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Abstract. We present a novel way of encapsulating UML activities us-
ing interface contracts, which allows to verify functional properties that
depend on the synchronization of parallel instances of software compo-
nents. Encapsulated UML activities can be reused together with their
verification results in SPACE, a model-driven engineering method for
reactive systems. Such compositional verification significantly improves
the scalability of the method. Employing a small example of a load bal-
ancing system, we explain the semantics of the contracts using the tem-
poral logic TLA. Thereafter, we propose a more easily comprehensible
graphical notation and clarify that the contracts are able to express the
variants of multiplicity that we can encounter using UML activities. Fi-
nally, we give the results of verifying some properties of the example
system using the TLC model checker.

1 Introduction

A key to efficient software engineering is the reuse of existing software com-
ponents that ideally are independently developed and marketed as commercial
off-the-shelf (COTS) products. To enable a seamless combination of the com-
ponents, one needs meaningful descriptions of the component interfaces that
specify properties to be kept by both the components themselves and their envi-
ronments. Due to the tight interaction with their environment, this requirement
holds in particular for reactive systems [6]. To support the reuse of software com-
ponents for reactive, distributed software systems, we use collaborative building
blocks described by multi-partition UML activities, each augmented with an
interface contract in the form of a UML state machine [12, 13]. We call these
contracts External State Machines (ESMs). The contracts not only enable reuse
of problem solutions, but also make for a reuse of verification effort as the user
can verify a composed system using only the contracts, which in turn have been
verified to be correct abstractions of the underlying solutions. This compositional
approach helps to reduce the complexity and state space of the system models
significantly [12]. The ESMs also help another problem with reuse: It may not
always be straightforward to look at a reusable activity and see what it does
and how to compose it correctly with the rest of the system. As the ESM only
describes behaviour visible to the outside of the block, it aids both these tasks.



ESMs constitute what Beugnard et al. [2] call synchronization contracts,
meaning that they can specify the effect of interleaving operations on a com-
ponent, not just sequential operations. However, up until now we have been
limited to collaborations in which only one instance of each type participates,
as the contracts could not support collaborations featuring multiple component
instances of the same type. If, for instance, a client request may be routed to
one of several servers, we could not express an interface behaviour that permits
server S to receive the request only if none of the other servers have received it.
In systems that employ load balancing or fault-tolerance mechanisms, however,
to specify and guarantee this kind of behaviour is crucial. Thus, compared with
the ESMs, we need additional concepts and notation for behavioural interfaces.

Any extension of ESMs should ideally keep a key characteristic of SPACE [14]:
The underlying formalism is hidden to the user. According to Rushby [21], this
is a key quality of practical development methods. SPACE relies on automatic
model checking to verify system models. To mitigate the problem of state-space
explosion, we limit our scope to verifying properties dependent only on the con-
trol flow of the system designs. While we could very well include data in the
model, the model checker would not be able to verify properties dependent on
data for realistic systems, as the state space would grow exponentially with ev-
ery data element we include. Nevertheless, as pointed out in [13, 14], also the
model checking of just control flows is of great practical help, for single-instance
activities.

The ESMs are basically Finite State Machines (FSMs) with special annota-
tions of their transitions. To model multiple entities in a suitable way, we use
Extended Finite State Machines (EFSMs) [3] instead, which allow to refer to the
indexes of instances in the form of auxiliary variables. The semantics of these
Extended ESMs (EESMs) is formalized using the Temporal Logic of Actions,
TLA [15]. To relieve the software engineer from too much formalism, we further
present a more compact graphical notation in the form of UML state machines
where statements closer to programming languages are used to describe variable
operations.

The next section discusses related work on component contracts, particularly
work using UML. Our load balancing example system is presented in Sect. 3.
In Sect. 4, we formalize the EESM semantics for many-to-many activities in
TLA, and present the graphical notation. We give EESMs for the other types
of activities, one-to-one and one-to-many, in Sect. 5. Some results, in particular
about the effects on model checking, as well as future work is discussed in Sect. 6,
where we also conclude.

