PIM of a business controller. E.g., a
small viewer, the so-called controller calculator is able to show all transitions on
a given state of a statechart and helps to clarify the execution order of transitions
and identifies potential conflicts. This supports the traceability from generated
code back to the PIM which is very important for model driven development
[19]. Furthermore, it gives some support in estimating the effect of a statechart
change before a new XMI export and generator run is started.

5 PIM to PSM Transformation of Business Controller

Statecharts

In the following, the PIM to PSM transformation based on graph rewrite rules
is explained. Graph rewrite systems (cf. [2]) consist of a set of graph rewrite
rules. Each rewrite rule is a tuple of two graph patterns which are called pre-
pattern and post-pattern. In our approach, these rules are applied to UML state
chart diagrams. A rule may be fired if a state chart diagram contains a subgraph
which is an instance of the rule’s pre-pattern. This subgraph is replaced by the
corresponding instance of the post-pattern (i.e., instances of nodes and vertices
carrying identical identifiers in the pre- and post-patterns are retained in the
graph transformation). In the Figs. 3 to 7 we quote a number of graph rewrite
rules. Here, the pre-patterns are listed on the left side and the post-patterns on
the right.

The transformation of PIMs to PSMs is modelled by inheriting the state-
charts specifying the behavior of the PIMs and PSMs. Unfortunately, before the
submission of the UML 2.0 superstructure document [14] only limited informa-
tion about the state chart inheritance semantics was available. For instance, the
UML 1.4 specification proposed only three different policies dealing with the
inheritance issue of state charts. These policies refer to subtyping, implemen-
tation inheritance, and general refinement. A more valuable source for insights
with respect to statechart inheritance is proposed by Harel and Kupferman [9].
In contrast to UML 1.4, the UML 2.0 superstructure specification [14] contains
clear recommendations how to deal with state chart inheritance:

“A state machine is generalizable. A specialized state machine is an ex-
tension of the general state machine, in that regions, vertices and tran-
sitions may be added, regions and states may be redefined (extended:
simple states to composite states and composite states by adding states
and transitions), and transitions can be redefined.”

These effects of statechart inheritance may be directly applied to PIM to PSM
transformations. In particular, we distinguish the addition of new states to stat-
echarts, the refinement of existing states, the overwriting of existing states, the
addition of new transitions, and the redefinition of transitions as classes of trans-
formation steps. For each class we defined a set of graph rewrite rules some of
which are introduced below. A statechart may be extended by adding a new

S1 S2E[G] / A
S1

S2

SSub
E[G] / A

S2Sub

S1

S2

SSubS2SubE[G] / A S1

S2

H*H*

E[G] / A

S1 E[G] / A S1

S1S2

E[G] / A
S1

S2

SSubS2Sub

S1

S2

SSubS2Sub

E[G] / A

E[G] / A

{Extended}

S1S1 S1

S1S1

S1S1 S1S1

S1S1

S1S1 S2

SSubS2Sub

S2

SSubS2Sub

Adding States R8

Adding States R9

Adding States R7

Adding States R6

Adding States R5

Adding States R4Adding States R3

Adding States R2Adding States R1

Fig. 3. Adding State Rules

state which is shown by the graph rewriting rules Adding State Rules (ASR) 1-9
depicted in Fig. 3. In order to avoid the addition of isolated states, which could
never be reached in the execution, we assume that newly added states have at
least one incoming or outgoing transition which is also added by executing a rule.
While this restriction is not fundamental, it prevents the introduction of useless
model elements which is of particular importance in complex industrial projects.
The graph rewrite rule ASR1 handles the extension of a state chart adding a
new simple state. ASR2 and ASR3 deal with the addition of a newly introduced
nested state where the incoming transition is either connected to the nested state
or to a substate of the nested state. ASR4 realizes the addition of a nested state
containing a history state. By ASR5 a new final state is added whereas ASR6
handles the addition of an initial state. Due to the UML semantics, however,
it is not permitted to add more than one additional initial state. The rewriting
rules ASR7 to ASR9 are symmetric with respect to the rules ASR1 to ASR3 but
introduce transitions using the new states as source states.

