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Abstract. We define a reactive semantics for a subset of UML activities
that is suitable as precise design language for reactive software systems.
These semantics identify run-to-completion steps for execution on the
level of UML activities as so-called activity steps. We show that activities
adhering to these semantics and a set of rules lead to event-driven and
bounded system specifications that can be implemented automatically
by model transformation and executed efficiently using runtime support
systems.

1 Introduction

UML 2.0 activities essentially denote in which order certain actions have to be
executed to accomplish some task, and are therefore suitable for a wide range
of applications. With their revision for the second major version of the UML
standard [18], they were considerably enhanced with respect to supporting con-
current flows and hierarchically structured specifications. In the following, we
focus on the application of UML activities on the domain of reactive systems.
This class of systems, characterized by Pnueli as ones that “ideally never ter-
minate” and that “maintain some interaction with their environment” [19], is
especially interesting since with an increasing degree of connectivity of devices
and the ubiquity of sensors that provide data, more and more applications fall
into this category of systems. In general, these reactive applications and corre-
sponding systems are characterized as follows:

– There is a high degree of concurrency in the applications, since typically
several connections are active at the same time and events from different
sources can occur at any time.

– These applications are event-driven, that means they execute their behavior
as reactions on events such as incoming signals from other devices, user
interface interactions or updated sensor inputs.

These characteristics make the development of reactive systems quite demand-
ing, especially with respect to concurrency. Achieving concurrency by processes
executing in parallel is complicated, since synchronizations between them are
difficult to understand and error-prone. In addition, the number of processes
that can be executed efficiently in parallel is limited, in particular on mobile or
embedded devices.
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Fig. 1. Execution of components by runtime support systems

Runtime Support Systems. One way to deal with the complexity of concur-
rent executions is the introduction of runtime support systems [4], illustrated in
the lower part of Fig. 1. These systems contain schedulers that control the execu-
tion of a component’s behavior by dispatching events. Such events are the arrival
of signals from other components, the expiration of timers, or internal signals
that arise from local sensor data or interrupts. To be executable by a runtime
support system, all application behavior must be expressed as transitions trig-
gered by observable events as defined above. Moreover, communication must be
implemented so that the sender is not blocked, for instance via an asynchronous
message bus. These properties enable an execution with run-to-completion char-
acteristics. The execution of a run-to-completion step is not preempted, and
concludes with a stable state in which the runtime support system waits to dis-
patch the next observable event. This makes it relatively easy to execute also
complex and highly concurrent behavior with very limited resources and a low
number of system processes. As a consequence, we generate code for different ex-
ecution platforms, ranging from resource-constrained embedded systems on Sun
SPOTs [16] to systems serving large numbers of users like Telenor’s Connected
Objects platform [11].
Activities and Reactive Semantics. Our interest in activities is based on a
number of important properties for the development of distributed, reactive sys-
tems: In comparison to state machines (that we have used before) they provide
a high degree of concurrency by default, since activity flows execute indepen-
dently from each other. We have also shown that activities can be grouped and
abstracted in building blocks [14], which leads to system designs that are built
to high proportions from reused solutions. Furthermore, since activities have the
concept of partitions, they also describe collaborative behavior, and may encap-
sulate the behavior of several components that is necessary to fulfill a certain
task, illustrated in Fig. 1. We therefore built a tool that takes UML activities
and implements them automatically, using first a model transformation to UML
components and state machines [13] and then a code generation step.

In order to use activities for reactive applications that are to be executed
on an event-driven runtime support system as described above, their semantics
need to address several issues:

– Activities should identify the run-to-completion steps executed by the run-
time support system, as well as the observable event triggering a step.

– It must be clear on which location a run-to-completion step is performed,
i.e., which component is responsible for executing it.
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– Activities should make communication explicit, i.e., all necessary communi-
cation between components must be represented by activity flows.