2 Related Work

There are several other works that define a formal semantics for UML activi-
ties [4, 5, 23], but neither of them include contracts for use in hierarchical activ-
ities. Eshuis [4] explicitly argues to leave this concept out, as any hierarchical



activity can be represented as a flat one. However, this results in a much bigger
state space.

As Beugnard et al. [2] point out, we can only expect software components
to be reused for mission-critical systems if they come with clear instructions on
how to be correctly reused and what guarantees they give under those conditions.
UML has the concept of Protocol State Machines [19] to describe the legal com-
munication on a port of a component. Mencl [18] identifies several shortcomings
of these, for example that they do not allow to express dependencies between
events on a provided and required interface, nor nesting or interleaving method
calls. To remedy this, he proposes Port State Machines, where method calls are
split into atomic request and response events. These Port State Machines are
restricted to pure control flow, as transition guards are not supported. Bauer
and Hennicker [1] describe their protocol style as a hybrid of control flow and
data state. However, they also cannot express the dependency between provided
and required interfaces, and they currently lack verification support for whether
two components fit together.

The ESMs have similar properties to Port State Machines in that all inter-
face events are atomic, i.e., an operation is split into a request and response
event, to allow for expressing nesting and interleaving of operations. They also
essentially combine provided and required interfaces in the same contract, hence
allowing to express dependencies between them. The EESMs combine this with
data state to allow for compact representations of parametrized components and
collaborations.

Sanders et al. [22] present what they call semantic interfaces of service com-
ponents, both described as finite state machines. These interfaces support both
finding complementary components and implementations of an interface, hence
also compositional verification. While they provide external interfaces for each
local component and then asynchronously couple these to other, possible re-
mote, components, our activity contracts act as internal interfaces that can be
synchronously coupled with other local behaviour in the fashion of activity dia-
grams.

Our approach differs from all the above in that it permits the encapsulation
of both local components and distributed collaborations between components,
described by single-partition or multi-partition activities respectively. Further,
our extended interfaces allow to constrain behaviour based on the state of parallel
component instances, giving a powerful abstraction of distributed collaborations.

3 A Load Balancing Client – Server Example

In SPACE, the main units of composition are collaborative building blocks in
the form of UML activities that can automatically be transformed to executable
code [14]. A system specification consists of a special system activity as the out-
ermost block. This system activity can contain any number of inner activities,
referenced by call behaviour actions, as well as glue logic between them. Fig-
ure 1(a) shows the system activity for our example, a set of clients that can send
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Fig. 1: System example: A load balancing client – server system

requests via a Router m-n block to a set of servers. Thus, Router m-n is an inner
block, its activity depicted in Fig. 1(b). Each activity partition is named in the
upper left corner and the bracketed parameter behind the name, a for client and
b for server, denotes the number of component instances of this type. While each
client only sees one router, each server partition has a/b instances of the router
block, as denoted by parameters (1, a/b) after its name and the shade around
the server side of the block. This is also illustrated in Fig. 1(c), where we see
that each client component only has a single requester sub-component, whereas
each server has two responders. Note that the structural view is completely re-
dundant and only serves to illustrate the information in the activities and the
EESMs introduced below. The diagonally striped area inside the server partition
represents other components of the same type, i.e., other servers. This gives a
visual indication that the Router m-n block, in addition to collaborating with
clients, also collaborates with other server instances. Each server also makes use
of an inner activity called Make Response, which turns requests into responses.
We have omitted it in Fig. 1(c), as it is completely local.