Simple states may be refined to nested states by adding new substates which
is performed by the Refining State rules (RSR) 1-3 depicted in Fig. 4. The
rules reflect that in PSMs the use of nested states makes only sense if they
contain at least two substates. RSR1 handles the transformation of a simple
state into a nesting state which contains an initial state and another connected
state as substates. The rule RSR2 deals with the introduction of a nested state
containing two new substates. Finally, RSR3 handles the addition of a final state
into a nested state. Moreover, one can collapse an already existing nesting state
consisting of only one substate together with the linked initial and final states

SimpleState
S1

Nested State S1

Sub1Sub1

{isfinal=false}

{isfinal=false}
SimpleState

S1

Nested State S1

Sub1 Sub2Sub1 Sub2

Sub1

SimpleState

S1
Sub1

{isfinal=false}

{isfinal=false}

{isfinal=false}

{isfinal=false}

{isfinal=false}

Refining States R1

Refining States R2

Refining States R3

Nested State S1

Fig. 4. Refining State Rules

SimpleState
S1

Nested State S1

Sub1Sub1

{isfinal=false}

Overwriting States R1

Fig. 5. Overwriting State Rule

to a simple state. This procedure is called overwriting and can be performed by
application of the Overwriting State Rule 1 which is listed in Fig. 5.

Moreover, new transitions between existing states might be inserted which
is realized by Adding Transition Rules (ATR) like the ATRs 1-5 of Fig. 6. The
source and target states of an added transition can be of any type of states
supported by our approach. If between the source and target state, however,
already an existing transition exists which is fired by the same event as the new
transition, the addition may only be done if the existing transition cannot be
redefined. This is expressed by the tagged value isFinal of the existing transition
which has to carry the value true. The rules listed in Fig. 6 describe this special
case. The rule ATR1 handles the addition of a new transition between two simple
states whereas ATR2 and ATR3 describe the addition of a transition in the
context of nested states. In particular, ATR2 deals with the introduction of a
transition on the nested state while ATR3 handles the addition of a transition
on a substate. ATR4 realizes the addition of a transition to a history state
of a nested state and ATR5 performs the addition of a transition to a final
state. The rules listed in Fig. 6 describe the special case that a non-redefinable
transition between the source and target states with an identical event already
exists. Similar rules for unconnected source and target states and for existing
transition with different events are also available. If a source and a target node
are linked by a redefinable transition, one can apply the Redefining Transition

S1
S2

S1

S1
S2

SSub

S1
S2

SSub

S1
S2

H*

S1

S1

SSub

S2Sub

H*

E[G] / A

E[G1] / A1

E[G] / A

E[G] / A

E[G1] / A1

E[G] / A

E[G] / A

{isFinal = true}

{isFinal = true}

{isFinal = true}

{isFinal = true}

S2S1

E[G] / A

{isFinal = true}

S1
S2

SSubS2Sub

E[G1] / A1

{isFinal = true}

S1
S2

SSubS2Sub

E[G] / A

{isFinal = true}

S1
S2

SSub

S2Sub

E[G] / A

E[G1] / A1

{isFinal = true}

S1
S2

H*H*

E[G] / A

E[G1] / A1

{isFinal = true}

S1

E[G] / A

{isFinal = true}

Adding Transitions R5

Adding Transitions R4

Adding Transitions R3

Adding Transitions R2

Adding Transitions R1

Fig. 6. Adding Transition Rules

S1
S2

S1S1 {isFinal = false}

E[G] / A

S1 S2S1S1 {isFinal = false}

E[G1] / A1

Redefining Transitions R1

Fig. 7. Redefining Transition Rule

Rule (RTR) 1 which is depicted in Fig. 7. The rule may be only executed if the
tagged value isFinal is set to false. By its application the guard and the action
of the transition are altered.

