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Abstract
The validation and verification of reliable systems is a difficult and
complex task, mainly for two reasons: First, it is difficult to pre-
cisely state which formal properties a system needs to fulfil to
be of high quality. Second, it is complex to automatically verify
such properties, due to the size of the analysis state space which
grows exponentially with the number of components. We tackle
these problems by a tool-supported method which embeds appli-
cation functionality in building blocks that use UML activities to
describe their internal behaviour. To describe their externally vis-
ible behaviour, we use a combination of complementary interface
contracts, so-called ESMs and EESMs. In this paper, we present an
extension of the interface contracts, External Reliability Contracts
(ERCs), that capture failure behaviour. This separation of different
behavioural aspects in separate descriptions facilitates a two-step
analysis, in which the first step is completely automated and the
second step is facilitated by an automatic translation of the models
to the input syntax of the model checker TLC. Further, the cascade
of contracts is used to separate the work of domain and reliability
experts. The concepts are proposed with the background of a real
industry case, and we demonstrate how the use of interface con-
tracts leads to significantly smaller state spaces in the analysis.

Categories and Subject Descriptors C.0 [General]: Systems
specification methodology; C.2.4 [Computer-Communication Net-
works]: Distributed Systems—Distributed applications; D.2.2
[Software Engineering]: Design Tools and Techniques—Computer-
aided software engineering (CASE); D.2.4 [Software Engineer-
ing]: Software/Program Verification—Formal methods, Model
checking, Reliability; D.2.13 [Software Engineering]: Reusable
Software

General Terms Design, Reliability, Verification

Keywords Model-driven engineering, reliable systems, fault tol-
erance, component contracts, compositional verification, model
checking
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1. Introduction
Since nearly half a century ago, theoretical computer scientists
have developed a plethora of techniques to model and to verify
software in a formal way. In spite of several outstanding results,
however, formal methods are still not used that much in practise.
A likely reason is the complexity of many methods which tend
not only to be laborious but also require a considerable amount
of expertise. Hence, to make the application of formal techniques
more popular in software development, they must be much simpler
and faster to use. An approach to achieve this is through model-
driven engineering, for instance on the basis of UML or SDL.
These languages can be effectively used to describe software in
such a way that implementations can be automatically generated
from them. Further, formal methods may be used to analyze them,
as they often give an appropriate level of abstraction. In this way,
models can be used as front-ends for formal tools, which leads to
what Rushby [24] calls “disappearing formal methods.”

Our method SPACE and its tool Arctis [14, 18] are designed
with this strategy in mind and optimized for the development of
reactive, distributed applications. System behaviour is modelled by
UML activities that due to their token semantics similar to Petri-
nets [16, 22] can be easily understood. The activities have been
provided with a reactive formal semantics [16] such that both auto-
matic code generation [14, 18] and formal analysis [18] are possi-
ble. Moreover, this modelling technique is scalable since activities
can be composed using UML call behavior actions, which we refer
to as blocks. A block may both embed an activity and be a part of
another one. The interaction between the two activities is modelled
by UML pins through which tokens flow when transferring from
one activity to the other. The behaviour at this interface is mod-
elled by contracts in the form of so-called External State Machines
(ESMs, [15]) and an extended version of them (EESMs, [26]). This
allows for storing blocks in libraries and re-using them in different
software models (see [15]).

Arctis facilitates the formal analysis of system models for im-
portant, generally desirable software properties by using a model
checker [18]. Since the model checker does its analysis by an ex-
haustive search of the reachable system states, it works fully auto-
matically. Further, error traces can be animated on the UML activ-
ities such that the Arctis users do not need a deeper understanding
of the formalism laying behind the analysis.

A disadvantage of model checking is that models of realistic
systems often comprise too many system states to be checked in an
acceptable amount of time. This is due to the combinatorial blow-
up in the number of states when combining component behaviours,
known as the state explosion problem. In Arctis, we mitigate this
problem by compositional verification (see [18]). In particular, we



use the interface contracts to reduce the system verification to a
number of local verification runs each concerning only a single
activity as well as a number of (E)ESMs. Thus, the number of
states to be model checked grows linearly with the number of the
activities in the system model instead of increasing exponentially.

However, while this strategy works to ensure that each build-
ing block is well-formed from a local point of view, for some sys-
tems we also need to check application-specific system properties.
This holds especially for properties with respect to reliability, i.e.,
to check how a system reacts in the presence of communication
and process failures. The need to consider the system with a larger
scope and the presence of failures increases the complexity (and
hence, the state space) drastically, simply because of the higher de-
gree of concurrency. Furthermore, mechanisms to improve relia-
bility often employ multiple instances of a given type for redun-
dacy (see, for instance [19]). Here, one has to take also data that
distinguishes the individual instances into account, which further
escalates the state space to be checked.

This paper is devoted to demonstrating how compositional ver-
ification can mitigate the state explosion problem for reliable sys-
tems. To achieve that, we validate the concept of EESMs [26] by
showing how they are applied in an industrial case study where
we were contracted to add a fault-tolerant best-effort mutual ex-
clusion protocol to an existing system of intelligent clothes lockers
for hospitals (see Sect. 2). In Sect. 3, we describe our development
method for reliable systems, extended from earlier work consider-
ing just message loss [27], and the specifications created for the
case study. In addition, we show how the activities and contracts
are transformed into TLA+ [20], the input language of the TLC
model checker [29]. In contrast to proofs of system functionality,
not all theorems specifying the reliability properties to be verified
can be automatically generated at the moment. Instead, we demon-
strate the flexibility of the framework by showing how the best-
effort mutual exclusion property can be expressed by an expert (see
Sect. 3.2). Furthermore, in Sect. 4, we introduce a novel extension
we call External Reliability Contracts (ERCs) as a way to handle
the effects of process crashes and message loss in a compositional
manner, while still being able to verify larger system sizes under
failure-free semantics. We show that our variant of compositional
verification gives significant savings over monolithic verification
and discuss our findings, in Sect. 5 We survey some related work
in Sect. 6 and conclude in Sect. 7.

