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Abstract. Spatial behavioral types encode information on the tempo-
spatial behavior of components acting in the physical space. That makes
it possible to utilize the well established concept of type systems with its
well studied benefits for programming languages, e.g., fast automatic de-
tection of incompatibilities and coercion, also in the cyber-physical world
of domains such as embedded systems. So, spatial behavioral types sup-
port development and better maintenance of systems leading to a reduc-
tion of errors, improvement of safety and, in consequence, lower expen-
diture. In this position paper, we summarize existing work and develop
our ideas for a spatial behavioral type concept. In particular, we turn
our attention to making the spatial behavioral types easily usable by
non-experts. Besides of a semantics that resembles traditional types sys-
tems, our method offers a syntax based on easily comprehensible regular
expressions while systems can be verified using fully-automatic tools.

1 Introduction

Most programming languages use type systems that facilitate the automatic
analysis of program code for errors. Behavioral types [3, 4] are an enhancement
of this well-known concept. In contrast to simple type systems, they do not
only model interfaces on a purely syntactical level but also take the behavior of
software into consideration (see [8]). Behavioral types support Human Factors
in two ways:

– They provide an easily comprehensible modeling language for abstract com-
ponent specifications. This can rely on formal specification mechanisms such
as regular expressions that are frequently used by non-experts.

– In the context of developing component-based software, behavioral types
provide means to specify and check component contracts that consider the
current states of a component and its environment. This makes an easy
and mostly fully automatic analysis of the conformance of a component
with its environment possible (see, e.g., [14, 32]). The checks may run in the
background of development environments or deployed systems and interact
with user-interfaces in an intuitive way.

In the approach presented here, we bring the spatial behavior of cyber-
physical components into the type system world. In domains such as the au-
tomotive industry and industrial automation, standards like ISO 26262 and IEC



61499 gain increasing popularity. Since several of these standards support a
component view, we believe that the behavioral types concept can play an im-
portant role in supporting the development, maintenance and service activities
of the components in a supportive and user-friendly way.

We continue with a summary of related work in Sect. 2. To ease the under-
standing of our approach, we introduce a motivating example in Sect. 3 followed
by a description of the core concepts of the behavioral types in Sect. 4. There-
after, we discuss the particular properties of the spatial behavioral types in
Sect. 5. The text is completed by some concluding remarks.

2 Existing Approaches

Different behavioral type-like approaches to specify interfaces of component sys-
tems and reason about these specifications have been proposed in the past. The
current state-of-the-art, however, focusses almost exclusively on software aspects.

Interface automata [3] are one form of behavioral types. Component descrip-
tions are based on timed automata. The focus of interface automata is on com-
munication protocols between components. Interface automata do not target all
type relevant aspects discussed in this paper, e.g., physical and spatial aspects
or the checking the behavior at runtime of a component by using some form of
monitoring. The main focus is an compatibility checks of software components
interacting at compile time. Behavioral types are part of the Ptolemy frame-
work [35]. Here, one focus is on the software part of real-time systems such as
execution time of code.

The idea of having well defined specifications defining interfaces of software
component systems has been made popular by design-by-contract [36] like ap-
proaches during the late 80s and early 90s. The focus of the classical approach
is on contracts for object oriented systems. Other work that is related to our
behavioral types comprises specification and contract languages for component
based systems that have been studied in the context of web services. For ex-
ample, the approach presented in [2] comprises request and response operations
as a means for specifying behavior. Process algebra-like approaches including
deductive techniques are presented for web services [18, 20]. In [18], emphasis of
the formalism is put on compliance, a correctness guaranty for properties like
deadlock and livelock freedom. Another algebraic approach to service composi-
tion is described in [23]. Means restricting the interface behavior of OSGi for
facilitating analysis are featured in [16].

A variant is used in the model-based system engineering technique SPACE [34]
and its tool-set Reactive Blocks. Using UML activities, systems are modeled by
composing descriptions of subfunctions that are arranged in so-called building
blocks. A building block is provided by an External State Machine (ESM) [32]
that is a UML state machine describing the interface behavior of the building
block. Due to formal semantics of the UML activities and state machines [33],
one can verify by model checking at design time that a building block complies
with both its own ESM and those of the blocks it incorporates in its behavioral



description. The approach has already been used in the context of cyber-physical
systems [27, 30].