It is the job of the Router m-n block in Fig. 1(b) to balance the load so that
a single server does not have to serve requests from all clients at the same time.
All requesters can send requests to all responders, as illustrated by the full mesh
connectivity in Fig. 1(c). Each responder uses the Forward block to forward re-
quests to other responders, if it is currently busy itself. In the structural view,
the component of the Forward block is shown as a small nameless rectangle on



each responder that can communicate with every other such component. It is
important to note that the Router m-n activity encapsulates asynchronous com-
munication between components, while the synchronous interaction between an
outer and an inner activity takes place via pins1 linking flows of the two activi-
ties. For instance, the block Router m-n is linked with the system activity by the
pins reqIn, reqOut, resIn and resOut. Here, reqIn is a start pin initiating an ac-
tivity instance (really, the corresponding requester instance), whereas resOut is
a stop pin terminating the instance. The remaining pins with black background
are streaming pins for interacting with active instances.

The semantics of UML activities is similar to Petri-nets, where the state is
encoded as tokens resting in token places and then moving along the directed
edges to perform a state transition [19]. In our approach, all behaviour takes
place in run-to-completion steps [9]. That is, all token movements are triggered
by either receptions of external events (for instance, tokens resting between par-
titions) or expiration of local timers, and the tokens move until such an event is
needed to make progress again.

Initial nodes start the behaviour of each system-level partition instance. They
are fired one by one, but we make the assumption that no token will enter a
partition before its initial node has fired. The initial node of the server partition
can fire at any time, releasing a token into the start pin of the Make Response
block. In the client partition, the token emitted from the initial node will enter
the Router m-n block via the reqIn pin. Afterwards, it will be forwarded to a
server instance and leave the block via pin reqOut, to enter pin req of Make
Response. The Make Response block will eventually emit a token via its res pin,
and the server partition will choose one of the Router m-n instances to receive
it via its resIn pin, as denoted by the select statement [10]. A select statement
takes some data carried by the token and uses it to select either among various
instances of a local inner block or of remote partitions. The Router m-n block
will eventually emit a token through its resOut pin in one of the client partitions,
which will follow the edge to the timer on the client side, where the step will
stop. Later, the timer will expire, causing it to emit the token so that the client
can perform another request. In this example, the timer is simply an abstraction
for whatever the client might be doing between receiving a response and sending
a new request. The behaviour of the Router m-n block is described in Sect. 4.

When we compose a system by creating new activities and reusing existing
ones, we want to be able to verify properties of it. Given that SPACE models
have a formal semantics [11, 12], we can express them as temporal logic specifi-
cations and use a model checker to verify properties automatically. To mitigate
the problem of the state space growing exponentially with every stateful ele-
ment, each activity is abstracted by an External State Machine (ESM), which is
a description of the possible ordering of events visible on the activity pins. This
allows us to do compositional verification of the system specification: We first

1 They are really activity parameter nodes when seen from the inner activity itself,
but are called pins when an activity is reused via a call behaviour action. We use
pins to denote both, to keep it simple.
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Fig. 2: Contracts for the Make Response block

verify that the activity and its ESM are consistent, then we only use that ESM
when verifying properties for a higher-level or system-level block. Note that ver-
ifying the consistency of an ESM and its activity cannot be done automatically
for all blocks, as some will constrain their control-flow behaviour according to
data stored in the activity tokens. In this case, the model allows all possible
behaviours, and the potentially false positives reported by a model checker (that
is, error traces that cannot occur in the real system) can be inspected manu-
ally, reducing the verification task. A select statement is an example where data
constrains the destination of a token.

Figure 2(a) shows the ESM of the local building block Make Response. As
discussed in the introduction, the ESM notation has the same expressive power
as a finite state machine or Mealy machine [17], to be precise. The transition
labels correspond to pins, and the slash character separates the transition trigger
event, as seen from the perspective of the block, from the effect. Hence, start/
means that the transition is triggered from outside by a token entering pin start
and that no tokens will pass any other pins in the same step. The ESM shows
that a response is not output until a request has been sent in, and that this
will not happen in the same step. Once the non-empty state is reached, further
requests may enter and responses may be emitted from the block. Just looking at
the ESM, however, we cannot know exactly how many responses will be sent out,
as there is no way of knowing if a /res event has caused a transition to the empty
state, or if the ESM is still in the non-empty state. This is because there is no
way to track the actual number of buffered requests.2 When verifying properties
of a system, such information may sometimes be necessary. For example, if this
block was used in a system that sends three requests, we would like to infer from
the ESM that exactly three responses can be emitted back out.