Our tool applies the rules in the following order: At first, RSRs are executed
followed by OSRs. Thereafter, the ASRs and ATRs are fired. The graph rewrite
rules-based transformation terminates with the application of RTRs. In order to
transform a controller PIM to the corresponding PSM, at first the PSMs of its
superclasses have to be created by rule applications. Based on these transforma-
tion results the tool transforms the state chart of the controller class. The rules
are programmed in Java implementing an algorithm visiting the nodes and tran-
sitions of a design model parsed from the XMI representation while performing
the PIM to PSM transformation.

If a large number of new transitions is added by the controller model transfor-
mations, nondeterminism of the transitions in the resulting model may increase.

ControllerRemote

eventXY(t : TransportObject) : ResultObject

<<RemoteInterface>>

ControllerRemoteHome

ejbCreate()

<<HomeInterface>>

ControllerLocal

<<LocalInterface>>

ControllerBean

activeState : Integer

possibleStates : Integer[]

ejbCreate()

guardXY() : Boolean

actionXY(r : ResultObject) : ResultObject

eventXY(t : TransportObject) : ResultObject

analyseState()

processTriggerlessTransitions()

processHistoryStates()

<<SessionBean>>

<<EJBRealizeRemote>>

<<EJBRealizeHome>>

<<EJBRealizeLocal>>

Fig. 8. Structure of a Controller Bean and the Interfaces

To support the code generator in resolving this nondeterminism, every transition
is supplied by a weight factor indicating the depth of the controller class con-
taining the transition in the class inheritance hierarchy. The weight is a natural
number, which is as higher as deeper the controller of the statechart is posi-
tioned in the inheritance hierarchy. The weight is made persistent in a tagged
value weight of the according transition. This value will be used by the code gen-
erator to create a useful transition order in the generated stateful session bean
realizing the controller. Here, transitions with a higher weight will be prioritized.
Moreover, the code generator prefers transitions with guards to transitions with-
out guards. Triggerless transitions without guards have the lowest priority.

6 PIM to PSM Transformation of Business Controller

Classes

In the following, we focus on the structural aspects of the PIM to PSM trans-
formation of a business controller. A business controller is realized by a stateful
session bean. Session beans are EJB components providing client access to a
business system. In stateful session beans, moreover, the current state of a con-
versation is maintained whereas stateless session beans have no capability to
persist states. A stateful session bean, representing the controller of a PSM, in-
cludes the code of a state machine interpreting the statechart of the according
PSM Class. The class diagram depicted in figure 8 shows the structure of the
PSM of a controller. In table 1 the rules for the creation of a controller PSM
are presented which we will explain in the following. Firstly, attributes of a PIM
Controller class become member variables of the Controller PSM. Here, we use
an algorithm to create the flat representation of all states of all controller states
as enumeration type. Moreover, an attribute is introduced to the controller PSM
keeping the active state of the statechart which is an element of the enumeration
type (Rule PSM R1).

In our architecure, UML models of Java GUI widgets are used to specify
the mapping of selected Java Swing events to logical events of the controller

Rule Nr. Rule description Target

PSM R1 Creation of enumeration type for states of a controller
bean

Controller PSM

PSM R2 Creation of operations for events of the according state
machine of a controller bean

Controller PSM

PSM R3i Set of rules for the creation of transport objects trans-
mitted by an event

Controller PSM

PSM R4 Creation of operations for actions of a controller bean Controller PSM

PSM R5 Creation of operations for guards of a controller bean Controller PSM

PSM R6i Set of rules for the creation and of the analyseState
operation of a state machine

Controller PSM

PSM R7i Set of rules for the creation of the processTrigger-
lessTransitions operation of a state machine

Controller PSM

PSM R8i Set of rules for the creation of the processHistoryStates
operation of a state machine

Controller PSM

PSM R9 Creation of a remote interface of a controller session
bean

Controller PSM

PSM R10 Creation of a local interface of a controller session bean Controller PSM

PSM R11 Creation of the home interface of a controller session
bean

Controller PSM

PSM R12 Creation of an event operation in the remote interface Controller PSM

PSM R13 Creation of an operation ejbCreate in the home interface Controller PSM

PSM R14 Creation of an operation to start the execution of a
sub-controller in the local interface

Controller PSM

Table 1. Controller PIM To PSM Transformation Rules

statechart. This mapping is specified by tagged values. Event operations which
are called from the views of the GUI of a controller are used to transport values
in so called transport objects to the state machine. Vice versa, new data values
are sent back to the views as well as result objects containing error states and
new values in order to refresh of GUI information. According event operations
are introduced to the PSM (Rule PSM R2). The PSMs for transport objects
are created by a different generator which is not subject to this paper (Rule
PSM R3 i).