One could argue, of course, that the abstraction level of activities does not need
to deal with the same concepts as lower levels. For instance, non-local behav-
ior of activities could be allowed, and communication patterns on the level of
component execution could be synthesized automatically (as done for instance
by Yamaguchi et al. [25]). However, we want the activities to express commu-
nication explicitly, for example to facilitate a security analysis as done in [10].
Furthermore, we want developers working on the level of activities to be still
aware of costly operations such as sending to enable efficient solutions. For the
same reason we think it is beneficial to be aware of run-to-completion steps,
since they form the temporal behavior of specifications.

In the following, we describe what we call reactive semantics for activities.
Our intention is not to cover all details of the UML standard, but a subset of
elements necessary to describe a wide range of reactive applications. We will
present UML activities with an example and define some syntactic constraints
in Sect. 3. Our semantics are based on run-to-completion steps, which on the
activity level we call activity steps. These are defined in Sect. 4. The execution of
activities based on activity steps is then described in Sect. 5. Section 6 discusses
properties of activities and some additional constraints.

2 Related Work

There exists a variety of approaches that use different techniques to partially
define and discuss semantics of UML 2.0 activities. Conrad Bock, one of the
authors of the UML standard [18], covers the semantics of activities in a series
of articles (starting with [2]) which informally clarify numerous semantic details.
In particular, he describes the traverse-to-completion principle [3], according to
which tokens pass only when all elements along a path accept the passing. This
principle is implied by our semantics due to the definition of run-to-completion
steps. Eshuis’ work on model checking activity diagrams [8] defines their seman-
tics by two mappings onto the model checker NuSMV, but in comparison to our
work targets towards workflow systems, in which an activity is executed by a
central workflow system that coordinates the execution of actions [9]. Störrle uses
Coloured Petri Nets in [22] to define semantics of some UML activity elements.
In [23], Störrle and Hausmann conclude that Petri Nets are probably not suitable
to cover more advanced concepts, and point out the difficulty of combining all
the various target domains. Barros and Gomez explain the semantics of actions
with several input and output pins by “unfolding” these elements into activities
with simpler control nodes [1]. Crane and Dingel [5] cover the detailed seman-
tics of some specific UML action types, and describe in [6] a virtual machine for
their interpretation. Engels et al. [7] define semantics of activities using Dynamic
Meta Modeling (DMM), which is based on graph transformations. Sarstedt and
Guttmann [21] use Abstract State Machines (ASMs) for the definitions of activ-
ity semantics. This work treats token passing on a very detailed level, removing
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some restrictions present in other approaches. To execute systems described by
activities, they propose the interpretation of models [20].

In contrast to these approaches, we explicitly apply UML activities to the
domain of reactive applications as characterized above, with an emphasis on
execution mechanisms for runtime support systems. For this case, we found the
semantics defined by the approaches mentioned above as not ideal, since they are
either too general or target for example business processes, which pose different
requirements on communication and synchronization. Therefore, we cannot use
them as basis for the construction of executable components. In [12] we earlier
described the semantics of collaborations, with their behavior expressed by UML
activities, based on temporal logic formulas. We did, however, not introduce the
concept of activity steps or discuss the run-to-completion property.

3 UML Activities

The UML standard uses simple text to explain activities, and characterizes their
semantics as “Petri-like” [18, p. 324]. Some simple activity graphs can indeed
easily mapped to Petri Nets. The mapping of more complex elements of UML
activities, however, turns out to be difficult, especially for termination behavior,
as pointed out by others [23, 24, 9]. In the following, we will therefore describe
the reactive semantics of activities based on the intuitive token flows as found
in Petri Nets, but use general state-transition systems in which also groups of
tokens of several places can be removed simultaneously.