2 An ESM could of course track the number of buffered requests in explicit states, up
to some finite number, but it would quickly grow syntactically very large.



4 Contracts for Multi-instance Activities

To support multi-instance activities, we extend the ESMs to include transition
guards, variables, arithmetic and predicate logic. Hence, they are now formally
EFSMs [3]. This enables us to specify event constraints that relate to the state
of parallel component instances. Moreover, this increases the general expressive-
ness, so that we are able to better handle the case of the Make Response block.

Figure 2(b) shows the EESM of the Make Response block. We have here
added a variable, queue, that tracks the number of requests buffered. To constrain
the behaviour based on the queue size, as well as update it, this EESM also
contains transition guards in square brackets and variable operations in lined
boxes.

Figure 1(b) shows the internal activity of the Router m-n block. A request
enters through the reqIn pin of the requester partition and is forwarded to a
responder partition. The select statement, along with the fact that there are n
responder partitions, tells us that a requester expects to have a choice of respon-
ders to communicate with, when forwarding the token. When a token crosses
a partition border, the corresponding activity step ends, as remote communica-
tion is asynchronous. When the token is received by the responder partition, it
is passed on to an inner block, Forward. This block may emit the token directly
through its out pin to be passed on through the reqOut pin of Router m-n, or it
may forward the token to another responder, if this one is busy already serving
a request.3 When a response token is received via the resIn pin, it is duplicated
in the fork node and passed both to pin done and the channel for the originating
requester partition.

We now describe the EESM of block Router m-n using the language TLA+

of the temporal logic TLA [15], as shown in Fig. 3. The TLA+ module starts by
defining the module name on the first line. The extends keyword states that
this module imports the modules Naturals, which defines various arithmetic
operators on natural numbers, and MatrixSum, defining operators for summing
matrices. The variables of the module are declared using the variables keyword,
where req and res represent the requester and responder partitions respectively.
Constants are declared by the constants keyword. They are the parameters of
the model. When creating the building block Router m-n, we do not know how
it will be reused in an enclosing activity. Another developer may choose to put
multiple instances in both, one or none of the enclosing partitions. So, we need
constants for the number of requesters and responders per enclosing partition
instance, as well as the number of enclosing partition instances on each side.
Hence, the global number of requesters is really no req ∗ no req encl.

A TLA+ specification describes a labelled transition system. This is given
as a set of states, a subset of the states that are initial states, a set of actions
(labels) and a transition relation describing whether the system can make a
transition from one state to another via a given action. The set of initial states

3 This behaviour is described by the EESM of the Forward block, which, due to space
constraints, we do not show.



module router m n
extends Naturals, MatrixSum
variables req, res
constants no req, no res, no req encl , no res encl

Init
∆
=

∧ req = [reqIn 7→ [e ∈ 1 . . no req encl , i ∈ 1 . . no req 7→ 0]]
∧ res = [reqOut 7→ [e ∈ 1 . . no res encl , i ∈ 1 . . no res 7→ 0],

resIn 7→ [e ∈ 1 . . no res encl , i ∈ 1 . . no res 7→ 0]]

reqIn(e, i)
∆
= req.reqIn[e, i ] = 0

∧ req ′ = [req except ! .reqIn[e, i ] = 1] ∧ unchanged 〈res〉

reqOut(e, i)
∆
= res.reqOut [e, i ] = 0

∧ Sum(req.reqIn, no req encl , no req) > Sum(res.reqOut , no res encl , no res)
∧ res′ = [res except ! .reqOut [e, i ] = 1] ∧ unchanged 〈req〉

resIn(e, i)
∆
= res.reqOut [e, i ] > 0 ∧ res.resIn[e, i ] = 0

∧ res′ = [res except ! .resIn[e, i ] = 1] ∧ unchanged 〈req〉

resOut(e, i)
∆
= req.reqIn[e, i ] > 0

∧ ∃ f ∈ 1 . . no res encl , k ∈ 1 . . no res :
∧ res.resIn[f , k ] > 0
∧ res′ = [res except ! .reqOut [f , k ] = 0, ! .resIn[f , k ] = 0]