Each action of the controller’s statechart is transformed into an operation
with an argument and return type which are both of type ResultObject (Rule
PSM R4). A ResultObject is used to retransmit resulting object values to a
View of the GUI. For the guards of the statechart parameterless operations with
return type boolean are generated (Rule PSM R5). In the project we have the
convention that operations for guards and actions are already modelled in the
class of a controller PIM. Although this is not necessary, it helps to keep track
of what is going on.

Moreover, some operations to realize the correct behavior of controller state
machines are required. The method analyseState is used to enact entry and exit
actions as well as to start doActivities of a state (Rule PSM R6 i). Furthermore,

this operation calls the operation handleTriggerlessTransition which is responsi-
ble to select triggerless transitions. This selection is based on the result of guard
evaluation of the transitions enabled in the active state of the controller state
machine as well as the order defined for conflicting transitions (Rule PSM R7 i).
The operation processHistoryStates which is also called the method analyseState
which is responsible for the handling of history states (Rule PSM R8 i).

The PIM to PSM transformation creates also the home, remote, and local in-
terfaces for the session bean of a controller as shown in figure 8 (Rules PSM R9,
PSM R10, and PSM R11). Every event operation is added to the remote inter-
face (Rule PSM R12). An ejbCreate operation is added to the home interface
(Rule PSM R13). Operations dealing with the enaction of sub-controllers, which
are modelled as operations of a controller class are added to the local Interface
(Rule PSM R14). Moreover, a doActivity is modelled in a state of the statechart
of a controller PIM to compose a controller and a sub-controller. Since a con-
troller requires information about sub-controller termination each sub-controller
provides termination information to its controller. To handle different cases of
sub-controller termination special transitions are added to the PIM of a con-
troller.

The java code generator generates method frames or complete methods for
each operation of the PIM. While, generally, a frame has to be filled by manually
created programming code, we can often take reusable code which is inherited
from the superclasses of the controller hierarchy applying the inheritance prop-
erties of session beans. For read- and write-oriented actions (cf. Sec. 3), the Java
method is completely generated whereas for computation-oriented actions only
a method frame is created. The PSM operations of guards cause the generation
of an according method frame. In contrast to this, the methods for event op-
erations are completely generated since the PIM to PSM transformation of a
controller statechart provides all of the required information. This is also ap-
plicable to the methods for the operations analyseState, processTriggerless and
processHistoryStates of a controller PSM which are completely generated.

A part of the code generator, the so-called interface generator, generates the
home, local, and remote interfaces which provide the local and remote access to
methods of the stateful session bean realizing a controller. Finally, the descrip-
tor generator is used to generate the deployment descriptor of a controller bean
describing the interfaces of the bean and their behavior. In particular, the de-
ployment descriptor contains the bean’s name and type, the names of the home,
remote and local interfaces. Moreover, the transaction type of the bean and the
transaction attribute of the methods of an interface are declared. A transaction
attribute is generated as required by default.

7 Business Controller Example

In this section examples of business controller syntheses used in an enterprise
application are presented. Fig. 9 depicts the class diagram showing the inheri-
tance hierarchy of business controllers. The abstract class BaseController is the

GeneralActivity

guardDataUnchanged()

actionSave()

actionClearIntermediateResults()

SearchActivity

CardinalityOfResultSet : Integer

guardValidateQueryCriteria()

actionQueryDB()

InputActivity

PartnerSearch

Activity

PartnerInputActivity

ErrorContext

addErrorMessage()

BaseController

guardWarningSeverityLevel()

guardFatalSeverityLevel()

guardSameStateMachine()