JML [22] can be applied to specify pre- and postconditions for Java programs.
Although not a type system, it can be utilized to specify aspects of behavior for
Java based systems. In addition, assertion like behavioral specifications have
been studied for access permissions [21]. Behavioral types comprising behavioral
checks at runtime for component based systems were proposed in [4]. The fo-
cus is on the definition of a suitable formal representation expressing types and
investigating their methodical application in the context of a model-based devel-
opment process. A language for behavioral specification of software components,
in particular of object oriented systems, is introduced in [31]. Compared to the
more requirement-based descriptions proposed in our paper, the specifications
used in [31] are still relatively close to an implementation. Additional work on
refinement of automata based specifications is studied in [38]. A survey with a
focus on pre-/postcondition and invariant-based annotations for programming
languages can be found in [28].

The runtime verification community has developed frameworks which can be
used to generate monitors checking behavioral type conformance at runtime in
order to detect and report type violations. The MOP framework [37] provides
the integration of specifications into Java source code files and generates AspectJ
aspects realizing runtime monitoring. A framework that regards the trade-off be-
tween checking specifications at runtime and at development time is provided in
[17]. The framework described in [6] facilitates also the generation of Java moni-
tors but leaves the instrumentation aspect, i.e., the connection of the monitor to
the deployed system, to the implementation. Other topics explored in this con-
text comprise the efficiency and expressiveness of monitoring [5, 7]. Monitoring
of performance and availability attributes of Java/OSGi-based systems has been
studied in [41]. A focus is on the dynamic reconfiguration ability of OSGi. Work
building on the .Net framework for runtime monitor integration is described in
[26]. Runtime monitors for interface specifications of web-service in the context
of a concrete e-commerce service are described in [25]. Behavioral conformance
of web-services and corresponding runtime verification were investigated in [19].
Furthermore, in [24] runtime monitoring of web-services is studied, in which run-
time monitors are derived from UML diagrams. Runtime enforcement of safety
properties is especially important in the context of cyber-physical systems, since
a deviation is not only reported, but a countermeasure is provided. In [39], se-
curity automata are used enforce security properties. These automata are able
to halt the underlying program when a deviation from the expected behaviors is
detected. A similar approach to protect software components against malicious
behavior, is provided in [29]. Behavioral types-based runtime monitoring for in-
dustrial automation is also studied in [44], where the abstract behavioral types
specification yields a monitor that runs directly on PLC.

Tangible user interfaces [40] provide a good way of exemplifying underly-
ing principles of cyber-physical behavioral types. Here, each component in the
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Fig. 1. Behavioral types for a robot

interface may bear cyber-physical characteristics and can be described with a
behavioral specification, e.g., using a domain specific language.

3 Motivating Example

Figure 1 shows the interaction of a robot with a vehicle. Both components may
change their positions, directions and orientations over time. We can represent
the spatial attributes of a component as subtypes of its spatial behavioral type.
For instance, the position of the vehicle at a certain point of time can be ex-
pressed by the space it physically occupies. The space may be represented by
coordinates in a geometric coordinate system stored in the behavioral type. Us-
ing theses subtypes, one can verify spatial properties, e.g., two components do
not collide if their physically occupied spaces never overlap at any point of time.

Cyber-physical components can be made up of other components. For ex-
ample, the robot consists of three segments and a tool that are attached via
joint devices. Each subcomponent has its own spatial behavior that can be rep-
resented by a separate spatial behavioral type. The type encodes the movement
of its sub-component which depends on the spatial behavior of the attached
devices. Similar subcomponents like the lower two segments of the robot may
be represented by the same types. The two type instances relate to different
attached segments which leads to different positions and orientations.

The picture on the right side of Fig. 1 depicts the composition of the behav-
ioral types of the three segments and the tool to a single type that superimposes
the spatial movements of the subcomponents and represents the spatial behav-
ior of the overall robot. The composition makes it easier to check if the spatial
behaviors of the robot and vehicle are compatible, e.g., that the vehicle is in a
certain distance when the robot loads something onto it.