∧ req ′ = [req except ! .reqIn[e, i ] = 0]

Fig. 3: TLA+ module for the EESM of Router m-n

is described by the Init construct. Here, the req and res variables are each given
records for their corresponding pins (except pin resOut, see below), which in
turn are functions in two dimensions stating whether a token has passed the
pin for each requester or responder instance. That is, a requester or responder
instance is identified by an enclosing instance number combined with an inner
instance number.

Next in the TLA+ module follow the actions, which formally are predicates
on pairs of states. Variables denoting the state before carrying out an action use
their common identifiers while those referring to the state afterwards are given
a prime. The action reqIn states that for a requester〈e, i〉 identified by enclosing
instance e and inner instance i , a token can enter pin reqIn only if the given
instance has not yet had a token pass through this pin. The next conjunct of
the reqIn action says that the values of the req variable will be the same as now,
except that the counter for tokens having passed through pin reqIn will be set
to 1 for requester〈e, i〉. The unchanged keyword states which variables are not
changed by an action, as TLA+ requires all next-state variable values to be set
explicitly.

The reqOut action also represents that a token is only allowed through pin
reqOut of responder〈e, i〉 if it has not already had a token pass through. The
second line constrains this further by stating that a token passing event can
only happen if the sum of all tokens having passed any reqIn pin is greater
than the sum of all tokens having passed any reqOut pin. Hence, this event on
responder〈e, i〉 is constrained by the state of parallel components. Action resIn
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states that a token may only enter a responder〈e, i〉 via pin resIn if the same
instance has already emitted a token via pin reqOut, but not already sent a
response through pin resIn. The resOut action states that a requester〈e, i〉 can
only emit a token through pin resOut if it has received a token through pin reqIn.
This is constrained further by requiring there to be a responder〈f, k〉, that has
received a token through its resIn pin. All counters belonging to requester〈e, i〉
and responder〈f, k〉 are then set to 0, to reset their state. As the resOut action
also performs the reset, there is no TLA+ variable for its corresponding pin.

This behaviour is easier seen looking at the graphical notation in Fig. 4.
Here, the style of the transition operations is closer to programming languages
like Java. The number of partition instances is denoted |partition name|. We
omit the domain of ∃ statements where this is obvious from the context, and the
keyword ALL denotes all indexes in a domain. We also omit specifying which
partition a pin belongs to if there is only one pin by that name in the activity. The
transition from the initial node to the active state represents the Init construct
in TLA+, and the remaining transitions represent the actions.

Since we do not model that a token keeps the index of its requester instance
as data while located at a server, we cannot fully automatically verify that
the activity and EESM for Router m-n are consistent. The model checker finds
counterexamples where a response is simply sent to a requester that has not
yet issued a request, instead of to a requester that has. What we can verify
automatically, however, is that whenever a token is sent back to a requester, the
EESM is in a state where the token would be allowed through the resOut pin of
at least one of them.

Once a building block is complete, we can reuse it like we have reused Router
m-n in our system example from Fig. 1(a). To verify properties of the system,
we generate the TLA+ module in Fig. 5 (see [13]). This module instantiates
other modules, namely Router m-n and Make Response. The constants no clients
and no servers represent the parameters a and b from the system activity. We
express the actions of the system activity as a composition of constraints and
operations on the variables of the system activity, and actions of ESMs of the
inner activities. Hence, the Init construct not only sets the timer in all client



module load sharing system
extends Naturals, MatrixSum
variables r req, r res, m state, m queue, client , server
constants no clients, no servers
no res