11 11

© IS KV

Fig. 9. Class diagram of the business controller inheritance hierarchy

Idle

Activated

ExpectConfirmation

do/ ExpectConfirmationHandling

HistorizedRunning

Running
H*

Run()

Running
H*

ExpectConfirmation

do/ ExpectConfirmationHandling

OptionalEvent()
ExpectConfirmationError

do/ ExpectErrorHabdling

[guardWarningSeverityLevel]

{isFinal=false}

{isFinal=false}

{isFinal=false}

{isFinal=true}

{isFinal=false}

OptionalEvent[!guardSameStateMachine]

Confirm()[guardFatalSeverityLevel]

{isFinal=false}

BaseController

© IS KV

Fig. 10. Statechart of the Base Controller

root of the class diagram. It is responsible for the error and exception handling
as well as for the management of dialogue confirmations. The statechart dia-
gram of BaseController outlined in Fig. 10 contains elementary states which are
provided for derived business controllers. The controller which is initially in the
state idle is activated by the event Run() and proceeds to the state Activated.
In particular, the substate HistorizedRunning is reached. In a later statechart
inheritance, HistorizedRunning is refined by the introduction of additional sub-
states in order to store the history of the controller behavior. This is reflected by
the history state in HistorizedRunning. Moreover, HistorizedRunning contains
the substate Running which is a place holder for later refinements describing the
system functionality. Another substate of Activated is the state ExpectConfirma-

tion which will carry confirmations of dialogue events in refined states. Finally,
the statechart diagram contains the state ExpectConfirmationError modelling
error handling. It is reached by a transition accompanied by the guard guard-
WarningSeverityLevel. Thus, the transition fires only if the error exception is at
least of the severity level Warning. According to the severity level the controller
may either return to the last active state of historized running or abort due
to a fatal error. This is expressed by the transition guards guardSameStateMa-
chine resp. GuardFatalSeverityLevel. The guards are implemented by the three
boolean operations which in the class diagram are contained in the operation
compartment of class BaseController. This class is associated with the class Er-
rorContext receiving all error messages which result from actions triggered by
the business controller.

An inheritance of BaseController is the abstract controller class GeneralAc-
tivity which is mainly responsible for the handling of confirmations initiated by
a user in a session. The associated statechart diagram of this controller class was
already presented in Figure 1. With respect to BaseController the substate Ex-
pectConfirmation was refined by adding the two substates Cancel and Ok. These
substates contain do-actions handleCancel resp. handleConfirm each starting a
sub-controller which deals with cancellation or confirmation performed by the
user. Moreover, four transitions were added in order to handle logical abort
and confirm events of a dialogue. The transitions from the state Running to
the added states which rely on an Abort resp. Confirm event refer to the guard
guardDataUnchanged checking if business data changed since carrying out the
last transition. Two other transitions connecting the new states to Running are
carried out after receiving an Abort event if the guard guardSameStateMachine
holds.

The concrete class SearchActivity models a controller which is able to per-
form a search in a database. The class has an attribute CardinalityOfResultSet
of type integer holding the number of result entries of a database query. The op-
eration guardValidateQueryCriteria is required to check if a query on a database
uses the required criteria of the query correctly. Moreover, there is an opera-
tion actionQueryDB which is an ApplyFunctionAction (cf. Sec. 3) performing
a query on a database. In the corresponding statechart of SearchActivity the
state ValidateSearchResult and transitions handling the query in a database are
added.

In a further refinement of SearchController (e.g., the class PartnerSearchAc-
tivity), controllers with respect to specific business requirements are modelled.
Here, the operation guardValidateQueryCriteria is overwritten by an operation
referring to a concrete database application while actionQueryDB is refined by
an operation containing a concrete database query.

