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Abstract. Component-structured software, which is coupled from in-
dependently developed software components, introduces new security
problems. In particular, a component may attack components of its en-
vironment and, in consequence, spoil the application incorporating it.
Therefore, to guard a system, we constrain the behavior of a component
by ruling out the transmission of events between components which may
cause harm. Security policies describing the behavior constraints are for-
mally specified and, at runtime, so-called security wrappers monitor the
interface traffic of components and check it for compliance with the spec-
ifications. Moreover, one can also use the specifications to prove formally
that the combinations of the component security policies fulfill certain
security properties of the complete component-structured application. A
well-known method to express system security properties is access con-
trol which can be modelled by means of the popular Role Based Access
Control (RBAC) method.
Below, we will introduce a specification framework facilitating the formal
proof that component security policy specifications fulfill RBAC-based
application access control policies. The specification framework is based
on the specification technique cTLA. The design of state-based security
policy specifications and of RBAC-models is supported by framework li-
braries of specification patterns which may be instantiated and composed
to a specification. Moreover, the framework contains already proven the-
orems facilitating the formal reasoning since a deduction proof can be
reduced to proof steps which correspond directly to the theorems. In
particular, we introduce the specification framework and clarify its ap-
plication by means of an e-commerce example.

1 Introduction

More and more e-commerce applications are composed from cost-effective soft-
ware components which are developed independently from each other and are
separately offered on an open market (cf. [1]). The component-structured appli-
cations can be tailored to the particular needs of their customers by selecting,
configuring, and customizing suitable components which may come from various
sources. The architecture of the component-structured software and, in particu-
lar, the heterogeneity of the component interfaces, however, aggravates the com-
position process. The coupling of components therefore is facilitated by using
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— ideally legally binding — component contracts describing all context depen-
dencies of a component. According to [2], a component contract consists of four
parts. In the first part the methods, events, and exceptions of the component
interfaces and the corresponding arguments are listed. The second part describes
constraints of the interface behavior to be fulfilled by the component resp. its
environment. The third part models synchronization aspects while the forth part
lists quality-of-service properties. The contracts are utilized by visual application
builder tools which facilitate the composition process. Well-established platforms
for component-structured software are Enterprise Java Beans (EJBs) which are
based on Sun’s Java Beans and Microsoft’s COM/DCOM. Moreover, OMG’s
middleware platform CORBA was extended by a component model.

Component-structured software also faces new security risks since, compared
with monolithic applications, a higher number of principals is involved in the
system development and deployment (i.e., application owners and users, com-
ponent designers and vendors, system builders, component service providers).
On the one hand, each principal introduces his own security objectives which
have to be fulfilled by the other principals. On the other hand, a principal is a
potential threat to the other principals as well as to the component-structured
application. Taxonomies of security risks for component-structured software are
introduced in [3, 4]. Our work concentrates on a main security risk which cannot
be dealt with traditional security mechanisms: A malicious component may dis-
tort other components and, in consequence, spoil the application incorporating
it. This risk is addressed by so-called security wrappers which are introduced
in [5, 6]. We expanded the component contracts by formal state-based models
specifying that components always behave in a way that the security of their en-
vironment components is guaranteed. Moreover, a security wrapper is inserted
at the interfaces of a component. It is a special software wrapper (cf. [7]) which
temporarily blocks all events passing an interface and checks them for compli-
ance with the component contract security policy specifications. To perform the
compliance checks, the wrapper simulates the specifications and accepts an event
only if the transitions modelling the event are enabled in the current states of
all simulations. An accepted event is forwarded to its destination. If, however,
an event is rejected, the wrapper seals the component by blocking its interface
traffic and notifies the application administrator. The performance effort of the
security wrappers is between 5 and 10 %, but can be significantly reduced by
applying trust management (cf. [4, 8]).

Similarly to us, Khan et al. [17] extend component contracts to describe
security aspects in order to check requirement-assurance relationships between
coupled components. The used description technique is relatively simple and
does not represent behavioral properties used to model interface behavior.