2. Texi Case Study: Lockers that Read RFID
Texi AS is a company that delivers RFID-based logistics systems to
organize work wear, typically for hospitals. All clothes have a small
RFID tag sewn into the fabric, which is used to track the clothes
during the entire usage cycle. Our case study focuses on the lockers
in the hospital that store the clothes and make them available to the
hospital staff. The lockers are equipped with antennas that can read
the RFID tags, so that they know which clothes are stored in them.

When employees want new clothes, they swipe their employee
card through a card reader. The locker then checks if the employee
is allowed access to the locker. If the employee has access, the door
is unlocked. After the clothes are removed and the door is closed
again, the reading process is started to see which clothes have been
removed by the employee.

A typical installation in a hospital has many lockers that stand
next to each other, and the reading process of the antennas takes
several seconds. For that reason it is likely that several employees
access closely located lockers simultaneously. This can lead to
wrong reading results, since the antennas may interfere once two
or more lockers read at the same time.

For this reason, we introduced a solution that delays the reading
within lockers so that only one locker may read at a time. Obvi-

ously, this can be achieved by introducing a central controller that
takes the role of coordinator among all lockers that are in danger of
interference. A locker then has to obtain permission before it may
activate its antennas. Such a solution, however, introduces several
single points of failure. If the central controller goes down, or if a
locker does not release its read permission, all further reading re-
quests from other lockers will not be answered and employees will
not be able to get their work wear. For that reason, we had to de-
velop a more robust solution, where a locker can carry on alone, if
other parts of the system fail.

2.1 System Requirements
According to Texi, the requirements for the improved system are
the following: If possible, only one locker shall read its contents
at a time. However, availability should still have priority over this
mutual exclusion property, since the possible inconsistencies due
to concurrent reading can be manually corrected, but a blocked
locker would hinder hospital work. Hence, we cannot use a mutual
exclusion algorithm that blocks if a locker is unable to contact
the central controller. Instead we create a protocol that attempts to
provide mutual exclusion of locker reads, but does not necessarily
provide it in the presence of process crashes and message loss.

While it is easy to express a mutual exclusion property, “no
two lockers should have permission to read their contents at the
same time,” it is not straightforward to express the kind of best-
effort mutual exclusion property (in the following called BEME
property) that our customer requests. For our protocol, the BEME
property can be expressed as a mutual exclusion property that is
conditional on the absence of message loss and process crashes.
We note that message loss is indistinguishable from a long delay.
Thus, such events can be explicitly modelled in the form of timeout
events. The same goes for process crashes, which we can model as
a transition to a state where no further events can take place in the
crashed component of the system, except a restart event. With this
in place, we might simply state the BEME property to be “as long
as no timeout or crash has occurred, the mutual exclusion property
must hold.” However, this does not say anything about whether the
system will recover from a faulty state and go back to providing the
mutual exclusion property once a sufficiently long time has passed
without further crashes or timeouts taking place. To include this, we
can express the BEME property as “if there is a time after which
no further timeouts or crashes occur, then there will eventually be a
time where the mutual exclusion property holds forever.” In addition
to the BEME property, the customer naturally wants the system to
be free from any deadlock scenarios and that all read requests are
eventually granted.

Next, we will introduce our method and the specification of the
case study before we revisit the BEME property in Sect. 3.2.

3. The Method for Reliable Systems
As explained above, the main specification element of the SPACE
method are building blocks, expressed by UML activities and en-
capsulated by formal contracts. Within the method, we distinguish
three levels of descriptions for the external contracts of a building
block that have different significance with respect to the overall de-
velopment workflow:

• External State Machines (ESMs, [15]) are UML state machines
that describe the order in which parameter pins on the building
blocks may be used. ESMs do not consider any data or sessions
(multiple instances of a block), which in many cases is sufficient
to explain how blocks are to be assembled correctly to more
comprehensive applications. The complexity of the analysis is
also limited, so that checking whether the blocks are correctly



integrated can be performed in the background of the editing
process, without interrupting the user.
• Extended ESMs (EESM, [26]) are an extension of ESMs that

adds actions and guards on data variables. This is especially
useful for mechanisms that increase the reliability of systems,
since they often require multiple instances of the same block,
i.e., sessions. Since session IDs are data, EESMs may capture
relations of several sessions, or simply count how often a certain
action has been executed. Thus, EESMs are more expressive
than ESMs, but this comes at the cost that the verification with
EESMs is more complex. This analysis is therefore carried out
in an extra step with temporal logic as the basis (see Sect. 3.2).
• External Reliability Contracts (ERCs, introduced in this paper)

add yet another layer to the contracts. They amend (E)ESMs
by describing behaviour that results from communication and
process failures. In principle, this behaviour could be directly
expressed within the (E)ESMs. However, we have observed
that this behaviour is often orthogonal to the original, purely
functional behaviour described by (E)ESMs. It can therefore
be expressed separately, much like an aspect in aspect-oriented
programming. This also has the benefit that systems may be
analyzed both with and without failures, as discussed later.

To make our method practical, we also take into account the level
of expertise that is needed to fulfil a certain task. Therefore, we
identify two groups of engineers:

• Domain experts, who are familiar with a certain application
domain and relevant technologies, such as for example RFID
and embedded systems. Domain experts have programming
skills and may also model on the level of UML activities, but do
not need the ability to formulate and verify temporal theorems,
for instance.
• Reliability experts, who are familiar with reliability problems

and possible solutions, and who are also familiar with the nec-
essary formal methods to assure system quality with respect to
reliability. To optimally utilize their expertise, we assume that
reliability experts are hired on a case-by-case basis. Therefore
the method should be optimized to keep their overhead regard-
ing non-reliability related questions low, as we will discuss in
the following.