UML Activity Graphs. An activity is a directed graph A with a set of activity
nodes VA and a set of activity edges EA. Function kindA ∈ [VA → K] assigns to
each node a kind, with K = {initial, merge, decision, fork, join, accept, operation,
afinal, ffinal, queue}, as illustrated in Fig. 2. Nodes of kind accept model accept
event actions, which in our semantics represent either internal signal receptions
or timer expirations. Internal signals are used to represent events from lower
layers of a component, such as interrupts or events from user interfaces. Nodes
of kind operation represent method calls. There are two kinds of final nodes,
activity final nodes (afinal) that terminate an entire activity (hence removing
tokens also from other places and preempting other behaviors), and flow final
nodes (ffinal) that just consume tokens to conclude a flow.

An activity has a non-empty set of partitions PA. In general, UML uses
partitions to characterize commonalities among nodes. We use them strictly to
denote different locations of executions. Thus, a flow crossing partition borders
implies communication. For this communication, we assume an asynchronous
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message bus. This type of communication allows for an increased degree of con-
currency, but may introduce interleaving behavior that has to be taken care of
by corresponding synchronization. Since this behavior is tightly interleaved with
application logic, the delay of messages must be represented in the activity dia-
grams as well. For this reason, we introduce explicit queue places where activity
flows cross partition borders. In Fig. 4, these are nodes q1 to q7.

Function inA ∈ [VA → 2EA ] yields for each node its incoming edges, and
function outA ∈ [VA→2EA ] its outgoing edges. Vice versa, we refer to sourceA(e)
to get the source node of an edge, and targetA(e) for its target. We assume that
only merge and join nodes have more than one incoming edge, and only decision
and fork nodes have more than one outgoing edge. All structural constraints are
summarized by the rules in Fig. 3. Function partA ∈ [VA → PA∪PA×PA] assigns
partitions to nodes, so that each queue node is mapped to a pair of partitions
modeling the transmission of signals between components (PQ). All other nodes
are assigned to exactly one partition (PN). Rule E1 ensures that edges do not
have the same node as source and target, and P1 ensures that there are no
edges between two queues. These cases do not model useful behavior. Rules P2
to P4 ensure that edges do not cross partition borders without a queue node

IN1
v∈VA kindA(v) ∈ {initial}

|inA(v)| = 0
IN2

v∈VA kindA(v) ∈ {merge, join}
|inA(v)| ≥ 2

IN3

v∈VA kindA(v) ∈ {decision, fork,

accept, operation, ffinal, afinal, queue}
|inA(v)| = 1

OUT1

v∈VA kindA(v) ∈ {initial,

merge, join, accept, operation}
|outA(v)| = 1

OUT2

v∈VA

kindA(v) ∈ {ffinal, afinal}
|outA(v)| = 0

OUT3

v∈VA

kindA(v) ∈ {decision, fork}
|outA(v)| ≥ 2

PN
q∈VA kindA(v) 6= queue

partA(v) ∈ PA
PQ

v∈VA kindA(q) = queue p1, p2 ∈ PA

partA(q) = 〈p1, p2〉 p1 6= p2

E1
e ∈ EA

sourceA(e) 6= targetA(e)
P1

e ∈ EA kindA(sourceA(e)) = queue

kindA(targetA(e)) 6= queue

P2
e ∈ EA kindA(sourceA(e)) 6= queue kindA(targetA(e)) 6= queue

partA(sourceA(e)) = partA(targetA(e))

P3

e ∈ EA kindA(sourceA(e)) 6= queue

kindA(targetA(e)) = queue

p, q ∈ PA partA(targetA((e)) = 〈p, q〉
partA(source(e)) = p

P4

e∈EA kindA(sourceA(e)) = queue

kindA(targetA(e)) 6= queue

p, q ∈ PA partA(sourceA((e)) = 〈p, q〉
partA(target(e)) = q

Fig. 3. Rules for incoming and outgoing edges and partitions
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Fig. 4. Example activity for an SMS-based query system

in between. (These rules are listed here for completeness. In practice, they are
ensured by construction, since queue places are added automatically for edges
crossing partitions.)