In this paper, we concentrate on another utilization of the component con-
tract security models. Besides of runtime enforcement by the security wrappers,
the specifications can also be used at design time to verify that the application
incorporating the constrained components fulfill more general system-oriented
security policies. These policies can be regarded as safeguards for a system which
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make successful attacks more difficult. Well-known techniques to describe sys-
tem security policies are access control and information flow models. The use
of formal methods to prove that the component contract models realize system
security policies is of great practical interest since the current standard for secu-
rity analysis, the so-called Common Criteria (CC, [9]), demands a formal-based
analysis for the certification of systems operating in a highly sensitive environ-
ment. As a description technique for the system security properties we use the
popular Role-Based Access Control method (RBAC, [10]) which is well-suited
to rule out attacks on the confidentiality and integrity of systems.

To develop specifications of component contract security policies or system
security policies and to perform refinement proofs, we consider the specification
technique cTLA [11] suitable. cTLA facilitates the creation of state transition
systems in a modular and process-oriented fashion. In particular, it enables the
composition of system descriptions from implementation-oriented processes (e.g.,
contract models describing aspects of component interface behavior), constraint-
oriented processes (e.g., certain constraints of an RBAC model), and combina-
tions (cf. [13]). Process composition in cTLA has the character of superposition
(cf. [14]). Here, a relevant property of a process or a subsystem is also a prop-
erty of the embedding system. Therefore structured verification is possible (i.e.,
a proof that a system fulfills a property can be reduced to the verification that an
— often very small — subsystem fulfills this property). Moreover, structured ver-
ification facilitates the establishment of specification and verification frameworks
which contain libraries of cTLA process types. System and subsystem specifica-
tions can easily be developed by instantiating and composing the process types
from the framework libraries. In particular, a specification framework contains
libraries of theorems which are proven by the framework designer. A theorem
states that, if some side conditions hold, a subsystem consisting of more detailed
processes fulfills a more coarse-grained process. Thus, in order to prove that a
detailed system C fulfills a coarse-grained system S, one has to check only that
for each process of S a theorem exists stating that a subsystem of C fulfills this
process. Furthermore, one has to prove that the side conditions of the applied
theorems hold and that the processes of C and S are consistently coupled. These
checks, however, are usually simple and can be automated (cf. [15]). Therefore
the specification frameworks make formal proofs of real-sized problems possi-
ble (e.g., service verification of transport communication protocols [16]). Below,
we will introduce a specification framework for the verification that component
contract security policy specifications fulfill RBAC-based system security policy
models. The cTLA processes and theorems of this framework are depicted in the
WWW (URL: ls4-www.cs.uni-dortmund.de/RVS/P-SACS/eReq).

2 cTLA

Leslie Lamport’s Temporal Logic of Actions (TLA, [12]) is a linear time temporal
logic which describes safety and liveness properties (cf. [18]) of state transition
systems by means of canonical formulas. cTLA (compositional TLA, [11]) is



4

PROCESS IntegrityEnablingHistorySTS

(ComponentIds : ANY; InterfaceIds : ANY; EventIds : ANY;

Args : ANY; ConstrEv : EvDfType; States : ANY;

InitState : States; ExecuteCond : SET[States → SUBSET(Args)];

Trans : SET[(States × EvDfType × Args) → States])
CONSTANTS
EvDfType

∆

= (ComponentIds × ComponentIds × InterfaceIds × EventIds);
BODY
VARIABLES

var : States;

INIT
∆

= var = InitialState;

ACTIONS

Event (callee : ComponentIds; caller : ComponentIds;

if : InterfaceIds; ev : EventIds; arg : Args)
∆

=
((callee, caller, if, ev) 6= ConstrEv ∨ arg ∈ ExecuteCond[var]) ∧
var ′ = Trans[var, (callee, caller, if, ev), arg];

END

Fig. 1. Process type IntegrityEnablingHistorySTS

based on TLA, but enables the suitable specification of systems in the notation
of processes. A process acts as a modular specification component and a system
can be specified by a set of coupled processes. A process has either the form
of a simple process or of a process composition. Simple processes refer directly
to state transition systems and can represent implementation parts as well as
logical constraints.