Below, we sketch the PIM to PSM transformation of the statechart of the
controller class SearchActivity. The resulting PSM of SearchActivity is shown in
Fig. 11. Moreover, the depicted statechart models the states and transitions of
the PIM. We present the states and transitions added to the statechart of the
GeneralActivity class (cf. Fig. 1) by thick lines. For transformating the PIM to

Idle

Activated

ExcpectConfirmation

OK

do/ handleConfirm

Cancel

do/ handleCancel

HistorizedRunning

H*

Running

{isFinal=true}

{isFinal=false}

{isFinal=false}

H*

Running

{isFinal=false}

ExcpectConfirmation

OK

do/ handleConfirm

Cancel

do/ handleCancel

ValidateSearchResult

QueuryDB[guardValidateQueryCriteria] /

actionQueryDB

{isFinal=false}

{isFinal=true}

Clear /

actionReset

QueuryDB[!guardQueryCriteriaValidationOK]

ExpectConfirmationError

do/ ExpectErrorHabdling

[CardinalityOfResultSet > 0]

Confirm()[!guardSameStateMachine]

OK

do/ handleConfirm

Cancel

do/ handleCancel

Confirm[!guardDataUnchanged]Abort[!guardDataUnchanged]

{isFinal=true} {isFinal=true}

[guardWarningSeverityLevel]

Confirm / actionClearIntermediateResults

Abort[SameStateMachine]

Confirm / actionClearIntermediateResults

Abort[SameStateMachine]

Confirm / actionSave

Confirm()[guardFatalSeverityLevel]

© IS KV

Fig. 11. State chart of the Search Activity PSM

the PSM of SearchActivity, we had first to transform the PIM of the superclasses.
While for the class BaseController no transformations had to be performed, we
applied the listed rules to the statechart of the superclass GeneralActivity in the
following order:

1. Refine nested state expectConfirmation by adding the substate Cancel which
has the action handleCancel and the transition from Running to Cancel
(RSR2).

2. Add the substate Ok to the nested state expectConfirmation which has the
action handleConfimation and a transition from Running to Ok (ASR1).

3. Add the initial substate to the nested state expectConfirmation with a tran-
sition to Ok (ASR6).

4. Add a transition from state Cancel to the final state (ATR5 variant).

5. Add a transition from state Ok to the history state H
∗ (ATR4 variant).

6. Add a transition from the nested state Activated to the final state with
the event Confirm and the action actionClearIntermediateResults (ATR5
variant).

In a second step, we transformed the statechart specifying the SearchActivity
PIM by application of the following rules:

1. Add state ValidateSearchResult with a transition from state HistorizedRun-
ning (ASR1).

2. Add a transition from state Running to the history state H
∗ with the event

Clear and the association action actionClear (ATR 4 variant).

3. Add a transition from state Running to the history state H
∗ with the event

QueryDB and the guard guardQueryCriteriaValidationOK (ATR 4 variant).
4. Add a transition from state ExpectConfirmation to the history state H

∗ with
the event QueryDB and the guard guardQueryCriteriaValidationOK (ATR
4 variant).

5. Add a triggerless transition from ValidateSearchResult to state Historize-
dRunning (ATR3 variant).

6. Add a triggerless transition from ValidateSearchResult to state ExpectCon-
firmation (ATR3 variant).

All in all, the transformation tool performed the rule application automatically
and needed about 125 ms.

8 Concluding Remarks

In this paper we pointed out that new features of UML 2.0 like statechart in-
heritance and the action semantics extensions are useful means to model busi-
ness controllers. Moreover, we focussed on MDA-based generation of business
controller code. In particular, we use graph rewrite rules for PIM to PSM trans-
formation. The effort to create the transformation tool and the code generator
for controllers was about 2 man years and the amount to build the framework
of business controllers and the PIM to PSM transformation was about 3 man
months. The result is a fast and useful system which reduces the efforts of busi-
ness controller design drastically. We applied our approach in a first industrial
project for health care insurances. Our generated metrics showed that 90 % of
the necessary application code could be generated by the application of trans-
formation and generation tools. Moreover, about 60 % of the framework code for
the controllers were automatically generated. Performance measurements show
that generated controller code is performant. The maintenance of the code is
comparatively easy since a lot of information is available in models which makes
its complexity more manageable. In spite of the generally exponential complexity
of graph isomorphisms, the PIM to PSM transformations of the project could
be performed within 400 ms for a standard sized controller due to hard coding
of the transformation rules.