Example. Figure 4 shows a simplified SMS-based query service, in which cus-
tomers can request weather and traffic information by SMS. The system consists
of four components with different tasks, represented by separate activity parti-
tions. The behavior is started by the query control server, which activates the
SMS gateway to listen for incoming SMS messages. These are received via ac-
cept node s: SMS, emitting one token for each SMS that is forwarded to the
query control server. There, a decision is made in d1 whether the cache holds
valid traffic and weather data. If yes, a report is created immediately. If data
is not available locally, queries are sent towards the weather and traffic servers
concurrently. Join j1 then collects their responses, which are used to create the
report that is forwarded to the SMS gateway and sent out.

4 Run-to-Completion Steps in Activities: Activity Steps

As explained in the introduction, the execution of components by runtime sup-
port systems is based on run-to-completion steps that are triggered by discrete,
observable events. On the level of activities, a run-to-completion step is called
activity step. With respect to the formal representation of an activity diagram,
an activity step is a subgraph a with Va ⊆ VA and Ea ⊆ EA. An activity step
covers all nodes and edges that describe behavior executed within one run-to-
completion step. An activity diagram describes with its graph a set of activity
steps. The complete set of activity steps for a diagram can be obtained by con-
sidering all possible subgraphs ai of A, for which the rules in Fig. 5 hold.

– Whenever a node is part of an activity step, then at least one of its incoming
or outgoing edges is part of the step as well (rule V). Vice-versa, for each
edge part of a step, also its source and target nodes are part of the step (E).
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– All initial nodes within the same partition release their tokens simultane-
ously, so that also all other initial nodes within the same partition are part
of an activity step (I).

– For merge nodes, only one incoming edge is part of an activity step (M).
This rules out intricate behavior in which two or more tokens pass the same
edge within the same step, as discussed later.

– For decision nodes, several activity steps are produced. Each contains the
incoming edge, the decision node, and exactly one outgoing edge (D). This
means that an activity step executes exactly one branch of a decision.

– When a fork is part of an activity step, so are its incoming edge and all
outgoing edges, since they are executed in parallel (F).

– When a join is part of an activity step, then there is at least one incoming
edge part of the step as well (J).

– Operations are executed within one run-to-completion step, and thus the
incoming and outgoing edge must be part of the same activity step (O).

– The sending and the reception at partition borders are part of separate
activity steps. Therefore, for each queue place, either the incoming or the
outgoing edge is part of the same activity step (Q).

– When a node of type initial, accept or queue is part of a step and its outgoing
edge as well, then it is triggering the step. Rule T2 ensures that each activity
step has at least one such trigger, and rule T1 ensures that is at most one.

– Accept nodes are covered by the general rules V and E.

V
v ∈ Va

inA(v) ∩ Ea 6= ∅ ∨ outA(v) ∩ Ea 6= ∅
E

e ∈ Ea

source(e) ∈ Va target(e) ∈ Va

I
i ∈ Va partA(i) = partA(j) kindA(i) = kindA(j) = initial

j ∈ Va

M
m ∈ Va kindA(m) = merge

outA(m) ⊆ Ea |inA(m) ∩ Ea| = 1
D

d ∈ Va kindA(d) = decision

inA(d) ⊆ Ea |Ea ∩ outA(d)| = 1

F
f ∈ Va kindA(f) = fork

inA(f) ⊆ Ea outA(f) ⊆ Ea
J

j ∈ Va kindA(j) = join

inA(j) ∩ Ea 6= ∅

O
o ∈ Va kindA(o) = operation

inA(o) ⊆ Ea outA(o) ⊆ Ea
Q

q ∈ Va kindA(q) = queue

inA(q) ∩ Ea 6= ∅ ⇔ outA(q) ∩ Ea = ∅

T1

t, u ∈ Va outA(t) ∩ Ea 6= ∅ partA(t) = partA(u)

kindA(t) ∈ {initial, accept, queue} kindA(u) ∈ {accept, queue}
outA(u) ∩ Ea = ∅

T2
t ∈ Va outA(t) ∩ Ea 6= ∅ kindA(t) ∈ {initial, accept, queue}

Fig. 5. Rules for activity step subgraphs
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Fig. 7. Illegal subgraphs forbidden by rules