Fig. 1 depicts the simple cTLA process type IntegrityEnablingHistorySTS
used to specify a pattern of a typical component contract specification. It is in-
troduced to more detail in Sec. 5. In the header the process type name and
generic module parameters (e.g., ComponentIds) are declared. The parameters
facilitate the specification of a spectrum of similar but different processes by a
single process type. In the section CONSTANTS constant and type definitions are
listed. The body of the process type defines the state transition system modelling
a process instance. The state space is specified by the state variable var which
carries values of the data type defined by the process parameter States. The
initial condition INIT refers to state variables and defines the set of initial states
(i.e., var initially has the value expressed by the parameter InitState). The
state transitions are specified by actions (i.e., Event). An action is a predicate
on a pair of a current and a successor state modelling a set of state transitions.
The state variables referring to the current state are described by ordinary vari-
able identifiers (i.e., var) while variables referring to the successor state occur
in the so-called primed form (i.e., var’). An action may be supplemented by
action parameters (e.g., callee). The next state relation of the modelled state
transition system corresponds to the disjunction of the actions.

Systems and subsystems are described as compositions of concurrent pro-
cesses. As in the ISO/OSI specification language LOTOS, a set of processes
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interact in a rendezvous-like way by performing actions jointly, and the data
parameters of the actions can model the communication of values between pro-
cesses. Each process encapsulates its variables and changes its state by atomic
execution of its actions. The system state is the vector of the process state vari-
ables. State transitions of the system correspond to simultaneously executed
process actions or to so-called process stuttering steps (i.e., the process does
not change its state). Since, moreover, a process participates in a system action
either by exactly one process action or by a process stuttering step, one can
define a system action by a conjunction of process actions and stuttering steps.
In consequence, concurrency is modelled by interleaving while the coupling of
processes corresponds to joint actions. The design of cTLA process types as well
as the composition of processes to systems is supported by a compiler tool [19].

3 Global Formal Model

The component contract security policy descriptions and the RBAC-based sys-
tem security models are specified by means of cTLA process types. In order to
provide a common understanding of the interaction between process instances
facilitating the composition of the processes to system specifications, we defined
a simple global formal model. In a specification of a component-structured ap-
plication, this model represents the components, the component interfaces, the
events transferred between components, and the event arguments. The process
instances describing the global model form the core of all component contract
or system security specifications. In particular, the global model defines nam-
ing conventions for process parameters, action names, and action parameters
guiding the instantiation and composition of the other process types to system
specifications. Thus, by enforcing identical names for similar behavior aspects
in the component contract specifications and in the descriptions of the system
security properties, refinement proofs are made easier. To keep the global model
simple, only static component-structured systems (i.e., systems without adding
or removing components during runtime) are currently supported1. Moreover,
we use events as the only means to describe cooperation between components
since other interaction constructs like method calls or exceptions can also be re-
alized by events (e.g., a method call is the combination of a calling and a return
event).

The main cTLA process type is GlobalSystem (cf. Fig. 2). By means of the
generic process parameters ComponentIds, InterfaceIds, and EventIds one
can define identifiers for the components, interfaces, and events of a component-
structured application while the arguments of the events are defined by the pro-
cess parameter Args. Identical parameters occur in other cTLA process types
where they should be instantiated with the same sets as in GlobalSystem. The
parameter Interfaces of the type InterfaceType, which is defined in the sec-
tion CONSTANTS, specifies the component interfaces. An interface consists of an

1 Dynamic changes of the component structure can be modelled by means of special
life cycle variables (cf. [20]).
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PROCESS GlobalSystem (ComponentIds : ANY; InterfaceIds : ANY;

EventIds : ANY; Args : ANY;

Interfaces : SUBSET(InterfaceType);

CompIfs : SET[ComponentIds → SUBSET(Interfaces)])
CONSTANTS
InterfaceType

∆

= [[ iId : InterfaceIds; iEvents : SUBSET(EventIds);

iEvArgs : SET[EventIds → Args] ]];
BODY
INIT

∆

= True;

ACTIONS

Event (callee : ComponentIds; caller : ComponentIds;

if : InterfaceIds; ev : EventIds; arg : Args)
∆

=
∃ i ∈ InterfaceType :: i ∈ CompIfs[callee] ∧ i.iId = if ∧

ev ∈ iEvents ∧ arg = i.iEvArgs[ev];

END

Fig. 2. Process type GlobalSystem

identifier iId, a set iEvents of events passing the interface, and a function
iEvArgs assigning a set of arguments to each event. Finally, the parameter
CompIfs maps component identifiers to interfaces and specifies which interfaces
belong to a component. Since the process type is stateless, the process body does
not contain variables and the initial condition is always true. Event is the only
action used in this or in other process types. It models that an event with the
identifier ev and the argument arg is sent from the component caller to the
interface if of the component callee.

