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Abstract. The use of standard IT equipment to control machines is be-
coming increasingly popular mostly due to lower costs. Further, trends
and initiatives such as Industry 4.0 and smart factories accelerate the
use of standard IT components by demanding interconnected controllers
and factory equipment communicating with internet services. This devel-
opment offers new possibilities to use existing software frameworks and
software architectural approaches as well as development standards in
industrial automation. The formal methods-based support that already
exists for standard IT platforms can now be applied to industrial control
devices as well. In this paper, we look into the application of our Reac-
tive Blocks framework for industrial automation. Reactive Blocks comes
with a well established semantics and verification approaches tied to it.
We demonstrate the advantages of our methodology with an example.

1 Introduction

Industrial automation devices have traditionally been programmed by engineers
using standards such as IEC 61131–3 [20] and its derivatives. We see, however,
novel trends according to which this well established procedure will change in
the near future. One trend is the recent convergence of PC hardware and Pro-
grammable Logic Controllers (PLC) with respect to software development. In the
past, industrial automation devices mostly relied on techniques and standards
that where developed independently from PC hardware and IT technologies.
Examples include the IEC 61131 standard for PLC and PROFIBUS [2] on the
network technology side. In recent years, some PLC vendors started to inte-
grate standard PC processors. Moreover, smart single-board computers like the
Raspberry Pi [38] came into the market which offer operating systems close to
those of ordinary PCs. These boards are cheap but powerful enough to carry
out control functions. For instance, we use Raspberry Pi-based devices to drive
a bottling plant deployed in the RMIT’s advanced manufacturing precinct [16].
On the network technology side, the Ethernet has gained entry into the world
of industrial automation.

Another trend is the growing interconnectivity of controllers. PLCs are now
communicating with each other and with other external devices and services, not
just for synchronization and basic control via the Supervisory Control and Data



Acquisition (SCADA) level, but also to support maintenance and new produc-
tion processes making a higher degree of customization possible. The growing
interconnectivity also allows for the integration with more traditional IT sys-
tems as well as for the utilization of novel technologies like cloud computing. For
example, services analyzing data streams to determine maintenance intervals are
already in place (see, e.g., ABB ServicePort [7]). Initiatives like Industry 4.0 [21]
foster these trends as they propose interconnected plants run by controllers co-
ordinating itself using internet-based services.

In our opinion, these trends in industrial automation will have growing rel-
evance also with respect to the application of human-oriented formal methods.
In particular, based on the more extended use of standard IT and PC tech-
nology, development paradigms from software engineering and computer science
can be applied in this area. This includes the use of model-based development as
well as formal specification and verification technologies. Since many technically-
oriented engineers have no in-depth experience with the application of the for-
mal methods used in software development, we have to find a way lessening the
burden of applying the formalisms in practice. One promising idea is Rushby’s
concept of “Disappearing Formal Methods” [33] that proposes to wrap formal
techniques into tools in a way making them easy to use.

Our model-based engineering technique Reactive Blocks [26] supports Rush-
by’s concept. In this article, we propose its use for the development of control
software in industrial automation. We introduce Reactive Blocks in Sec. 2 argu-
ing that it incorporates characteristics that fit well into the industrial automation
domain. In Sec. 3, we clarify the use of this technique by means of a toy example
which, however, is sufficient to show some of the mentioned advantages. The
paper is completed by a section discussing related work as well as a conclusion.

2 Reactive Blocks in Industrial Automation

Reactive Blocks [3, 26] is a model-driven engineering technique for reactive Java-
based systems. One of its features is that sub-functionality can be specified sep-
arately from each other in so-called building blocks. That enables us to create
models of recurring sub-functionality once and to reuse them in several engineer-
ing projects. The reuse is further facilitated by providing each building block with
an External State Machine (ESM) [23]. This is a behavioral interface allowing
us to combine a building block correctly with its environment without having to
completely understand its functionality.

The behavior of a building block is specified using UML activities [30]. An
example of such a UML activity is depicted in Fig. 1. It contains three inner
building blocks of type Button, Toggle and LEDoperation that all embed certain
sub-functionality used3. The semantics of activities resembles Petri nets and
corresponds to the flow of tokens via the edges towards the nodes. In this way,
control and data flows are nicely visualized and can also be animated by the

3 The content of the building block LEDoperation will be sketched in Sec. 3.



Fig. 1. The UML activity of building block ManageLEDoperation.

tool-set. Further, activities may contain operations that represent Java methods
executed when a token passes the corresponding node. The flows are run-to-
completion. That means, a flow passes all nodes on its way in the same atomic
step until it reaches one that models the need to wait for a certain stimulus (e.g.,
a timeout or an external event).

To connect the flows of an activity containing an inner block and the one
specifying the behavior of this block, we use so-called parameter nodes and pins.
Parameter nodes are the little arrows at the outer edge of the activity. In the
node representing an inner building block in an activity, the parameter nodes are
shown as pins. For instance, the pins of the inner building block LEDoperation
in Fig. 1 are identical to the parameter nodes in its activity (see Fig. 3). A
flow reaching a pin of an inner building block will continue in the activity of
this block from the corresponding parameter node and vice versa in the same
run-to-completion step.