Example. Figure 6 shows the complete set of activity steps that can be produced
from the activity in Fig. 4. Steps a1 to a7 are executed within the query control,
steps a9 to a11 by the SMS gateway, and a8 and a12 by the weather resp. the
traffic server. Some steps are especially interesting: Steps a1 and a5 model the
arrival of an SMS by the main server from the SMS gateway. Together they cover
the alternative branches introduced by decision node d1, which either creates the
report instantly or starts the query. Steps a2 and a3 represent the arrival of the
results from the traffic server (via q7). Step a2 covers the situation that the
weather information did not yet arrive (and therefore stops at j2), while step a3

can fire through j1 since the weather information already arrived.

Inconsistent Diagrams. Figure 7 shows examples of subgraphs that are not valid
activity steps. Subgraph g1 results in infinite executions of op1 and is therefore
not desired. Subgraph g2 executes op2 twice. While this is not necessarily wrong,
we think that this is probably not obvious to and by no means intended by
developers, and should be forbidden. Subgraph g3 shows behavior that simply
is never reachable. The existence of such invalid subgraphs in a diagram are
detected by rule contradictions. The subgraph g1 is illegal since rule O and E
would force that both incoming edges of m1 are part of the activity step, which is
forbidden by rule M. Similarly, in g2 rule F would contradict rule M. Subgraph
g3 has no trigger, contradicting rule T2. The existence of rule contradictions
signify inconsistent diagrams that have to be changed.
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5 Execution Steps and Execution Semantics

We explain next how to model the behavior of a reactive system A specified by
a UML activity. Formally, the behavior is expressed as a state transition system
in which the states are represented as a placement of tokens on the vertices and
edges of the activity. For this reason, we define the type tokensA , 2[VA∪EA→N] of
token mappings assigning each node and edge a natural number. Thus, a token
mapping specifies a single system state.

Initial State. A specific token mapping initA∈ tokensA refers to the token map-
ping of system A in its initial state. This initial mapping assigns one token to
each of the vertices of kind initial while all the other nodes and edges are empty,
as described by the following rules:

INIT1
v ∈ VA kindA(v) = initial

initA(v) = 1
INIT2

v ∈ VA kindA(v) 6= initial
initA(v) = 0

INIT3
e ∈ EA

initA(e) = 0

Execution Steps. The state transitions are represented by execution steps which
correspond to the activity steps and additional information describing the token
settings before resp. after executing the step. Formally, we specify the execution
step of an activity step represented by a subgraph 〈Va, Ea〉 as the quadruple
axa = 〈Va, Ea, prea, posta〉. prea ∈ tokensA describes the token setting of A be-
fore executing the activity step, and posta ∈ tokensA denotes the token setting
afterwards. For an axa to be valid, it must fulfill the following properties:

– In general, a token is added to accept and queue nodes when their incoming
edge is part of an activity step (IX).

– In order to execute, the place representing a trigger must hold a token
(AX1). If the trigger place is re-filled within the same step, its token count
stays the same (AX3), otherwise it is reduced by one (AX2).

– For join nodes, two rules exist: Rule JX1 models the firing of a join when
tokens arrive at its incoming edges. As precondition, all edges not part of the
activity step must already provide a token each. When the join fires, these
tokens are deleted, and the step continues with the outgoing edge of the join.
Rule JX2 handles the arrival of tokens at a join when it it not yet complete.
As consequence, it adds these arriving tokens but does not continue.