∆
= no clients ÷ no servers

r
∆
= instance router m n with no req ← 1, no req encl ← no clients,

no res ← no res, no res encl ← no servers, req ← r req, res ← r res
m

∆
= instance make response with no make response ← 1, no enclosing ← no servers,

state ← m state, queue ← m queue

Init
∆
= client = [timer 7→ [i ∈ 1 . . no clients 7→ 0], initial 7→ [i ∈ 1 . . no clients 7→ 1]]

∧ server = [initial 7→ [i ∈ 1 . . no servers 7→ 1]] ∧ r ! Init ∧m ! Init

start client(p)
∆
= client .initial [p] = 1 ∧ client ′ = [client except ! .initial [p] = 0]

∧ r !reqIn(p, 1) ∧ unchanged 〈server , m state, m queue〉

start server(p)
∆
= server .initial [p] = 1 ∧ server ′ = [server except ! .initial [p] = 0]

∧m !start(p, 1) ∧ unchanged 〈client , r req, r res〉

r reqOut m req(p, i)
∆
= r !reqOut(p, i) ∧m !req(p, 1) ∧ unchanged 〈client , server〉

m res r resIn(p, i)
∆
= m !res(p, 1) ∧ r !resIn(p, i) ∧ unchanged 〈client , server〉

r resOut client timer(p)
∆
= r !resOut(p, 1) ∧ client .timer [p] = 0

∧ client ′ = [client except ! .timer [p] = 1] ∧ unchanged 〈server , m state, m queue〉

client timer r reqIn(p)
∆
= client .timer [p] = 1 ∧ client ′ = [client except ! .timer [p] = 0]

∧ r !reqIn(p, 1) ∧ unchanged 〈server , m state, m queue〉

Next
∆
=

∨ ∃ p ∈ 1 . . no clients : start client(p)
∨ ∃ p ∈ 1 . . no servers : start server(p)
∨ ∃ p ∈ 1 . . no servers, i ∈ 1 . . no res : r reqOut m req(p, i)
∨ ∃ p ∈ 1 . . no servers, i ∈ 1 . . no res : m res r resIn(p, i)
∨ ∃ p ∈ 1 . . no clients : r resOut client timer(p)
∨ ∃ p ∈ 1 . . no clients : client timer r reqIn(p)

Spec
∆
= Init ∧ 2[Next ]〈r req, r res, m state, m queue, client, server〉

P1
∆
= 2(∀ p ∈ 1 . . no servers : m queue[p, 1] ≤ no res)

P2
∆
= 2(Sum(r res.reqOut , no servers, no res) ≤ Sum(r req.reqIn, no clients, 1))

P3
∆
= 2(∀ p ∈ 1 . . no servers, i ∈ 1 . . no res :

(server .initial [p] = 0 ∧ enabled r !reqOut(p, i))⇒ enabled m !req(p, 1))
P4

∆
= 2(∀ p ∈ 1 . . no servers : enabled m !res(p, 1)⇒

∃ i ∈ 1 . . no res : enabled r !resIn(p, i))
P5

∆
= 2(∀ p ∈ 1 . . no clients : enabled r !resOut(p, 1)⇒ client .timer [p] = 0)

Fig. 5: TLA+ module for the system activity



instances to 0 and all initial nodes to 1, but also calls the Init construct of
Router m-n and Make Response as shown by r !Init and m!Init . Note also that
since this is a system activity, we do not need to add an extra dimension for
enclosing partition instances when identifying activity elements like the timer,
as it cannot be reused in other activities. For a description of each action, we
refer back to Sect. 3.

The whole system specification is written as a single formula Spec ∆= Init ∧
2[Next ]〈vars〉. This formula states that the transition system has initial states(s)
as specified by Init and that every change to the variables listed in vars is done
via one of the actions listed in the next-state relation, Next. The box-shaped
symbol (2) in front of [Next ] is the temporal logic operator always. It means
that what follows must be true for every reachable state of the system model.