We provided the UML activities and state machines with formal seman-
tics [24]. This allowed us to build a model checker into the tool-set [26] enabling
the verification that the UML models fulfill various correctness properties (e.g.,
the preservation of ESMs by the activities and deadlock freedom). Following the
“Disappearing Formal Methods” concept [33] mentioned in the introduction,
the formal issues of the verification process are hidden to the user of the tool,
while traces towards erroneous states are animated directly on the UML activity
graphs. The verification runs scale thanks to the separation of functionality into
different building blocks. Moreover, the formal semantics was used to verify that
the automatic transformation of the models into executable Java code [25] is
correct (see [22]).



Fig. 2. Raspberry Pi-based toy example.

In our opinion, the features of Reactive Blocks makes it highly suited for
the development of control software in industrial automation. For instance, the
building block concept fits well to the technical engineering disciplines, in which
the same physical components are often used in different applications. So, when
a particular pump or valve is reused in a certain chemical plant, the building
blocks realizing the control of this component may be reused in the software
model of the plant as well.

Also the fact that the UML activities visualize control and data flows, is
helpful for the industrial automation domain since a typical property of control
software is the large number of threads running in parallel. While the coordina-
tion of the threads is difficult in classical programming languages, the run-to-
completion semantics together with the clearly arranged modelling of the control
and data flows facilitates the coordination of the various threads significantly.

Applying the built-in model checker leads to less errors in the generated
control software. Moreover, one can couple Reactive Blocks with other analysis
tools. Of particular interest for industrial automation is the composition of the
tool-set with BeSpaceD [5], a tool suited to verify spatiotemporal properties
(see [14, 17]). That allows us to check already on the modelling level that control
software guarantees certain cyber-physical properties [19]. BeSpaceD was already
used for decision support allowing to guide humans in taking high-level decisions,
e.g., treating system fires (see [6]).

Another advantage of the building blocks and the ESMs is that the develop-
ment of sub-functionality by various teams of experts can be nicely coordinated
by embedding the sub-tasks in separate building blocks. Furthermore, the rich
set of building block libraries supports the development of technical systems.
For instance, the tool-set contains libraries containing various communication



Fig. 3. The UML activity of building block LEDoperation.

protocols as well as blocks supporting the design of Internet of Things applica-
tions [3] that play an important role in industrial automation. We show in Sec. 3
that building blocks for control and for communication can be easily combined
(see also [15]). This fits nicely with the goals of Industry 4.0 [21].

3 Example

To exemplify our approach, we use a Raspberry Pi equipped with a Berry Clip
(see Fig. 2). A Berry Clip is a board provided with six colored LEDs, a buzzer,
and a switch. In our toy example, a lucent LED represents a certain production
sub-process and, to determine the strain of the “plant”, the number of changes
between the LEDs shall be sent periodically to a remote control center.

We developed the control and communication software for the example by
creating three building blocks in Reactive Blocks. Figure 3 depicts the UML
activity describing the behavior of the building block LEDoperation that realizes
the operation of the LEDs on the Berry Clip. The inner block of type LEDs
contains the functionality to switch on and off the LEDs of the Berry Clip while
TimerPeriodic realizes a recurring timer that sends flows in even intervals (three
seconds in our example).



Fig. 4. The ESM of building block LEDoperation.

The ESM of building block LEDoperation is shown in Fig. 4. The block is
started by a flow through parameter node start which is forwarded to the pin of
the same name at the inner block LEDs. Thereafter, the ESM is in state passive.
In this state, a flow through the parameter nodes callCounter and counter is
allowed that can be used to retrieve the number of LED changes that are stored
in the variable counter.

The lighting of the LEDs is started by a flow through the parameter node
on bringing the ESM into state active. As shown in the activity, the flow starts
the periodic timer. A timeout leads to a flow through pin tick of block Timer-
Periodic. This flow is forked into two flows. One flow retrieves the value of the
LED currently switched on, that is stored in variable active, and forwards it to
pin setOff of building block LEDs. Thus, the currently lucent LED is switched
off. The other flow reaches a flow breaker. That is a special timer without a
dedicated duration used to separate a flow into different run-to-completion steps
(see [24]). In our case, we use the flow breaker since the ESM of block LEDs
does not accept flows through its pins setOff and setOn in the same run-to-
completion step. The flow leaving the flow breaker reaches operation handleStep
that represents a Java method determining the next LED to switch on, sets the
selected value in variable active and increments the counter. After terminating
the method, the flow forwards to pin setOn of building block LEDs such that
the selected LED is switched on. A flow through parameter node off stops the
lighting of the LEDs by terminating the periodic timer and switching all LEDs
off. The building block can be terminated by a flow passing the parameter nodes
stop and stopped.

Figure 1 shows the building block ManageLEDoperation modeling that the
LEDs can be switched on and off by pushing the button of the Berry Clip.
Here, LEDoperation is represented by an inner building block. Further, we use
building block Button handling the access to the button of the Berry Clip and
Toggle that allows us to lead button pushes mutually to the on and off pins of
LEDoperation.