Within a verification project [2], in which we apply our tool to in-
dustrial cases such as the one presented, we see that this categoriza-
tion is quite to the point. With respect to these roles, we expect our
method to be used in the following way, as illustrated in Fig. 1:

1. Domain experts create the main part of the application by com-
posing building blocks. We have measured that up to 71% of
blocks may be reused from libraries (see [15]). This may al-
ready include some building blocks provided by reliability ex-
perts, if their necessity is obvious or if the domain expert al-
ready knows these blocks from previous projects. For the do-
main expert it is often sufficient to look at the (simple) ESMs to
integrate building blocks correctly into a system.

2. The basic analysis (A1) is executed in the background, so that
the resulting specification S is at least well-formed and de-
scribes consistent compositions of the building blocks, as far
as the ESMs are concerned. This eases the job of the reliability
expert, since many inconsistencies and ambiguities are already
removed.

3. The consistent model S is handed over to a reliability expert,
who performs an in-depth analysis A2 using the model checker
TLC [29]. TLA+ [20], the input language of TLC, is gener-
ated automatically from the UML model, now also including

Domain-Specific Libraries Fault-Tolerance Library

Domain Expert

Reliability Expert

S

S'

A1

Integration of Blocks

Integration of Fault-
Tolerance Mechanisms 
and Validation

Automated Analysis 
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Automatic
Theorems

TLA+

EESM 
+ ERC

Manual
Theorems

TLC

A2
Partially Automated 
Analysis

Automatic 
Implementation

Executable
Code

Figure 1. The development method

the variables, actions and guards contributed by EESMs. Some
systems, such as the one presented in our case study, require
also application-specific properties for which the reliability ex-
pert formulates the corresponding theorems, as explained in
Sect. 3.2.

4. To verify properties also with realistic assumptions including
faulty channels and crashing processes, the ERCs of the build-
ing blocks are taken into account, or, where necessary, intro-
duced.
The results of A2 may require that additional fault-tolerance
mechanisms are introduced or given functionality is changed.
Depending on the extent of the changes, these are either done by
the reliability expert alone, or in cooperation with the domain
expert. These decisions may also require feedback from the
customer, when consequences of failures and remedies have
to be taken into account. In our case study, for instance, Texi
had to make the trade-off between data consistency and locker
availability.

5. From a consistent specification, executable code can be gener-
ated by a model transformation from the UML activities to state
machines and a subsequent code generation step. This step is
completely automated, and we verified that the code generation
preserves system constraints [14]. It is hence guaranteed that
this code also fulfils the properties of the original specification.

Needless to say, this method is an idealized workflow that serves
as an orientation rather than an inflexible corset. In practise, the
separation between the experts may be less distinct than described.
In addition, since building blocks may be checked back into the
library, complete solutions that already take reliability concerns
into account may be directly applied by domain experts. In [19], for
instance, we developed a robust leader election protocol. Although
the protocol is not trivial, the resulting building block is so easy
to handle that it can be integrated by a domain expert without any
trouble.

3.1 System Design in SPACE
In the following, we focus on the parts of the system that deal
with mutual exclusion between lockers, and do not further detail
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Figure 2. UML activity showing the mutual exclusion protocol

other functionality. We assume that steps 1 and 2 have already been
carried out, and focus now on the work of the reliability expert.

Figure 2 shows the UML activity for the Timed Mutex Dis-
tributed building block that we created to implement the mutual
exclusion protocol. Partitions represent separate components of the
system that are physically distributed. They are named in the upper
left corner, in this case controller and locker. The fact that there
can be more than one locker is represented by [n] after the name
of the locker partition. To distinguish the different lockers, each of
them has a specific ID. In the implementation, we have chosen the
IP address of each locker as its ID. The single controller partition
contains a building block Timed Mutex Local, which implements
the locally concentrated part of the protocol.

UML activities have a semantics based on token flows. For the
building blocks, we use a reactive variant of them [16], in which
tokens flow in run-to-completion steps (so-called activity steps),
each of which are triggered by an observable event, either the
expiration of a timer or the reception of a signal.

Each locker partition of the building block can receive a request
for the read permission via the starting pin named request, through
which a token enters the activity, travels along the edge to the fork
node and is duplicated. One duplicate enters the Timer block via pin
start. The other passes through operation getMyID, which retrieves
the ID of the locker, and comes to rest at the partition border
between the locker and the controller partition. All tokens rest
between partitions, as message passing is asynchronous, meaning
that the sending and receiving of a message are two different events.

Two activity steps are now enabled: One step is triggered by the
token on the topmost edge arriving at its destination and entering
the block Timed Mutex Local via pin request(ID). Another possi-
bility is for the timer to emit a token. To see why this can happen,
we must consider the external contract of the Timer block.

The ESM of block Timer is shown in Fig. 3. It shows that once
a token has passed via the start pin, the block may spontaneously
emit a token via its expired pin and will also accept tokens via the
pins stop and reset. Therefore, a possible next event is that the
timer expires, releasing a token through the expired pin, via the
merge node and on through the grant pin of the locker partition.
Hence, this timer ensures that no locker is blocked from reading its
contents by the controller crashing or a communications failure.

Figure 4 shows the EESM of the Timed Mutex Local block, and
thus also the behaviour we can expect from it. EESMs are different
from ESMs in that their state does not just consist of the control
state like active, but also the values assigned to any variables they
have (i.e., they are extended finite state machines [6]). Due to the
extra variables, EESMs are initialized implicitly, as shown by the
transition from the initial state, at the very left. That is, the initial
transition is executed together with the startup of the component
(modelled by a top-level partition) the building block is part of. In

«esm»
Timer

active activereset /

stop /

/ expired

start /

Figure 3. ESM of the Timer block

the case of Timed Mutex Local, the EESM tracks two sets, the IDs
that have been sent through pin request and the same for pin grant.
An EESM also takes into account that a block can be instantiated
as multi-session, which means that several instances of a block
execute concurrently. Therefore, every variable of the EESM is an
array in which each block instance has its own index, i. Note that
in Fig. 2, only one instance of the Timed Mutex Local block is
instantiated, so i is always 1.