Besides of GlobalSystem, the global formal model consists of the process type
ComponentCoupling describing which components are enabled to send events to
an interface of a particular component. This process is listed in the WWW (URL:
ls4-www.cs.uni-dortmund.de/RVS/P-SACS/eReq). The complete global model is
specified by means of an instance of process type GlobalSystem and a sepa-
rate instance of ComponentCoupling for each component being coupled to the
modelled component-structured application.

4 RBAC system models

A malicious component may attack its environment in many different ways vi-
olating the confidentiality, integrity, availability, or non-repudiation of the em-
bedding application. In the following, we sketch some threats relevant for the
confidentiality and integrity of a component-structured system while availability
and non-repudiation threats are listed in [6]. Confidentiality attacks are particu-
larly significant for distributed component-based systems where the components
reside in different security domains with varying user-access policies. Here, the
information flow between components may be maliciously altered in a way that
data is forwarded to system parts controlled by principals who are not allowed



7

USERS OBSOPS

SES-

SIONS

ROLES

PRMS

(UA)

User

Assignment

user_

sessions session_roles

(PA)

Permission

Assignment

(RH)

Role Hierarchy

Fig. 3. RBAC model (taken from [10])

to read the data. Moreover, hidden channels may be used where certain infor-
mation is illegally concealed in transferred data — so-called steganography — or
by defining secret agreements in the order, the number, or the execution time of
events. A component may attack the integrity of its environment by triggering
incorrect events, by modifying the event parameters, or by manipulating the sys-
tem configuration parameters. Due to these attacks the application may deviate
from the specified system behavior harming the system owners and users.

A well-known technique to protect systems against confidentiality or integrity
attacks is access control in which the read or write access on various system
resources is limited to certain users. A popular access control technology is Role-
Based Access Control (RBAC, [10, 21]) which allows to express a wide range
of security policies (cf. [22]). Fig. 3 outlines the major structure of RBAC. It
uses roles (ROLES) as main construct to assign access permissions to users.
The roles model certain positions in an application domain (e.g., in a hotel
environment guest, general manager, housekeeping manager, and housekeeping

staff member are examples of roles). The roles may be hierarchically organized.
In this case the rights of a lower level role are inherited by a higher level role
(e.g., the general manager has also the rights of a housekeeping manager). Access
permissions (PRMS) describe the right to perform certain operations (OPS) on
objects (OBS). The RBAC model defines a many-to-many relation between roles
and permissions (e.g., a general manager may give reductions to the room prizes).
Another many-to-many relation is defined between roles and users (USERS, e.g.,
Alice is a general manager while Bob and Charlotte are both a housekeeping

manager). A user has the permission to access a resource if at least one role
is assigned to both himself and the desired permission (e.g., Alice may decide
about room prize reductions but not Bob). Moreover, to use a permission, the
corresponding role must be active for the user requesting access. Therefore, the
RBAC model includes so-called sessions (SESSIONS). Each session models the
set of active roles by mapping a user to a subset of the roles assigned to him.
Furthermore, one can define certain constraints limiting the assignment of roles
or the number of active roles (cf. [10]). A constraint type is static separation
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PROCESS ActiveRoles

(ComponentIds : ANY; InterfaceIds : ANY; EventIds : ANY;

Args : ANY; Roles : ANY; ConstrCallers : SUBSET(ComponentIds);

ConstrRoles : SUBSET(Roles); InitRoles : SUBSET(Roles);

ActivateRoles : SET[(EvDfType × Args) → SUBSET(Roles)];

DeactivateRoles : SET[(EvDfType × Args) → SUBSET(Roles)])
CONSTANTS
EvDfType

∆

= (ComponentIds × ComponentIds × InterfaceIds × EventIds);
BODY
VARIABLES

act : SUBSET(Roles);

INIT
∆

= act = InitRoles ∩ ConstrRoles;

ACTIONS

Event (callee : ComponentIds; caller : ComponentIds;

if : InterfaceIds; ev : EventIds; arg : Args;

actRoles : SUBSET(Roles))
∆

=
(caller /∈ ConstrCallers ∨ act = (actRoles ∩ ConstrRoles)) ∧
act ′ = ((act ∪ ActivateRoles[((callee,caller,if,ev),arg)]) \