Fig. 5. The UML activity of building block SendStatus.

The transmission of the number of LED changes is realized by building block
SendStatus depicted in Fig. 5. We use the popular MQTT protocol [29], the func-
tionality of which is handled by the inner block RobustMQTT. Further, Send-
Status uses another periodic timer initiating a transmission every 30 seconds. A
timeout leads to a retrieval of the current counter value by a flow through pa-
rameter node callCounter. The value is received via parameter node counter

that is forwarded to operation makeMessage. The corresponding Java method
creates an object containing the MQTT message format that is forwarded to the
pin publish of block RobustMQTT triggering the transmission of the counter
value. Moreover, the building block contains the inner block Buzzer that is used
to give a short audio signal using the buzzer of the Berry Clip in order to show
that the status value was sent.

The activity of the overall system model is shown in Fig. 6. It consists of in-
stances of building blocks ManageLEDoperation and SendStatus, initial triggers
for these blocks, and edges connecting them to retrieve the value of the counter
for the LED changes. We automatically transformed this system description into
a runnable JAR file that can be directly executed on the Raspberry Pi. More-
over, we created another simple system model enabling us to receive and print
out MQTT messages at a remote control station.



Fig. 6. The UML activity of the system.

The toy example substantiates two of the advantages named in Sec. 2. One is
reusability. The complex functionality, i.e., the activation of the various units of
the Berry Clip as well as the transmission via MQTT had not to be programmed
manually but could be reused by simply adding already existing building blocks.
Thus, the only creative task was the link of the various building blocks. Therefore
the models for the Berry Clip controller and the remote station could be created
by one of the authors within less than an hour. The undertaking was supported
by the model checker built into Reactive Blocks since we could easily find out if
all the blocks were indeed correctly coupled preserving their ESMs.

The other advantage affirmed by the example is the coordination of develop-
ment teams since one can hand the creation of the building blocks LEDoperation
and ManageLEDoperation over to a team of control software experts and Send-
Status to people with in-depth knowledge about communication. Also here the
model checker is of great help since it guarantees that the teams realize the
ESM-based behavioral interface descriptions of the particular blocks correctly
such that the results of their work can be seamlessly coupled.

4 Related Work

Formal specification of Programmable Logic Controllers (PLC) is not new but
most work is based on PLC specific programming and specification techniques
(see, e.g., [32, 37]). Summaries of earlier approaches to use formal methods for
the specification and verification of PLC programs is given in [1, 11].

A popular application of formal methods in industrial engineering is haz-
ard analysis of technical systems. The well-established “Hazard and Operability
Studies” approach (HazOp) [28] is supplemented by formal approaches in order
to verify safety properties using qualitative equation models [9, 41], Petri net
models [35], and temporal logic [31]. A more general approach to specify and
verify safety properties supporting the hazard analysis of chemical plants was
developed by ourselves [18] based on a derivative of Lamport’s Temporal Logic
of Actions (TLA) [27]. There, somehow similar to Reactive Blocks, one models
hybrid systems by composing existing framework modules. We further defined



and verified a set of lemmata for each framework module that facilitate safety
property proofs significantly since they can be directly used as proof steps.

One of the main disadvantages of the IEC standard 61131 [20] is that it leaves
some implementation and semantics aspects open to the PLC vendors. This
makes formal specification and verification work difficult, but it also hinders cross
platform development efforts. Some approaches such as the UNICOS toolset [12]
were developed to address these shortcomings. A comprehensive model checking
approach for IEC 61131–3 programs in connection with UNICOS can be found
in [10]. A transformation from UML into IEC 61131 has been studied in [39].
In [13], UML is used to model control software and analysis patterns together
with TLA to verify their correctness. We established Coq descriptions of IEC
61131–3 programs (see [4]) to facilitate human directed verification of PLC pro-
grams (see also [8]). Moreover, we studied the runtime monitoring of IEC 61499-
based programs based on formal properties (regular expression-based) in [42].
Another formal approach based on IEC 61499 was proposed in [40]. Formal
methods are also used to analyze Ethernet-based real-time communication [36].

While the application of human-oriented formal methods is new in industrial
automation, the necessity for user friendly approaches is seen for the adjacent
area of cyber-physical systems. For instance, [34] discusses suitable ways to ease
the formal specification and verification of such systems.

5 Conclusion

In this paper, we motivated that systems bridging control automation with the
classical IT world will become more mainstream in the close future. That opens
the door for the application of model-based and formal methods in this appli-
cation domain as well. In particular, we propose the use of Reactive Blocks for
control applications in the industrial automation domain. We believe that, due
to the easy use of the UML diagrams for modeling and the model checker for
analysis, it facilitates the application of formal methods in the practical devel-
opment of control system software also by users that are not experts in formal
techniques. We exemplified our approach by discussing the development of a
small Raspberry Pi-based system that, in spite of its size, is sufficient to point
out some of the expected advantages.
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