The EESM only allows one request from each ID for each
block instance at a time. To express this, the transition labelled re-
quest(i, ID) has a guard stating that for a request(i, ID) event to hap-
pen, that ID must not already be in the set requests[i]. Further, the
transition has an operation, written in a lined rectangle, that speci-
fies that the new ID is added to the set represented by requests[i].
A wait(i, ID) transition can only take place if the block has already
received a request from that ID, but not yet sent out a grant. A
grant(i, ID) transition has the exact same guard as wait(i, ID), but
has an additional operation to update the grants variable. The re-
lease(i, ID) transition is only enabled when ID has been granted.
This transition resets the contract with respect to that ID by remov-
ing it from both the requests and grants set, allowing new requests
with that ID.

Looking back at Fig. 2, we see that a token released from the
wait(ID) pin of block tml, denoted tml:wait(ID), will need to rest
at the partition border before being received by the locker it is
destined for. As there are several lockers, a select statement [17]
is used to only send the message to the locker with the address
given in the ID parameter of the token. Upon arrival at the locker,
the token originating from tml:wait(ID) will enter the reset pin
of the Timer block, hence delaying the expiration of the timer. If
the timer has already expired when this happens, the semantics of
the contract is that the token is discarded as it attempts to enter
the block via a pin that the contract, in its current state, does not
allow tokens to pass. During our analysis, such a scenario raises a
warning so that the developer can make sure it is intentional.1

The events following a token being released via tml:grant(ID)
are similar to the above, only here, the token is duplicated upon
arrival at the locker to both stop the timer and pass through the
grant pin of the Timed Mutex Distributed block itself. The EESM
of Timed Mutex Distributed, shown in Fig. 5,2 does not permit
more than one grant without a release and request in-between, for
that locker instance. If a grant has already happened, the token
will be discarded when trying to leave the block via the grant
pin, just like a token trying to enter a block at the wrong time.
The EESM also tells us that a token can enter the Timed Mutex
Distributed block via pin release if that locker instance has received

1 Note that this filtering effect only applies when the contract can decide if
a transition is enabled based solely on local information. An EESM transi-
tion with a guard that refers to a remote variable (e.g., another component
instance being in a specific state) cannot filter out tokens, hence any viola-
tions are real errors.
2 When an EESM does not use any data apart from session IDs and tran-
sitions do not reference other sessions, we present it in a simpler way that
looks like an ESM except for the additional index (i) on every transition
label [26].
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Figure 5. EESM of the Timed Mutex Distributed block

a grant. This will cause the token to be sent towards the controller
component and received in a later step to enter tml:release(ID),
resetting its EESM with respect to that ID.

The activity of the Timed Mutex Local block is shown in Fig. 6.
The protocol to ensure mutual exclusion is implemented by a com-
bination of two blocks: The block of type Mutex ensures that only
one locker is given read permission at a time and keeps track of the
lockers that have requested permission. The Wait block is taking
care of the notification towards each individual locker. It is instan-
tiated as a multi-session block, which means that it is executed with
several instances, one for each locker ID, signified by the additional
shadow around it and the parameter (n). This session pattern sim-
plifies the modelling of concurrent behaviour, since each session
instance only has to keep track of the protocol state of a single
locker.

Due to space constraints, we do not show the contracts of Mutex
and Wait, but give an informal overview of the behaviour of Timed
Mutex Local: The first request is granted right away, whereas sub-
sequent requests are queued at the Mutex block while the corre-
sponding Wait block instances periodically send out tokens via
their keepWaiting pins. This period is shorter than the duration of
the Timer block in Fig. 2, to prevent its expiration under non-failure
conditions. Once a previously granted locker sends a release, or the
Wait block instance for this locker times out, the next ID in the
Mutex queue is used to tell its Wait block instance to grant read
permission. Hence, timeouts from the Wait block instances ensure
that the protocol can continue even if the release of a read permis-
sion is never received.

As there is more than one instance of the Wait block, we have
to use select statements when communicating with them. More im-
portantly, since each Wait block instance is implemented as its own
state machine, the run-time-support system treats messaging be-
tween the parent state machine (the controller) and the children
state machines (the Wait block instances) in an asynchronous man-
ner, but with the FIFO property.

3.2 Analysis A2 of Timed Mutex Local
To verify more detailed properties of our specifications than anal-
ysis A1 supports, we use a formalism based on temporal logic, the
Temporal Logic of Actions (TLA, [20]). We can generate TLA+,
the language for TLA, automatically from the Arctis models [18],

Timed Mutex Local 
controller

request(ID)

wait(ID)

release(ID)

m: Mutex

request(ID)

release(ID)

wait

w: Wait (n)

release

keepWaiting(ID)

immediate
Grant(ID) grant(ID)wait(ID)

immediate
Grant doGrant

grant(ID)

timeout(ID)

select ID

grant(ID)

select ID

Figure 6. UML activity showing the part of the mutual exclusion
protocol that is local to the controller

although not all features introduced in this paper are yet supported
by the implementation.

Figure 7 shows an excerpt of the TLA+ specification of the
EESM, the activity and the consistency proof for Timed Mutex
Local, focusing on the events related to a token passing through
the request(ID) and wait(ID) pins. Each run-to-completion step
of the activity, and each EESM transition, is represented as one
TLA+ action.3 The TLA+ actions for the EESM transitions are
quite similar to the graphical representation. The main difference
is that updates of variables are written in a different style and
that variables that are not changed in a transition are explicitly
marked as such. The activity part of Fig. 7 refers to contracts of
inner blocks by 〈block name〉!〈(E)ESM transition〉 like m!request
wait(1, ID).4 It also uses functions sendToWait(〈pin name〉, ID)
and receiveFromWait(〈pin name〉, ID), which are both functions
we have defined to asynchronously send and receive tokens with
the given ID via the named pins. From the part of the specifica-

3 In TLA and TLA+, an action is a predicate on a pair of system states,
modelling the changes to the variables that are carried out in a system step.
4 The index parameter of the Mutex block is hard coded as 1, since there is
only one instance being used in the activity. All EESMs still have an index,
so we can use the same TLA+ segment to express them regardless of how
many instances are actually used.