The small example system of this paper is chosen to allow us to show the
formal semantics of the EESMs in TLA+ and clarify that they are unambiguous,
yet expressive enough for our needs. Therefore, the properties that we can verify
for this system might seem rather trivial, but for more complex systems, vari-
ations of these properties may be very hard to verify without a formal model.
The properties we want to verify are written formally below the horizontal bar
in Fig. 5. All the properties can be verified by model checking. See Sect. 6 for
further discussion of the results.

P1 The number of requests queued in any Make Response block is at most equal
to the number of responders per server, i.e., the inner queue is finite.

P2 There are at most as many ongoing requests on the server side as there are
on the client side.

P3 Whenever a server is started and a responder instance of that server is ready
to emit a token through the reqOut pin, the Make Response instance of that
server is ready to accept a token through its req pin.

P4 Whenever a token can be emitted from the Make Response block of a server,
at least one of the responder instances on that server is able to accept it.

P5 Whenever a token can be emitted via the resOut pin of a requester instance,
the corresponding timer is empty, hence ready to receive a token.

5 Other Types of Multiplicity

Our formalism for expressing contracts of multi-instance activities also works for
one-to-one building blocks without any internal select statements, like Router
1-1 shown in Fig. 6(a). This is a special case, where each requester instance
is statically mapped to a responder instance and vice versa. As each binary
collaboration cannot have any constraints on its behaviour in terms of the state
of parallel instances, we can simplify the EESM as shown in Fig. 7 without loss of
information. This is, in fact, the same notation that we have been using already
for ESMs of activities with one instance of each type [14], only augmented with
an index i . The difference is that the formal semantics now supports multiple
instances globally, instead of requiring such a block to be used in a system with
only one instance of each enclosing partition as well.
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reqIn

resOut

reqOut

resIn

(a) Router 1-1

Router 1-n

responder [n]requester [1]
reqIn

resOut

reqOut
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select 
NEW responder
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Fig. 6: The two other variants of the router activity, with respect to select state-
ments

«eesm» Router 1-1

requestingreqIn(i)/ /resOut(i)respondingmaking_response resIn(i)//reqOut(i)

Fig. 7: UML notation for the EESM of Router 1-1

Finally, we present a one-to-many variation of the router block, Router 1-
n, where a requester is statically mapped to a set of responders, as shown in
Fig. 6(b).4 This could be used in a setting where each server from Fig. 1(a)
has one responder instance per client, so that each client has a choice of any
server when issuing a request. When the response is to be routed back, the
corresponding requester is already given, due to the static mapping.

The EESM of Router 1-n is shown in Fig. 8. Due to the mapping between re-
quester and responder instances, the notation is a bit more complex than for the
other variants. For example, the /reqOut(i) transition states that a token may
only leave the reqOut pin through instance i if this has not happened already.
The rest of the guard constrains this further by stating that a token passing
can only occur if the corresponding requester instance has gotten more tokens
through its reqIn pin than the sum of tokens having already passed through
pin reqOut in all the responders mapping to that requester. The expression
reqIn[responder [i ]] means the value of the reqIn variable for the requester who
can be found by mapping responder [i ] to its corresponding requester. Hence,
Σ reqOut [requester [responder [i ]][k ]] means the sum of reqOut values for the k
different responders found by mapping responder[i] to its requester and then
mapping that requester to the set of corresponding responders.

Note that it is the EESM that holds the information on whether there is a
constrained static mapping or not. In contrast, the EESM of Router m-n, given
in Fig. 4, has no references to any particular parallel instance or set of instances,
only to the current instance and the keyword ALL.