DeactivateRoles[((callee,caller,if,ev),arg)]) ∩ ConstrRoles;

END

Fig. 4. Process type ActiveRoles

of duty. Here, a user may not be assigned to two different roles in order to
avoid conflicts of interest (e.g., the general manager may never be a guest in her
hotel in order to prevent making room prize reductions to herself). In contrast,
in dynamic separation of duty a user may be assigned to two conflicting roles
which, however, must not be active at the same time (e.g., Bob and Charlotte

who are also housekeeping staff members are not allowed to act as manager and
staff member simultaneously). Finally, the number of users for which a role is
currently active may be limited (e.g., only one person at a time may act as a
housekeeping manager).

In the domain of component-structured software, the components linked to
an application form the group of users. A permission corresponds to the right to
send a particular event to a certain interface of another component. The defini-
tion of the roles is guided by the tasks performed by the software-based applica-
tion. Fig. 4 depicts the cTLA process type ActiveRoles specifying which roles
are currently active for a particular component. Besides of the basic process pa-
rameters ComponentIds, InterfaceIds, EventIds, and Args, the process type
contains the parameter Roles describing the roles in the modelled RBAC model.
In order to allow modular system specifications consisting of a large number of
simple process instances, the components and roles constrained by a process can
be limited. The parameters ConstrCallers and ConstrRoles describe the iden-
tifiers of the constrained callers resp. roles. The parameter InitRoles specifies
which roles are initially active. Finally, ActivateRoles and DeactivateRoles

define which roles get active resp. inactive. These two parameters are mappings
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from event references which are modelled by the data type EvDfType to sets
of roles. The state variable act specifies which constrained roles are currently
active. The action Event contains an additional action parameter actRoles spec-
ifying the set of roles which are active for the event caller. Thus, this set can also
be accessed by other process instances in the RBAC specification. Event is al-
ways enabled if the caller is not constrained by the process instance. Otherwise,
each role constrained by the process has to be included in both sets defined by
the variable act and the process parameter actRoles or in neither of them.

Besides of ActiveRoles, we defined cTLA process types modelling the rela-
tions between roles and users resp. permissions as well as RBAC constraints.

5 Component Contract Security Specifications

To facilitate the design of specifications constraining the interface behavior of
a component in order to guarantee security properties, we defined a group of
cTLA process types, too. Each process type models a pattern for a component
contract security policy. Component developers define contract security policies
based on the patterns by instantiating the cTLA process types and by adding
the process instances to the component contract. Reflecting that one can only
consider the component interface behavior but not the internal attribute settings
and internal events of a component, the component contract security policy
patterns address the attack scenarios outlined in the beginning of Sec. 4 directly.
Confidentiality attacks can be avoided by restricting the flow of data between
components. A data unit must only be send to components which deny read-
access to principals unauthorized to read it. Moreover, one can impede hidden
channels by preventing non-deterministic interface behavior (cf. [23]). Therefore,
to prevent steganography, corresponding security policies define deterministic
functional dependencies between data units and preceding events and restrict
the order, number, and execution time of the events. The confidentiality policies
are realized by the following policy patterns:

– Data flow access: A data unit may only be forwarded to a component if
its read access permissions are preserved.

– Data flow history: A data unit may only be forwarded in the context of
certain preceding interface events.

– Hidden channel functional dependency: A forwarded data unit depends
on previously transferred data according to a data dependency function.

– Hidden channel enabling history: The enabling condition of an interface
event and its arguments depend on the context of preceding events according
to a occurrence dependency function.

– Hidden channel execution time: An interface event has to be executed
after a preceding interface event within a certain time period.

Integrity attacks are addressed by security policies restricting the execution of
interface events and the selection of event arguments. Moreover, the policies can
be used to check if events are plausible with respect to the context of preceding
events. The policies are specified by the patterns listed below:
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– Integrity enabling condition: The enabling conditions of interface events
and their arguments are constrained in order to guarantee plausible compo-
nent interaction.

– Integrity enabling history: The enabling conditions of interface events
and their arguments depend on the context of preceding interface events in
order to guarantee plausible component interaction.