– Once a final node is part of an activity step, all tokens within the same parti-
tion are removed (see rule AFX1 for tokens on edges and AFX2 for tokens
on nodes). The latter rule also removes all tokens within queues towards the
partition containing the activity final node. This takes into account that the
component implementing the terminated partition is switched off, and any
remaining signals towards it are discarded. The additional precondition

nofinal(n : 2NA, p : PA) , ∀f : f ∈n ∧ partA(f) = p ⇒ kindA(f) 6=afinal
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IX

v ∈ Va kindA(v) ∈ {accept, queue}
inA(v) ∩ Ea 6= ∅ outA(v) ∩ Ea = ∅ nofinal(Va, part(v))

posta(v) = prea(v) + 1

AX1

v ∈ Va

kindA(v) ∈ {initial, accept, queue}
outA(v) ∩ Ea 6= ∅

prea(v) > 0
AX2

v ∈ Va

kindA(v) ∈ {initial, accept, queue}
outA(v) ∩ Ea 6= ∅ inA(v) ∩ Ea = ∅

posta(v) = prea(v)− 1

AX3

v ∈ Va kindA(v) = accept inA(v) ∩ Ea 6= ∅
outA(v) ∩ Ea 6= ∅ nofinal(Va, part(v))

posta(v) = prea(v)

JX1

v ∈ Va kindA(v) = join es = inA(v) ∩ Ea

∀e ∈ inA(v) \ es : prea(e) > 0 nofinal(Va, part(v))

outA(v) ⊆ Ea ∀e ∈ inA(v) \ es : posta(e) = prea(e)− 1

JX2

v ∈ Va kindA(v) = join es = inA(v) ∩ Ea

∃e ∈ inA(v) \ es : prea(e) = 0 nofinal(Va, part(v))

outA(v) ∩ Ea = ∅ ∀e ∈ es : posta(e) = prea(e) + 1

AFX1

e ∈ EA f ∈ Va

kindA(f) = afinal

part(f) = part(targetA(e))

posta(e) = 0
AFX2

f ∈Va v∈VA kindA(f) = afinal

part(v) = part(f)

∨ part(v) = 〈 , part(f)〉
posta(v) = 0

Fig. 8. Execution rules for activity steps

added to rules IX, AX3, JX1 and JX2 ensures that these rules only apply
if no activity final node is part of the activity step, to give rules AFX1 and
AFX2 priority.

– All vertices and edges of A not mentioned by one of the rules explicitly do
not change their token setting in the execution step axa.

System Description. We define the set AXA as the set of execution steps axa

each following the rules mentioned above. This set contains execution steps that
are not reachable. We define the set of reachable execution steps RAXA ⊆ AXA

by means of the following two rules:

R1

a ∈ AXA ∀v ∈ VA : kindA(v) = initial⇔ prea(v) = 1
∀v ∈ VA : kindA(v) 6= initial⇔ prea(v) = 0 ∀e ∈ EA : prea(e) = 0

a ∈ RAXA

R2

a, b ∈ AXA ∀v ∈ VA : prea(v) = postb(v)
∀e ∈ EA : prea(e) = postb(e) b ∈ RAXA

a ∈ RAXA
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The rules define recursively that the reachable execution steps a are those con-
taining a token setting prea reachable by a final trace of execution steps from the
initial token setting. The behavior of system SysA is then defined by the state
transition system expressed by the quadruple SysA , 〈VA, EA, initA, RAXA〉.

6 Properties of Activities with Reactive Semantics

In the following, we will discuss the properties of activities with reactive seman-
tics. The properties in Sect. 6.2 and 6.3 require additional behavioral invariants,
that is, they only hold for a subset of activities. We will assure these by addi-
tional rules that have to hold for any a ∈ RAXA. In practice, these rules are
verified by model checking, as discussed in [17].

6.1 Event-Driven Execution and Run-to-Completion

As described in Sect. 1, the events observable by a runtime support system
are the expiration of timers, the arrival of internal signals, or the arrival of
signals from other components. On the activity level, these events are modeled
by accept event actions and activity flows that cross partition borders via queues.
The initial startup of a component is also an event, modeled by initial nodes in
activities. Due to rules T1 and T2, we ensure that each execution step declares
exactly one such trigger, meaning that activity steps started by an observable
event. Furthermore, tokens may be only placed according to two properties:

(i) Tokens may rest on a vertex only if it is of kind initial, accept, or queue.
(ii) Tokens may rest on edges if they lead to a join node, but only if the join is

not yet complete, i.e., there is one incoming edge that cannot offer a token.