4 In addition, there could naturally be a mirror version of the Router 1-n activity, a
Router n-1, but this is also a one-to-many activity.
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reqIn[i] = 0
reqOut[k] = 0
resIn[k] = 0

∃ i: reqIn[i] > 0 ∧
∃ k ∈ responder[requester[i]]: resIn[k] > 0

«eesm»
Router 1-n

active

∀ i ∈ 1..|requester|: reqIn[i] = 0
∀ k ∈ 1..|responder|: reqOut[k] = 0 ∧ resIn[k] = 0

active

reqIn(i)/

reqIn[i] = 1

∃ i: reqIn[i] == 0

active

resIn(i)/

 resIn[i] = 1

∃ i: reqOut[i] > 0
∧ resIn[i] == 0

active

/reqOut(i)

reqOut[i] = 1

∃ i: reqOut[i] == 0
∧ reqIn[responder[i]] > 
∑reqOut[requester[responder[i]][k]]

Fig. 8: UML notation for the ESM of Router 1-n

Table 1: Number of states found and time required to verify properties P1–P5
# of servers → 1 2 3
# of clients ↓

1 7 states, < 1 sec

2 37 states, 1 sec 70 states, 1 sec

3 241 states, 2 sec 707 states, 3 sec

4 1713 states, 4 sec 3410 states, 5 sec

5 12617 states, 9 sec

6 94513 states, 48 sec 188962 states, 99 sec 283411 states, 155 sec

7 715001 states, 651 sec

6 Concluding Remarks

All the properties from Fig. 5 have been verified by the TLC model checker [24],
for the parameter values shown in Table 1.5 Model checking only verifies prop-
erties for a model with some exact parameters. It does not say whether those
properties will still hold for different parameters. However, if the model changes
behaviour with respect to a property for some specific parameter values, it is
often when a parameter is changed from 1 to >1, or it is likely due to highly
intentional design decisions. Hence, the fundamental problem remains, but it is
not always that great in practice.

Given that model checking is automatic, one could say that time is not an
issue, as we can just leave a computer at it and check for up to, for example,
a thousand instances of each partition. However, as Table 1 shows, the time
needed grows exponentially as we increase the number of client instances. The
linear increase from server instances comes from the fact that more servers reduce
the number of responders per server.

5 We are aware that the TLA+ specification for the given example can be optimized by
only storing the aggregate number of tokens having passed through a pin on any of
the responders in a server. However, this optimization would not work if the EESM
required two tokens to pass pin reqOut before a token is allowed though pin resIn.



There is a high level of parallelism in our system example. This is also the
case for other systems using EESMs that we have verified. Hence, we expect
partial order reduction [7] to alleviate the state-space blowup from increasing
the number of instances. We therefore plan to also formalize our semantics in
Promela, so we can use the Spin [8] model checker, which implements partial
order reduction. The formalisms are compatible, as there is already work for
transforming another TLA derivative, cTLA, into Promela automatically [20].
For relatively simple blocks, where the contract must be verified for any number
of instances, the TLA formalism allows for writing manual refinement proofs as
well [16].

We already have a tool for generating TLA+ from SPACE models [13]. This
tool greatly reduces the time required to specify systems, and it automati-
cally generates many types of general properties to ensure the well-formedness
of SPACE models. We will extend the tool to work with EESMs, outputting
Promela specifications as well. To hide the formalism when specifying application-
specific properties, there is work in progress to express them in UML.

To verify properties like “Every request is eventually responded to”, would
require adding data to identify each request and adding liveness constraints to
the model. Being based on TLA, the formalism can accommodate this quite
easily in the form of weak or strong fairness assumptions. The limiting factor is
still time needed for model checking.

Having formalized extended ESMs, we are eager to use them in the setting of
fault-tolerant systems, where multiple instances of the same type often collabo-
rate to mask failures, and conditions such as a majority of the instances being
reachable are often essential to precisely describe the behaviour of a block.

To conclude, contracts encapsulate software components and facilitate both
reuse and compositional verification. The SPACE method uses collaborations
detailed by UML activities as the unit of reuse. We introduce EESMs, which
allow to describe the global behaviour of multi-instance activities, abstracting
away internal state, while still having the expressive power to detail when an
external event can take place. An example from the load balancing Router m-n
block is that a request will only arrive at a server that has free capacity in the
form of free responder instances, and only if the number of requests received
from all clients is greater than the number of requests forwarded to any server.
While the EESMs have a formal semantics in TLA, we give graphical UML state
machines as specification tools, so that software engineers themselves need not
be experts in temporal logic.
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