Other policy patterns to prevent availability and non-repudiation attacks are
introduced in [6]. An example of a cTLA process type specifying a specific com-
ponent contract security pattern is IntegrityHistorySTS which is depicted in
Fig. 1. It realizes the specific pattern integrity enabling history by mod-
elling that a certain event (defined by the generic process parameter ConstrEv)
with a corresponding argument setting must only be triggered if a particular
history of events occurred before. To describe the history, in the process type a
state transition system is explicitly modelled. Here, the generic process param-
eter States describes the state space, InitState the initial state, and Trans

the next step relation which depends on executed events. Finally, the process
parameter ExecuteCond defines for which event arguments the event ConstrEv
may be executed in a certain state. The state variable var models the current
state of the state transition system.

6 Verification

In order to verify that component contract policy patterns fulfill an RBAC-
based system security model, the owner of the component-structured application
develops two cTLA specifications S and C. S models the RBAC model which is
created by instantiating the RBAC-oriented cTLA process types introduced in
Sec. 4 and composing them with the process instances defining the global formal
model (cf. Sec. 3). Likewise, a specification C describing component contract
policies is designed by coupling the processes of the global model with instances
of the security policy patterns (cf. Sec. 5).

The verification is performed by means of a TLA deduction proof of the
implication C ⇒ S (cf. [12]). We can reduce this proof into a series of simpler
proof steps. In each proof step, we prove that a cTLA process instance of S is
fulfilled by a subsystem of C which usually consists of a relatively small number
of process instances. If all instances of S are realized by subsystems of C and
the processes of C and S are consistently coupled with each other, C ⇒ S

holds due to the compositionality of cTLA2. The consistency of the process
couplings in C and S is trivially true since in both specifications the process
actions Event are coupled with each other to the system actions Event. The proof
steps describing that subsystems of C realize process instances of S correspond
directly to the already proven framework theorems. Thus, we can reduce the
verification of C ⇒ S to the selection of suitable framework theorems and to
some consistency checks of process parameter instantiations. A tool supporting
the theorem selection and performing most of the checks is introduced in [15].

2 The corresponding proof is included in [11].
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LET
Pars

∆

= ∃ rm ∈ SET[States → SUBSET(ConstrRoles)] ::

(rm[InitState] = InitRoles ∧
∀ s ∈ States ∀ edt ∈ EvDfType ∀ a ∈ Args ::

rm[Trans[(s,edt,a)]] = (rm[s] ∪ ActivateRoles[(edt,a)]) \
DeactivateRoles[(edt,a)]);

Sys
∆

= IntegrityEnablingHistorySTS

(ComponentIds,InterfaceIds,EventIds,Args,ConstrEv,States,

InitState,ExecuteCond,Trans);

IN Pars ∧ Sys ⇒ ActiveRoles (ComponentIds,InterfaceIds,EventIds,Args,

Roles,ConstrCallers,ConstrRoles,InitRoles,

ActivateRoles, DeactivateRoles);

Fig. 5. Theorem to prove ActiveRoles based on IntegrityEnablingHistorySTS

An example theorem is depicted in Fig. 5. It states that a subsystem consist-
ing only of an instance of the cTLA process type IntegrityEnablingHistorySTS
(cf. Fig. 1) fulfills an instance of the process type ActiveRoles (cf. Fig. 4) if
the theorem condition Pars holds. Thus, the theorem proves that an instance
of the specific security policy pattern integrity enabling history realizes the
activation mechanism for certain roles in an RBAC model. To apply this theo-
rem, we have to prove the condition Pars stating that we must find a mapping
rm between the state variable var of IntegrityEnablingHistorySTS and the
variable act of ActiveRoles. The mapping has to guarantee that the initial
state of var maps to the initial set of active roles in act and that a state change
of var leads to a corresponding change of act. Thus, rm is a so-called refinement
mapping (cf. [12]) which was used to prove the theorem. In our experience, it is
relatively easy to detect suitable refinement mappings due to the use of small
subsystems in cTLA (cf. [16]).