MODULE Excerpt for request and wait
From the EESM

request(i , ID)
∆
=

∧ ID /∈ requests[i ]
∧ requests′ = [requests EXCEPT ! [i ] = requests[i ] ∪ {ID}]
∧ UNCHANGED 〈grants〉

wait(i , ID)
∆
=

∧ ID ∈ requests[i ]
∧ ID /∈ grants[i ]
∧ UNCHANGED 〈grants, requests〉

From the activity
request m request m wait w wait(ID)

∆
=

∧m !request wait(1, ID)
∧ sendToWait(waitPin, ID)
∧ UNCHANGED 〈w state, fromWait〉

request m request m immGrant w immGrant(ID)
∆
=

∧m !request immediateGrant(1, ID)
∧ sendToWait(immediateGrantPin, ID)
∧ UNCHANGED 〈w state, fromWait〉

w keepWaiting wait(ID)
∆
=

∧ receiveFromWait(keepWaitingPin, ID)
∧ UNCHANGED 〈w state, m queue, toWait〉

From the proof
requestEvent(ID)

∆
=

∧ eesm !request(1, ID)
∧
∨ act !request m request m wait w wait(ID)
∨ act !request m request m immGrant w immGrant(ID)

waitEvent(ID)
∆
=

∧ act !w keepWaiting wait(ID)
∧ IF ENABLED eesm !wait(1, ID)

THEN eesm !wait(1, ID)
ELSE UNCHANGED 〈requests, grants〉

p1
∆
= 2(∀ ID ∈ IDs :

ENABLED eesm !request(1, ID)⇒
(ENABLED act !request m request m wait w wait(ID)
∨ ENABLED
act !request m request m immGrant w immGrant(ID)))

p2
∆
= 2(∀ ID ∈ IDs :

ENABLED act !w keepWaiting wait(ID)⇒
ENABLED eesm !wait(1, ID))

Figure 7. TLA+ excerpt for the proof of the Timed Mutex Local
block

tion headed by “From the proof”, we see that the events of the
EESM and the activity are connected so as to take place together
in one atomic step. For example in the action requestEvent(ID),
whenever a request(i, ID) action takes place for the EESM, either
a request m request m wait w wait(ID) or request m request m
immGrant w immGrant(ID) action must take place in the activity
at the same time. In contrast, as modeled by waitEvent(ID), when
the activity wants to send a token through the wait pin, we may
accept that the EESM does not allow it, due to the semantics of
discarding tokens that attempt to travel via pins at the wrong time.
This is expressed with the IF-THEN-ELSE construct.

Theorems that verify the consistency of the activity and its
(E)ESM can be generated automatically. For example, to verify that
a token accepted through pin request by the EESM is also accepted
by the activity, we use the model checker TLC [29] to check the
invariant p1 from Fig. 7. The invariant states that whenever the
EESM is ready to allow a token through the request pin (i.e., the

corresponding TLA+ action is enabled), one of the corresponding
transitions of the activity are also enabled. Invariant p2 states the
same thing for events where tokens pass through the outgoing
wait pin. The difference is that any violation of this invariant is
interpreted as just a warning, not something that necessarily has
to be corrected. Instead, the developer should make sure that any
scenarios where the activity can send a token through the pin, but
the EESM does not allow it, are intentional. The scenarios are given
automatically by the model checker in the form of an error trace that
we can visualize in the Arctis models [18].

The design of Timed Mutex Local shown in Fig. 6 has a bug
that can lead to a deadlock situation. When running TLC, it returns
an error trace to show that the design allows the following scenario:

1. A request from locker L1 is received, granted and released, but
the release only gets as far as being duplicated by the fork node
so that one token reaches m:release(ID) to remove the request
entry, while the other token has not yet been received by the
Wait block through its release pin.

2. The Wait block for locker L1 emits a token through its timeout
pin, which rests in the asynchronous channels from the Wait
blocks to the controller.

3. Another request from locker L1 is received, an entry is added
in the Mutex block and a token put in the queue to the corre-
sponding Wait block via pin immediateGrant.

4. The timeout from the L1 instance of Wait is finally received
by the controller and reaches m:release(ID), which removes the
new request from locker L1 instead of the original request.

This causes an inconsistency between the state of the Wait
blocks and the state of Mutex that later on can deadlock the sys-
tem. The chance of this sequence of events actually happening is
very small, especially as the delay from the local, but asynchronous
message passing between the Wait blocks and the rest of the con-
troller partition is expected to be much shorter than the non-local
message passing. However, these are the kind of subtle faults that
could take down a system after years of operation and be very diffi-
cult to pinpoint when trying to figure out the reason for the failure.

One could solve the problem by changing the run-time-support
system so that local messages always have priority over non-local
ones, or we can insert a First block that ensure that either only the
release or the timeout for a certain ID reaches Mutex, as shown in
Fig. 8. The nice thing about this new version, is that the EESM is
exactly the same as before, so the replacement does not trigger a
need to redo any of the verification done already. Using the EESM
of the Timed Mutex Local block, we just need to verify consistency
of the EESM and activity for this new block.

Although we primarily want to prove the BEME property for
the Timed Mutex Distributed block, we can also express it for
the Timed Mutex Local block. This “BEME Local” property will
then be “if there are ever no more timeouts, then eventually the
block will grant at most one read request at a time”. This is a
liveness property, meaning that it describes something that should
happen. In our method, the theorems for these properties are for-
mulated manually. To verify liveness properties, we need to add
constraints to filter out behaviours that are unreasonable for a real
system, such as a dice that is rolled infinitely many times yet
never shows a “six”. Typically this means constraining the be-
haviours to those where things that can always or infinitely often
happen, do actually happen sometimes, known as fairness con-
straints [20]. To verify the BEME Local property, we also add a
liveness constraint to the specification stating that eventually there
will never be any more timeouts from any of the Wait block ses-
sions, hence TLC only considers the part of the state space where
this holds. We can then express the BEME local property in TLA+
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Figure 8. The new and improved activity of Timed Mutex Local

as 32(Cardinality(grants[1]) ≤ 1), which reads “eventually al-
ways the cardinality of the set of granted IDs is at most one.”