Property (i) ensures that tokens only wait in places that imply waiting for an
observable event. In initial nodes, this is the start of the system, in queues the
arrival of the signal and for accept nodes the expiration of a timer or the arrival
of an internal signal, resp. Property (ii) is more subtile. Tokens may wait on
edges preceding join nodes. But since join nodes do not declare any observable
events, tokens may only rest before a join if the join is not yet complete. The join
fires through within the same step once the last missing token arrives. Hence, a
token stored in an incomplete join implies waiting for another observable event.
Formally, (i) and (ii) can be expressed as P , E1 ∧ E2 ∧ E3 ∧ E4, with

E1 , ∀v ∈ VA : kind(v) ∈ {initial, accept, queue} ∨ initA(v) = 0

E2 , ∀e ∈ EA : kind(targetA(e)) 6= join ∧ initA(e) = 0
∨ ∃f ∈ EA : f ∈ in(targetA(e)) ∧ initA(f) = 0

E3 , ∀v ∈ VA∀a ∈ RASA : kind(v) ∈ {initial, accept, queue} ∨ posta(v) = 0

E4 , ∀e ∈ EA∀a ∈ RASA : kind(targetA(e)) 6= join ∧ posta(e) = 0
∨ ∃f ∈ EA : f ∈ in(targetA(e)) ∧ posta(f) = 0
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E1 and E2 describe that (i) and (ii) hold in the initial state of the system while
E3 and E4 guarantee that all execution steps a∈RASA preserve them as well.
E1 holds due to rules INIT1 and INIT2 and E2 holds due to rule INIT3.

To prove E3, we consider the rules in Fig. 8. The only rule describing that
the token setting of a vertex v after executing an execution step a can be greater
than before (i.e., posta(v) > prea(v)) is IX. But according to the second premise
of the rule, the token setting may only be increased for tokens of kind accept
and queue. Thus, if a vertex of a type other than initial, accept or queue has no
token placed on it before the execution of the execution step, it will carry none
afterwards as well. In consequence, it will never carry a token at all.

The proof of E4 is quite similar. The only rule in Fig. 8 modeling an increase
of a token setting on an edge in an execution step is JX2. Yet it does not allow
the placement of new tokens on edges leading to a vertex not being of kind join
as expressed by the third premise. So, the first disjunct of E4 holds and in all
system states only edges into a join may have tokens at all. Further, the forth
premise of the rule states that there is an edge leading into the join node to which
no token is assigned. As this edge is not an element of the edges receiving new
tokens (expressed by set es), it will not carry a token after firing the execution
step. Thus, the second disjunct of E4 holds as well and a join node will always
have an incoming edge without a token placed on it.

6.2 Realizability and Distribution

To be executable as one run-to-completion step, an activity step must only have
direct local effects, and only depend on data that is available locally. Rules Q
and P1 to P4 split up activity steps at partition borders. Within one activity
step, all nodes except queues are therefore part of the same partition. For flows
crossing partition borders, we take the unavoidable communication delay into
account by explicit queue nodes, so that they can be implemented using some
communication middleware. For some nodes, the general semantics of UML de-
scribe also non-local dependencies, that motivate some further constraints:

– As an extension to standard UML, we assume that variables, like activity
nodes, are assigned to partitions. Guards and actions are only allowed to
access variables within their own partition.

– Initial nodes are started simultaneously, but only those within the same
partition. This is already ensured by rule I.

– In standard UML, accept event actions without incoming edge denote that
they are activated with the surrounding activity. Instead, we require these
actions to have an incoming edge (rule IN3), to model activation explicitly.

– Activity final nodes terminate in standard UML the entire activity. With
the reactive semantics, they only remove tokens within the same partition
(rules AFX1 and AFX2). Since messages towards a terminated partition
are discarded, queues towards a terminated partition are emptied as well.