7 Proof Example

In [6] we presented a component-structured application example performing the
commodity management of fast-food franchise restaurants. The core of this sys-
tem was developed on the basis of the SalesPoint-Framework [24], a Java-based
framework of shop administration functions. Based on these functions we cre-
ated three components which realize the restaurant sales functions, the count-
ing stock management, and the product catalog. Moreover, we added four self-
programmed components in order to adapt the commodity management of our
shop to the Open Buying on the Internet (OBI) standard [25]. In this stan-
dard an architecture for electronic procurement of goods and a corresponding
business-to-business model are defined. The architecture introduces a buying or-
ganization, selling organizations, a payment authority, and a requisitioner. In
behalf of the buying organization the requisitioner carries out orders at the sell-
ing organizations and the orders are paid by means of the payment authority. In
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particular, in intervals, the requisitioner checks the counting stock for shortages
of goods. If a shortage was detected, the requisitioner requests seller addresses
from the buying organization, sends requests for tenders to the sellers, receives
tenders, decides about a winning seller based on the tenders, and sends an or-
der to the winning seller. Thereafter the order is fulfilled and paid by means of
the paying authority. We changed the OBI standard in one respect: The pro-
curements are not performed by a human but are automatically carried out by a
so-called e-requisitioner component. Furthermore, we added a directory-of-sellers
component storing the seller addresses and the range of goods offered by a seller.
An adapter component manages the communication with the sellers which is re-
alized by standardized tender requests, tenders, and orders. Moreover, we use
remote seller components which are also based on the SalesPoint-Framework
and a notary logging service in order to support non-repudiation of the relevant
transactions.

With respect to system security, we have to guarantee that the buying orga-
nization is not cheated to the advantage of certain sellers. This is of relevance,
since we presume that the e-requisitioner is obtained from a non-trusted source
and its code may be manipulated in order to favor certain sellers. We assume,
however, that the contract of the e-requisitioner component contains security
contract models which can be enforced by a security wrapper. The models are
listed in [6] and the corresponding cTLA process instances can be obtained from
the WWW (URL: ls4-www.informatik.uni-dortmund.de/RVS/P-SACS/eReq). As
a system user, we have to specify the desired system security policies and prove
that they are fulfilled by the component contract policy descriptions. An RBAC-
based model is used to specify various system security objectives (e.g., a seller
is selected which delivered one of the least expensive tenders).

In the following, we concentrate on an integrity security policy defining that
a procurement may only be started if the e-requisitioner detected a shortage
of a good in the counting stock. In the RBAC model this is modelled by roles
which have to be active for the e-requisitioner in order to perform procure-
ments. Since we assume, that procurements of food and beverages are carried
out separately, we use the two roles "foodReq" and "beverageReq". The roles
are activated if the e-requisitioner detects a shortage of food resp. beverages.
They are deactivated if corresponding orders are carried out. The activation
and deactivation mechanism for the two roles is modelled by the cTLA process
ActiveBuyingRoles (cf. Fig. 6) which is instantiated from ActiveRoles. The
process is modelled as a cTLA process composition and, in order to facilitate the
understanding of the process parameter instantiations, we instantiate the generic
parameters of ActiveRoles with constants carrying the same names as the pa-
rameters. The setting of the parameter ConstrRoles describes that the process
constrains only the two roles "foodReq" and "beverageReq". The instantiations
of the parameters InitRoles, ActivateRoles, and DeactivateRoles model
that the two roles are initially inactive, that they are activated by "RecvGet-

Stock" events if the counting stock for a certain good is below a threshold, and
that they are deactivated by "CallSendOrder" events.
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PROCESS ActiveBuyingRoles
CONSTANTS

. . .

ConstrRoles
∆

= {"foodReq","beverageReq"};

InitRoles
∆

= {};

ActivateRoles
∆

=
[ (edt,a) 7→

IF (edt = ("eReq","stock","main","RecvGetStock") ∧
a.no < threshold[a.good])

THEN IF (a.type = "food") THEN {"foodReq"} ELSE {"beverageReq"}

ELSE {} ];

DeactivateRoles
∆

=
[ (edt,a) 7→

IF (edt = ("adap","eReq","main","CallSendOrder"))

THEN IF (a.type = "food") THEN {"foodReq"}

ELSE IF (a.type = "beverage")

THEN {"beverageReq"} ELSE {"foodReq","beverageReq"}

ELSE {} ];
PROCESSES
p : ActiveRoles

(ComponentIds,InterfaceIds,EventIds,Args,Roles,ConstrCallers,

ConstrRoles,InitRoles,ActivateRoles,DeactivateRoles);
ACTIONS
Event (callee : ComponentIds; caller : ComponentIds;

if : InterfaceIds; ev : EventIds;

arg : Args; activeRoles : SUBSET(Roles))
∆

=
p.Event(callee,caller,if,ev,arg,activeRoles);