Although advanced properties like this one, at least currently,
have to be written manually, the reliability expert only has to add
two lines to a TLA+ specification of perhaps hundreds of lines to
get TLC to check it. This shows that the automation provided by
our method can also be very useful for the cases where some things
have to be done manually.

We do not have the space to go in detail also about the verifi-
cation of the Timed Mutex Distributed block. The only truly new
property compared to the Timed Mutex Local block, is that we
would like to verify that every request received from a locker is
eventually responded to via a grant. Again, we will have to add
fairness constraints to filter out unrealistic behaviours, and then we
can express the property as “always, for all lockers, a request from
a given locker has been received implies that eventually a grant is
sent to that locker.”

4. Modelling Realistic Semantics
Our interface contracts help developers to understand the behaviour
of a block and facilitate compositional verification by describing
only the events that are visible to the outside of the block. In
order to do compositional verification under realistic semantics,
the contracts must therefore describe the externally visible effects
of process crashes and message loss, too. This could be done by
writing a new ESM or EESM that includes extra transitions caused
by these types of events, with the drawback of having to maintain
two, partially overlapping, contracts, one for ideal semantics and
another one for realistic semantics. To avoid this potential for
inconsistency, we use an aspect-oriented notation to express what
we call External Reliability Contracts (ERCs).

The ERC for the Timed Mutex Local block is shown in Fig. 9.
In the following, we use the terminology of aspect-oriented pro-
gramming, AspectJ in particular [1]. The part of the ERC in black
is the pointcut, the pattern that must match in order to insert the
advice given in blue colour. The first transition has a pointcut that
looks for any transition that starts in an initial state and ends in a
state called active. Looking at the EESM in Fig. 4, we see that there

«erc»
Timed Mutex Local

active

∀ i ∈ 1..|controller|: 
up[i] = 1

active

active

∃ i: up[i] == 1 

active

active

∃ i: up[i] == 1 

up[i] = 0

active

active

∃ i: up[i] == 0 

up[i] = 1
requests[i] = {}
grants[i] = {}

active

∀ i ∈ 1..|controller|: 
timeout[i] = 0

active

active

∃ i, ID: up[i] == 1 
∧ ID ∈ grants[i]

timeout[i] = 1
requests[i] = requests[i] \ {ID}
grants[i] = grants[i] \ {ID}

Figure 9. ERC of the Timed Mutex Local block

is only one such transition. Hence, the ERC adds an extra variable
up (an array, in case there is more than one instance of the block) to
the EESM to denote the state of the process running the controller
partition. The ERC transition to the right of this matches any state
named active and adds a new transition with target state active so
that every controller instance that is not crashed, i.e., up[i] = 1, can
crash. The following transition matches any EESM transition that
has state active as both its target and source. It adds an additional
guard stating that the controller must be up in order for such an
EESM transition to take place.

As shown in the top right corner, the ERC adds a transition
from state active with up equal to 0 that restarts the controller. A
transition with this guard tells us whether the existing state of the
EESM is remembered after a crash or not. There is no persistent
storage for the state of this block, so both the set of requests and
grants are reset to the empty set upon restarting the component.
Exchanging the Timed Mutex Local block and its ERC for an
otherwise identical block that does use persistent storage, could
alter the results of verification with realistic semantics. All local
blocks have an ERC with at least these four transitions.

The timeout of a Wait block instance is not explicitly expressed
in the EESM of Timed Mutex Local, as it does not trigger any
tokens to traverse any external pins. However, the application-
specific BEME property of Timed Mutex Distributed is conditional
in timeouts eventually not happening anymore, so we want to
export this event to the enclosing level through the ERC. As a result
we include two more ERC transitions that are specific to exporting
the timeout event, placed below the first row of transitions. More
precisely, they export the activity step where a token arrives at the
controller from w:timeout(ID) and reaches m:release(ID), i.e., the
event that can cause a new locker to be granted read permission
before the previous holder has released it. The first transition adds
a timeout variable to the contract, which is initialized to 0. The
second transition states that a timeout for a given ID may happen
when the component is not crashed and the ID is an element of the
set of grants. It also removes the ID of the timed out Wait block
instance from the contract sets, to allow new requests even if the
release message is lost. Once the timeout event is explicit in the
contract like this, we can use it to verify the BEME property for the
Timed Mutex Distributed block.5

5 We can also verify the BEME property compositionally under ideal se-
mantics, by first verifying that Timed Mutex Local only gives two or more
grants at the same time if a timeout has happened, and then we can refer to



Note that while the EESM is constructed independently from
the ERC, the opposite is not true. The ERC is tailored to the existing
EESM, and may have to change if the EESM changes.

We skip showing the ERC of Timed Mutex Distributed. Since
each locker has a timer that effectively masks the effects of message
loss or the controller crashing, the ERC is as simple as the first row
of transitions from the ERC in Fig. 9. Not surprisingly, we find
this pattern in other blocks as well: Blocks that are built to tolerate
failures under realistic semantics have almost the same contract
under ideal semantics; the ERC only adds that tokens cannot pass
through pins of partitions that have crashed.

In principle, one can match different ERC transitions to the
same (E)ESM transition, so that the application of one ERC transi-
tion un-matches others. Because of this, we currently demand that
any ERC is expressed so as not to have conflicting aspect transi-
tions, meaning that they can be applied in any order and get the
same result. We also do not apply ERC transitions to (E)ESM tran-
sitions created by other ERC transitions, hence any such transitions
must be self-contained, like the last transition in Fig. 9 that already
includes “up[i] == 1” since this will not be added by the third ERC
transition.