The concept facilitates also the reconstruction of cyber-physical components.
For instance, when a segment of the robot is replaced by another one, only its
local behavioral type has to be exchanged. If the type of the replacing component
is a refinement of the one of the replaced component, one can assure certain



spatial properties without demanding a new proof. E.g., if we could prove that
a certain vehicle cannot collide with the robot since it never passes an area
reachable by the robot arm, this property will also hold if a robot segment is
replaced by a shorter one.

4 Core Concepts of Behavioral Types

We present some core concepts on behavioral types to support a development
process of component based systems. To ease their application for users familiar
with traditional type systems, (spatial) behavioral types should provide a number
of features [14]:

– Abstraction Behavioral types represent aspects of programs, components,
or systems. They provide an abstraction from details concerning interaction
with their environment as well as their internal structure [14]. For example,
the driver of a physical component may require that the interaction with
its environment follows a particular protocol that may form a part of the
abstract view of the component provided by its behavioral type. According
to the classification in [8], abstraction is a typical example of behavioral
contracts that one can find, e.g., in UML and programming languages like
Eiffel. It is also alike to the ESMs used in SPACE and Reactive Blocks [32]
(see Sect. 2).

– Type conformance: Type conformance is used to relate a component to
its own behavioral type. For instance, one can check whether a component
interacting with its environment obeys the protocol listed in its behavioral
type under all circumstances. These proofs can be taken at development time
of a system, during changes of its component structure, or at runtime. Type
conformance resembles classical static type checks performed by compilers
of imperative programming languages.

– Type refinement: Behavioral types should support stepwise refinement,
i.e., developing systems by making their models gradually more detailed
using correctness preserving steps [1]. Thus, they have to be based on a
formal semantics that allows to ensure the correct implementation of abstract
specifications by concrete components [14]. This is quite similar to inheritance
in object-oriented programming languages in which, as long as a program
is developed “top-down”, first more abstract functionality is created using
super classes, while later on the functionality is refined by applying inherited
classes.

– Type compatibility: To facilitate the composition of components to sys-
tems, one has to check whether a component fulfills not only its one behav-
ioral type but also those of its environment in order to guarantee that the
components interact with each other in the desired way. This can be investi-
gated at development time and at runtime when dynamically reconfiguring a
system. The development time-based analysis is alike static type checks while
the dynamic tests resemble introspection in component-structured software
(see [43]) as well as runtime monitoring.



– Type inference: As shown in the example description, subsystems can
consist of various components. Often, type compatibility proofs can be easier
if a subsystem is represented by a single behavioral type. Therefore, the
formalism of behavioral types should allow to infer the type of a composed
component from the types of its constituents [14]. Type inference corresponds
to combining various software components to more comprehensive blocks
resp. the composition of various building blocks to more extensive ones in
Reactive Blocks [34].

To fulfill all these properties, the selected formalism has to take certain depen-
dencies into consideration. For instance, type conformance has to guarantee with
respect to type refinement that for a pair of components A and Â conforming
to a pair of behavioral types TA and TÂ with A subsuming the behavior of Â,
TÂ should be a refinement of TA. Moreover, type refinement, type compatibility
and type inference should agree that if a type TA compatible to a given type TB
is refined by another type TÂ, also TÂ should be compatible to TB by definition.
Similarly, if in a composed type TS one type TA is replaced by a refined type
TÂ leading to a new composed type TŜ , then TŜ should be a refinement of TS .
Also, for application in a development process, a behavioral type should not
only be explicitly provided for a component and checked for conformance, but
may be specifically constructed for this component. This is desirable in a seam-
less model-based development process. Finally, as type checking of expressive
behavioral types is in general undecidable, an adequate level of expressiveness is
needed making type checking feasible without over-restricting the expressiveness
of the behavioral types.