In the future, we have to increase the flexibility of rule adoptions which are of
interest not only for business controllers. In particular, tools and languages for a
suitable generation and application of the transformation rules are of interest in
agile software development processes. In complete, we plan to spend several man
years of application development using the framework and the transformation
tools. Moreover, since the bidirectional traceability from models to code is very
fundamental for model driven development appropriate tools are required. We
will provide special tools to prepare information concerning traceability in special
views, which allow a quick access to the necessary information without using a
debugger for Java sources. At third, we will explore the possibility to use the
model-based approach for formal-based software development (cf. [6, 7]).

References

1. A. Agrawal, T. Levendovszky, J. Sprinkle, F. Shi, and G. Karsai. Gen-
erative Programming via Graph Transformations in the Model-Driven Ar-
chitecture. In OOPSLA Workshop on Generative Techniques in the Con-
text of Model Driven Architecture, Seattle, Nov. 2002. Available via WWW:
www.softmetaware.com/oopsla2002/mda-workshop.html.

2. R. Bardohl, G. Taentzer, M. Minas, and A. Schürr. Application of graph transfor-
mation to visual languages. In Handbook on Graph Grammars and Computing by
Graph Transformation, Volume 2. World Scientific, 1999.

3. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley Longman, 1999.

4. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture — A System of Patterns. John Wiley & Sons,
Chichester, 1996.

5. D. S. Frankel. Model Driven Architecture : Applying MDA to Enterprise Comput-
ing. Wiley Europe, Jan. 2003.

6. G. Graw and P. Herrmann. Verification of xUML Specifications in the Context of
MDA. In J. Bezivin and R. France, editors, Workshop in Software Model Engi-
neering (WISMEUML’2002), Dresden, 2002.

7. G. Graw, P. Herrmann, and H. Krumm. Verification of UML-Based Real-Time Sys-
tem Designs by Means of cTLA. In Proc. 3rd IEEE International Symposium on
Object-oriented Real-time distributed Computing (ISORC2K), pages 86–95, New-
port Beach, 2000. IEEE Computer Society Press.

8. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8(3):231–274, June 1987.

9. D. Harel and O. Kupferman. On the Behavioral Inheritance of State-Based Ob-
jects. In Proc. Technology of Object-Oriented Languages and Systems (TOOLS
34’00), pages 83–94, Santa Barbara, 2000. IEEE Computer Society Press.

10. Ø. Haugen. MSC-2000 Interaction Diagrams for the New Millennium. Computer
Networks, 35(6):721–732, 2001.

11. Kennedy Carter. Action Semantics for the UML. Available via WWW:
www.kc.com/as site/home.html.

12. A. Kleppe, W. Bast, and J. Warmer. MDA Explained: The Model Driven Archi-
tecture: Practice and Promise. Addison Wesley, 2003.

13. S. J. Mellor and M. J. Balcer. Executable UML: A Foundation for Model Driven
Architecture. Addison-Wesley, 2002.

14. OMG. UML: Superstructure v. 2.0 – Third revised UML 2.0 Superstructure Pro-
posal, OMG Doc# ad/03-04-01 edition, 2003. Available via WWW: www.u2-
partners.org/uml2-proposals.htm.

15. Open Management Group. UML Metamodel 1.4. Available via WWW:
www.omg.org/uml.

16. P. Stevens. Small-Scale XMI Programming: A Revolution in UML Tool Use?
Journal of Automated Software Engineering, 10(1):7–21, Jan. 2003.

17. Sun Microsystems. Enterprise Java Beans Technology — Server Component
Model for the Java Platform (White Paper), 1998. java.sun.com/products/ejb/
white paper.html.

18. Ed Roman. Mastering EJB, 2002. Available via WWW: www.theserverside.com.
19. Krzysztof Czarnecki, Simon Helsen Classification of Model Transformation Ap-

proaches, 2003. Proceedings of the OOPSLA 03 MDA Workshop. Available via
WWW: http://www.softmetaware.com/oopsla2003/czarnecki.pdf.