As seen in the next section, realistic semantics greatly increase
the size of the state space. Having ERCs as aspects to (E)ESMs
means that we always have access to a less complex specification
with ideal semantics as well, easily trading details in the behaviour
for verifying with more component instances when needed.

5. Discussion
To evaluate the usefulness of the EESMs and ERCs in terms of
enabling compositional verification, we observed model checking
runs of different specifications. Our hypothesis is that composi-
tional verification will greatly reduce the verification effort, both
when considering only ideal semantics (EESMs) and when check-
ing with full realistic semantics (EESMs + ERCs). Table 1 gives the
number of states found and the time it took to search through them
for several variants of the Timed Mutex Distributed block and the
Timed Mutex Local block.6 The rows of the table are as follows:

TML gives the results for model checking the Timed Mutex Local
block from Fig. 6 compositionally. That is, using the contracts
of the inner blocks, Mutex and Wait, to abstract them.

TMD gives the results for model checking Timed Mutex Dis-
tributed from Fig. 2 when abstracting Timed Mutex Local by
its contract.

TMD Comp. gives the aggregate results for compositional verifi-
cation of Timed Mutex Distributed. This row is simply the sum
of the results from the two rows above it. We use these number
as a base line to compare the other numbers to.

TMD Direct represents monolithic verification and gives the re-
sults for model checking the Timed Mutex Distributed block
and the Timed Mutex Local block at the same time. Here, we
keep the EESM of Timed Mutex Local to filter out tokens
traversing the boundaries of the block. This is to demonstrate
the effect of analysing both parts at once, instead of separately.
The numbers with unit x give how many times larger the num-
ber of states or seconds is compared to the base line of TMD
Comp.
For one locker, TMD Direct has just over double the state space
of TMD Comp., and for two lockers the monolithic verifica-

whether the set of grants has had more than one element, instead of referring
directly to whether a timeout has happened.
6 We use the variant of Timed Mutex Local with the First block as that
allows to search the whole state space without encountering a deadlock.

Number of    lockers ! 1 2 3
Alternative " 

1 2 3

Ideal Semantics    
TML states 20 1 441 125 648

time 0 sec 4 sec 56 sec
TMD states 54 2 961 157 464

time 0 sec 3 sec 44 sec
TMD Comp. states 74 4 402 283 112 

time 0 sec 7 sec 100 sec
TMD Direct states 166 388 018 > 80 M

states, x T    TMD Comp 2.2 x 89 x > 282 x
time 3 sec 222 sec > 16 hours

time, x T    TMD Comp - 32 x > 576 x
TMDD NC states 8 746 > 193 M -

states, x T    TMD Comp 118 x > 44 296 x -
time 4 sec > 29 hours -

time, x T    TMD Comp - > 14 914 x -
Realistic Semanti ics   
TML states 40 5 636 500 408

time 1 sec 5 sec 359 sec
TMD states 1 152 331 776 95 551 488

time 3 sec 98 sec 64 101 sec
TMD Comp. states 1 192 337 412 96 051 896 

time 4 sec 103 sec 64 460 sec
TMD Direct states 1 920 25 970 688 -

states, x T    TMD Comp 1.6 x 77 x -
time 4 sec 27 320 sec -

time, x T    TMD Comp 1 x 123 x -

Table 1. Number of states and time to find them using TLC

tion needs 89 times the state space and takes 32 times as long
as compositional verification does. For three lockers, the differ-
ence is even greater: More than 282 times the state space and
more than 576 times the time is used for monolithic verification.
All numbers in the table prefixed by “>” are just an indication
of the lower bound, as we terminated the model checking run
at that point. Note that monolithic verification here only refers
to removing one layer of abstraction, the Timed Mutex Local
block, not replacing all blocks in Timed Mutex Distributed by
their inner contents.

TMDD NC shows the results when attempting to model check the
Timed Mutex Distributed block without any contract between it
and the contents of the Timed Mutex Local block, i.e., simply
adding the contents from the Timed Mutex Local block from
Fig. 8 into Fig. 2. In this case, we do not have the contract
of Timed Mutex Local to filter out behaviour between the part
that came from Timed Mutex Local and the part from Timed
Mutex Distributed. A comparison with the compositional case
is thus not correct from the point of view of verification: Such
a block not only needs to be verified in one run, but also
passes more tokens between its parts, increasing the number
of possible behaviours in each part. It is simply not the same
specification. Nevertheless, we include it by the row TMDD
NC (No Contract) to show the practical result of attempting
to build the Timed Mutex Distributed block in this way. The
results show that we can only model check the specification for
one locker within reasonable time.

Considering realistic semantics means considering a much bigger
state space, hence compositional verification is necessary even for
small models. To do compositional verification in this case, we



incorporate the ERCs into the contracts. The results of the model
checking are as follows:

TML When analysing under realistic semantics, the state space of
Timed Mutex Local almost quadruple for more than one locker.
This is as expected since there are two new Boolean variables,
up and timeout, to keep track of. We only track timeouts that
allow another locker to get the read permission, hence this
variable is never changed for the case with only one locker.

TMD It gets more complex for the Timed Muted Distributed block,
as it contains message channels that can drop messages. Since
it has more than one partition type and can have more than one
instance of the locker partition, there are many combinations
of crashes possible. Together with message loss, this greatly
increases the state space under realistic semantics.

TMD Direct Just like with ideal semantics, we see an increase in
the state space when model checking with both parts of the
system at once with realistic semantics. The difference is that
the numbers for the compositional verification are already much
higher under realistic semantics, so the exponential blowup due
to monolithic verification has a much greater effect in practise.
This is especially so for the time taken to search the state space,
as TLC tends to search fewer states per second for larger state
spaces.