We have studied behavioral types in the context of the OSGi framework
[10–13]. Here, we use a simple finite automaton model (Σ,L, l0, E) that consists
of an alphabet Σ of labels, a set L of locations, an initial location l0 and a
set E of transitions. A transition is a tuple (l, σ, l′) with l, l′ ∈ L and σ ∈ Σ.
This formalism allows, e.g., runtime checking of type conformance [9]. Further,
it is suitable to theorem proving as discussed in [14]. Nevertheless, the concept of
behavioral types is suited to a diversity of formalisms. For instance, we currently
experiment with temporal logic for cyber-physical systems (see [42]).

Behavioral types can be used for runtime-verification of systems, supplying a
monitor being executed in parallel with a system implementation. The monitor
corresponds to a behavioral type and checks all behavioral constraints specified
via the type. It observes the system behavior and reports violations. The gener-
ation of the monitors from behavioral types can be performed automatically.

Furthermore, as already mentioned, the use of behavioral types facilitates the
dynamic reconfiguration of systems based on type information and the discovery
(both at runtime and development time) of components in a SOA like setting.

5 Spatial Behavioral Types

Spatial behavioral types extend the notion of behavioral types to cyber-physical
components. Such components can comprise physical structures like the arms



and tools attached to a robot as shown in the introductory example. Further-
more, controllers, network infrastructure elements, sensors and actuators are
good candidates for spatial behavioral types.

Like purely software-related behavioral types, the spatial types comprise gen-
eral aspects, e.g., protocols defining the interaction of a component with its
environment. In addition, they define specific spatial aspects like the physical
occupation of a physical components as well as its position, direction and speed.
Depending on the application domain, further aspects as the acceleration of an
object can be added. The representation of the spatial behavior is usually quite
simple since we can restrict ourselves to describe positions by coordinates in the
x, y and z axes in the Euclidian space.

An advantage of this proceeding is that, similar to software components,
we do not need to model a physical unit with its full complexity from scratch.
Instead, we can start with relatively abstract spatial behavioral types that are
stepwise refined to more complex ones until we finally get one that considers all
relevant spatial properties of the real component. This facilitates the handling
of complexity in the development process vastly. Moreover, we can verify crucial
spatial type compatibility properties, e.g., freedom of collisions or keeping a
certain distance between the robot tool and the vehicle when a good is loaded
or unloaded, based on the abstract models.

Of course, we have to guarantee that these proofs stay valid also for the
refined models. For that, we use over- and underapproximation of physical prop-
erties. For example, in abstract models of a component, we can overapproximate
the spatial area occupied by a component. That allows us to perform type com-
patibility proofs already with the coarse-grained models that will also hold for
more detailed ones as long as the refined models do not exceed the overapprox-
imated elongation of the original ones. An example for underapproximation is
the assumption of low sensor ranges in abstract models. Thus, we can refine the
sensor models reusing proofs for the original ones as long as their ranges is not
shorter than those of the refinements.

Behavioral types are applicable for the specification of software controlled
cyber-physical entities. Furthermore, they can be used to describe other enti-
ties such as overapproximations of human behavior, or elements in an environ-
ment where a cyber-physical system is deployed. Such elements can comprise
static descriptions of obstacles such as walls and pillars in closed spaces or open-
environment features such as lakes and mountains or infrastructures such as
roads or rail-lines.

6 Conclusion

We motivated spatial behavioral types as an advanced concept for type systems.
In the context of component-based system development, spatial behavioral types
lift type systems to the component level also taking behavior of the underlying
component into account. Thereby, they provide user-friendly means to specify
and check contracts since easily comprehensible syntactical constructs are used,



the core features of the method resemble techniques well-known from program-
ming languages resp. component-based development, and the verification tools
work automatically. In the past, realization of behavioral type systems for soft-
ware was studied. In this publication, we propose the use of these type concepts
also for components that comprise physical aspects which can be expressed using
the concepts of Euclidian geometry.

Currently, we integrate spatial behavioral types into the model-based engi-
neering technique SPACE [34] in order to facilitate the design of controllers for
cyber-physical systems. Moreover, we work on the combination of spatial be-
havioral types with the verification tool-suite BeSpaceD [15] such that a highly
automatic analysis of spatiotemporal properties will be possible. This will ease
the application of the behavioral types for cyber-physical components further.
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