To comply with the general semantics of activity nodes in which an activity final
node terminates the behavior in all partitions, the other partitions must not be
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TERM1
f ∈Va kindA(f) = afinal kindA(v) = accept partA(v) 6= partA(f)

prea(v) = posta(v) = 0

TERM2
f ∈Va q∈VA kindA(f)=afinal kindA(q) = queue partA(q) 6= 〈 , f 〉

prea(q) = posta(q) = 0

AB
v ∈ Va kindA(v) = accept

posta(v) ≤ 1
JB

v ∈ Va kindA(v) = join e ∈ inA(v)

posta(e) ≤ 1

QB
v ∈ Va kindA(v) = queue

posta(v) ≤ maxqueue

Fig. 9. Additional rules for activities

able to execute any further activity steps. This is ensured by the additional rules
TERM1 and TERM2. The former states that whenever an activity final node
is reached, there must not be any token in accept nodes of other partitions.
The latter states that all queues not targeting the terminated partition must be
empty as well. Since tokens offered to join nodes cannot trigger any behavior on
their own, they do not have to be removed upon termination.

6.3 Boundedness

Since the number of places needed to describe an activity is limited, the state
space implied by a specification is finite if (and only if) each place only contains
a bounded number of tokens, i.e., |tokensA(x) < N |, with N as a finite boundary.
Rules IX and JX2 are the only rules increasing token places.

– Accept nodes are either enabled or disabled, represented by one or zero
tokens on their corresponding place. We found that adding more than one
token in an accept node is in most cases unintended and an indicator of a
design flaw. We therefore rule out such behavior by rule AB.

– Places before join nodes can hold many tokens which implies buffering of
data or control flow. We found that this makes activities harder to under-
stand, without adding any expressiveness for reactive systems; we rather
recommend to use explicit building blocks to describe buffering, as in [15]
and rule out behaviors in which tokens accumulate before joins by rule JB.

– Queues between partitions need to be bounded as well. That means, they
must not exceed a certain value maxqueue ∈ N, expressed by rule QB.

If the boundedness rules hold, the set of reachable execution steps RASA will
be finite as it is lower or equal to the product of run-to-completion steps times
possible token markings following the boundedness constraints.

7 Concluding Remarks

We described a reactive semantics for UML activities, in which each execution
step is triggered by an observable event. This is motivated by existing mecha-
nisms present in runtime support systems for efficient but nevertheless simple
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scheduling and execution of highly concurrent behavior. As a consequence of the
reactive semantics, the components produced by our model transformation [13]
from activities have the same efficiency as if they would have been produced
manually by an experienced designer, i.e., do not contain any overhead for token
control, and it is not visible that they were generated from UML activities.

We have implemented comprehensive tool support with Arctis [17], a set of
Eclipse plug-ins. It enables editing, analyzing and automatically implementing
activity-based specifications. The syntactical rules from Fig. 3 are ensured by
the editor, highlighting erroneous parts of the graph. Similarly, the tool can
produce all activity steps implied by a diagram, using the rules from Fig. 5.
Rule contradictions that signify illegal diagrams are detected and explained to
the user. The steps are used to animate diagrams, which makes it also easy
for beginners to get familiar with the reactive semantics. Finally, the additional
rules for sound behavior in Fig. 9 are verified by model checking [17].

Our tool also supports data in activities, which we did not treat here. Our
experience from implementing data shows that their semantics can be covered by
extending the semantics for control flows in a straight-forward way. Operations
with more than one incoming flow, for instance, can be modeled similar to join
nodes. More advanced nodes (like buffers) can be modeled by dedicated building
blocks, as shown in [15]. Concerning the expressiveness of the chosen reactive
semantics we point to numerous case studies (summarized in [14]) that exemplify
their application in various domains. With an abstraction mechanism described
in [14] such solutions can also be encapsulated by dedicated building blocks from
which large system designs can be produced in a scalable manner.
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