As we can see, the number of lockers contributes to the state space
in an exponential manner, when not using any state space reduc-
tion techniques.7 Hence, it is important to keep the starting num-
bers low, so that we can verify the specifications for a large enough
number of lockers that we gain confidence in their correctness.8

This is where the benefit of our compositional approach comes in:
By analysing tightly coupled parts of the behaviour while abstract-
ing the rest, we can avoid the exponential growth in the state space
that stems from analysing too many parts of the behaviour at once.
This in turn, allows us to reach further with respect to the num-
ber of instances of the same type the model checker can handle.
To sum up, we see that compositional verification performs signif-
icantly better than monolithic verification with contracts, and that
trying to build the system without contracts most likely would lead
to a state space that is infeasible to model check at all with multiple
lockers.

6. Related Work
The idea of compositional verification of temporal logic specifica-
tions, whether it is by manual proofs [13] or model checking [7], is
not a new one. There are also several approaches that automate the
compositional verification process. However, it is not trivial how
a system is decomposed. Cobleigh et al. [9] use the L* learning
algorithm coupled with a model checker for automatic assume–
guarantee reasoning [8] about the properties of systems. They re-
port that “the vast majority” of the 2-way decompositions found
for each example system actually did not improve on monolithic
verification. In fact, their results were not very promising: Only
about half of the examples studied could be improved by assume–
guarantee reasoning, and even in these cases the gains were mostly
limited to expanding the model by one instance. However, later
studies on the topic report better results [5, 23], although the im-
provements over monolithic verification are seldom by more than

7 We present data from unoptimized specifications, as the main point is to
show the relationship between numbers of different rows.
8 Model checking cannot prove properties of general models, only the
model instances that are actually checked. Hence, there could be a number
of lockers for which the properties do not hold. The best we can do is to
check with a few instances for which most bugs will manifest themselves.

factor 4. So why are our experimental results so different? Although
these works and ours both deal with compositional verification,
they are not directly comparable: First of all, we report on a sin-
gle, albeit real, system. This is not enough to say anything precise
about the performance. Further, these works find a new assumption
for each property to verify, while we use a static contract for all
properties. While they are looking for an assumption that perfectly
abstracts the other part of the system for a given property, we take
advantage of the fact that we control the resulting implementation
and carry any extra constraints from the contracts into the actual
implementation. Also, our development method naturally leads to
tightly coupled clusters of behavioural logic with looser coupling
between them, due to the inherent goal of creating reusable build-
ing blocks.

We use UML activities to model software components. There
are other works giving UML activities a formal semantics [10, 11,
28], but these all omit contracts to enabled hierarchical activities.
As pointed out in [4], we can only expect software components to
be reused for critical systems if they come with clear instructions
on how to be correctly reused and what guarantees they give under
those conditions. UML already provides the concept of Protocol
State Machines [22] to detail how a component can communicate
with its environment. Mencl [21] proposes Port State Machines
to improve on several shortcomings of Protocol State Machines,
for example that they do no allow nesting or interleaving method
calls, nor dependencies between a provided and required interface.
His Port State Machines split method calls into atomic request
and response events to allow for nesting and interleaving method
calls, but they are restricted to pure control flow, as transition
guards are not supported. Bauer and Hennicker [3] introduce a
protocol description that is a hybrid of control flow and data state
styles. However, this approach also lacks the ability to express
dependencies between required and provided interfaces.

Like Port State Machines, our contracts have atomic inter-
face events to allow for the expression of nesting and interleaving
method calls. As they abstract both the block and its environment,
they also express the provided and required interfaces in the same
structure, hence allowing to express dependencies between them.
In addition, our EESMs combine this with data variables so that
we can more accurately express the behaviour of blocks with many
instances [26] or blocks whose behaviour is otherwise strongly data
dependent.

Sanders et al. [25] present semantic interfaces of service compo-
nents, using finite state machine notation to describe both. Seman-
tic interfaces can be used to find both complementary and imple-
menting components, hence they support compositional verifica-
tion. The main difference from our contracts is that semantic inter-
faces abstract local components that are asynchronously connected
to remote or local components, while our contracts are mainly used
internally in one process to connect sub-components, described as
activity diagrams, synchronously together.9 The fact that our con-
tracts allow encapsulation of both local components and distributed
collaborations between components, sets them apart from all the
above.

7. Concluding Remarks
While we currently either analyse a specification under completely
ideal or realistic semantics, we see an advantage in having more
fine-grained control over the execution semantics of individual
system parts. This could be achieved by extending our method and
tool with a deployment model where one could easily alter which
components and channels should have ideal or realistic semantics,

9 As seen from the Wait blocks in Fig. 6, asynchronous coupling is also
supported.



or even the ordering properties of a channel. For the scenario above,
such a tool would enable faster analysis for one failure source at
a time, but not reveal any problems caused by a combination of
failure sources.

All ERCs written for this case study have been made manually.
However, we could automate most of their construction for local
blocks, which all have the three first transitions from Fig. 9 in com-
mon. If we enable developers to tag elements of the existing model
with a �persistent� stereotype, we should be able to automati-
cally generate the restart transition as well.

ERCs are used to export reliability-related events that are not
directly visible as tokens passing through pins. It may be that other
non-functional properties of our models can be described in the
same manner, adding them as aspects to (E)ESMs. For example,
there is work to analyse security aspects of SPACE models [12],
and we can imagine a use for a concept like this to export security
aspects from inside a block to a higher level.

If we are to apply several aspect-oriented contracts to each base
contract, perhaps even created by different people, the problem of
conflicting aspects transitions is likely to increase. In such a case,
we might need to develop a conflict resolution mechanism to ensure
that there is no ambiguity in the result of the aspect weaving.

In summary, we have shown that encapsulation using our con-
tracts can reduce the state space to verify by at least factor 100 com-
pared to monolithic verification. We have introduced ERCs to allow
compositional verification also under realistic semantics. ERCs al-
low to easily switch between analysis under ideal or realistic se-
mantics. Since the state space under realistic semantics is larger
than under ideal semantics, this allows trading realistic behaviour
descriptions for larger model sizes, when convenient.
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