END

Fig. 6. Process instance ActiveBuyingRoles

To prove that the specification C consisting of component policy contract
models fulfills the process ActiveBuyingRoles, we apply the component con-
tract specification AskDoSIfBuyerOnly of the type IntegrityEnablingHistory
(cf. Fig. 7). This process defines a state transition system modelling that the e-
requisitioner may only call the directory-of-sellers for seller addresses if some
goods in the counting stock are short. The state transition system has the four
states "no", "food", "beverage", "foodAndBeverage" modelling which types
of goods are short. The proof is performed by means of the theorem listed in
Fig. 5. Thus, we can reduce the proof to the recognition of a suitable refinement
mapping which fulfills the two side conditions specified by the conjuncts in the
theorem condition Pars. A straightforward refinement mapping is

rm
∆

= [ s 7→ IF (s = "food") THEN {"foodReq"}

ELSE IF (s = "beverage") THEN {"beverageReq"}

ELSE IF (s = "foodAndBeverage")

THEN {"foodReq", "beverageReq"}

ELSE {} ]
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PROCESS AskDOSIfBuyerOnly
CONSTANTS

. . .

States
∆

= {"no","food","beverage","foodAndBeverage"};

InitState
∆

= "no";

Trans
∆

=
[(s,edt,a) 7→

IF (edt = ("eReq","stock","main","RecvGetStock") ∧
a.no < threshold[a.good])

THEN IF (a.type = "food")

THEN IF (s ∈ {"no","food"}) THEN "food" ELSE "foodAndBeverage"

ELSE IF (s ∈ {"no","beverage"})

THEN "beverage" ELSE "foodAndBeverage"

ELSE IF (edt = ("adap","eReq","main","CallSendOrder"))

THEN IF (a.type = "food")

THEN IF (s ∈ {"no","food"})

THEN "no" ELSE "beverage"

ELSE IF (a.type = "beverage")

THEN IF (s ∈ {"no","beverage"})

THEN "no" ELSE "food"

ELSE "no"

ELSE s];
. . .
END

Fig. 7. Process AskDoSIfBuyerOnly

The first conjunct of Pars is true for this refinement mapping since the equation
chain rm[InitState] = rm["no"] = {} = InitRoles holds. To verify the sec-
ond conjunct, we reduce the proof to cases guided by the conditions of the IF

THEN ELSE-constructs in the parameter Trans of AskDoSIfBuyerOnly. For in-
stance, in the case that the state transition system is in the state "no" or "food"
and the e-requisitioner receives an event from the counting stock indicating a
shortage of food, we can prove the conjunct by means of the two equation chains
rm[Trans[(s,edt,a)]] = rm["food"] = {"foodReq"} and (rm[s] ∪ Acti-

vateRoles[(edt,a)]) \ DeactivateRoles[(edt,a)] = {"foodReq"}\{} = {
"foodReq"}. By applying similar framework theorems, we prove that C fulfills
the other processes of the RBAC-based system security specification S, too.

8 Concluding Remarks

We reported on an approach making formal verifications possible that software
components fulfill RBAC-based system security properties. The corresponding
cTLA framework facilitates the specification of component contract-based de-
scriptions and of RBAC models while the framework theorems make the re-
finement proofs easier. Due to the compositionality of cTLA, however, not only
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the application but also the creation of the framework is supported. The cTLA
process types of the component contract patterns and RBAC models were devel-
oped by a person within four weeks, while the theorems were set up and proven
within two weeks. We intend to enhance the framework-based approach in order
to support also other system security policy models. In particular, information
flow systems are of interest since they enable the detection of confidentiality at-
tacks due to flaws in the — often complex — flow of data between components
(cf. [26, 27]). This work will complement a less formal but highly automated ap-
proach [28] which is based on object-oriented modelling and on the application
of graph rewrite rules on object models. Moreover, we plan to extend the global
formal model, the specification patterns, and the theorems in order to facilitate
also the specification and verification of flexible component-structured systems
where components are added to or removed from an application during runtime.
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