
STATE-BASED SECURITY POLICY

ENFORCEMENT IN COMPONENT-

BASED E-COMMERCE APPLICATIONS

Peter Herrmann, Lars Wiebusch, and Heiko Krumm
Universität Dortmund, FB Informatik, LS IV, 44221 Dortmund, Germany

Peter.Herrmann@cs.uni-dortmund.de, lars-wiebusch@web.de, krumm@cs.uni-dortmund.de

Abstract Software component technology supports the cost-effective development
of e-commerce applications but also introduces special security prob-
lems. In particular, a malicious component is a threat to any applica-
tion incorporating it. Therefore wrappers are of interest which control
the behavior of components at run-time and enforce the application’s
security policies. The wrapper of a component monitors the component
behavior at its interfaces and checks its compliance with the security
behavior constraints of the component’s employment contract. We pro-
pose state-based security policy definitions, report on their suitable de-
sign, and clarify their employment by means of a component-structured
e-procurement application.

Keywords: Security policy enforcement, component security, security wrappers.

1. Introduction

The approach of component-structured software envisages applica-
tions composed from cost-effective components. The components are
supplied by different developers and are offered to a growing commu-
nity of customers on an open market (cf. Szyperski, 1997). By selection,
configuration, and customization of components powerful applications
can be built which are tailored to the special needs of single customers.
The benefits of the component approach, however, are accompanied by a
series of technical problems. The architecture of component-structured
application systems really extends the conception of distributed object-
based applications. In particular, it imposes new security aspects since
it introduces new principals and roles. In addition to users and appli-
cation system owners, also component vendors and host providers have
to be considered. On the one hand they introduce their own security

1



2

objectives. On the other hand, they introduce new types of threats
since in general the different principals cannot trust each other to full
extent. Considering that enterprises are increasingly dependent on their
information systems, the security of the applications is of growing impor-
tance. Therefore approaches are of interest which support the security
of those component-structured application systems incorporating code
obtained from not necessarily fully trusted sources.

Of course, the composition of applications from various components
causes not only security problems. Among other properties, in particular
it is essential for the functionality of an application that each compo-
nent acts in accordance with its specifications. Therefore the approach
of software components refers to the employment of explicit contracts.
Each component integration shall be accompanied by a contract which
is legally binding and describes agreed properties of a component and, in
particular, its interface. According to Beugnard et al., 1999, a contract
consists of four parts specifying the structure of a component interface
(i.e., methods, input and output parameters, exceptions), the desired be-
havior of the component and its environment, synchronization aspects,
and quantitative quality-of-service properties.

Our overall approach is also based on contracts. A component con-
tract has to contain a description of the security-relevant behavior with
which the component’s execution is assumed to correspond:

At design time, the structure of the system is analyzed in combi-
nation with the behavior descriptions of its components in order to
prove that required security properties of the system hold if each
component will act in accordance with its contract.

At run-time, the consideration can focus on the components. For
each component it is of interest that its actual behavior in fact is
conformable with its contract.

We assume that malicious components or compromised code (e.g., by
virus or Trojan horse infection) will result in behaviors which diverge
from the descriptions of the contract. Therefore the component behav-
ior is controlled at run-time by means of wrappers. A wrapper monitors
the interfaces of a component. It detects the interface events and checks
their compliance with the security behavior constraints of the compo-
nent’s employment contract. In case of policy violations components are
blocked and the application administrators are notified.

The approach is introduced in Herrmann and Krumm, 2001, which
reports on the architecture and management of wrappers. Moreover, it
describes how enforcement functions for state-based policy definitions
are provided in wrappers and outlines a corresponding Java Bean imple-



State-Based Security Policy Enforcement in E-Commerce Applications 3

mentation. Since detailed control functions can cause substantial over-
head, furthermore trust adaptation is introduced. The control functions
of a wrapper are dynamically adapted to that level of trust, the com-
ponent currently has in the eyes of the application owner. Additionally,
Herrmann, 2001, concentrates on the trust management aspects of our
approach describing a suitable information system infrastructure and its
support for component procurement decisions.

In the sequel we will report on application-oriented aspects of run-time
component security policy enforcement. From an application owner’s
point of view the security policy of a component shall help to discrim-
inate between desired and malicious component behavior in order to
expose compromised components threatening the application and the
assets managed by it. In principle, this objective is best supported if the
policies specify the desired behavior of the component in detail. Then,
however, the policy implementation in the wrappers would have the char-
acter of reference implementations and the efforts for the development
of the policies and their implementations would be comparable to com-
ponent development. This aspect as well as performance issues plead for
the employment of more abstract policies. Therefore policies are of inter-
est which can be defined under abstraction from the detailed component
behavior and which concentrate on the essential application contribu-
tions of the component. Additionally, we consider that the design of
suitable policies is strongly related to the vulnerabilities of the applica-
tion and that the vulnerabilities depend on the application’s component
architecture as well as on its application functions. Dealing with these
requirements we analyze an example application, recognize the general
suitability of state-based policies, and identify helpful policy conceptions
and patterns.

In more detail, we specify state-based policies by state transition sys-
tems and apply the temporal logic specification language cTLA (Her-
rmann and Krumm, 2000a) for the modular definition of behavior con-
straints. The example application is a typical e-business application. We
study a component-structured application which supports a traditional
shop and which emerges to an e-business application of type business-
to-business by integration of e-procurement components.

2. Related Work

The security problems of the integration of non-trusted components
are related with security of migrating code. With respect to that various
approaches were recently developed in order to protect host computers
against attacks by mobile programs. The methods mainly focus on con-



4

trol flow safety, memory safety, and stack safety (cf. Kozen, 1999). Be-
sides of isolating security-critical operations in a protected system kernel
(e.g. Bershad et al., 1995) and using cryptography for the transit of code,
code instrumentation gained attraction in the last years. Here, machine
code is altered in a way that critical operations can be analyzed before
or monitored during the execution of the code in order to detect attacks.
An example is software fault isolation (e.g., Wabbe et al., 1993) where
non-trusted code is executed and monitored in a safe system part where
it cannot cause damage.

Another code instrumentation-based approach is pursued by Schnei-
der, 1997, who models policies formally by so-called security automata.
Moreover, a security automaton can be used to enforce a policy by sim-
ulating it simultaneously to the execution of the code. The code is only
permitted to perform an execution step if that corresponds to a tran-
sition of the automaton. The automata based enforcement extends the
early approach of state dependent security specifications (cf. Biskup and
Eckert, 1994).

Language based security is another kind of code instrumentation.
Here, special security-related information about migrating code is ob-
tained during parsing or other program analysis’. The user utilizes this
information in order to check the code for compliance with his security
policies. An example is the Java byte code verifier which proves Java
byte code for type correctness and other security-related properties. An-
other method is proof carrying code (cf. Kozen, 1999) which enables
formal program verification. The program developer annotates the code
with a formal specification (e.g., pre- and postconditions of functions or
loop invariants) and hands this information over to the user who proves
the code formally. Examples for utilizing proof carrying code are the
touchstone compiler (Necula, 1998) and the efficient code certification
(Kozen, 1998). Moreover, this method was used for more specialized
verification purposes as type checking (Morrisett et al., 1998; Tarditi
et al., 1996) and information flow analysis (Ferrari et al., 1997; Myers
and Liskov, 1998).

Since the information used for code verification is produced by the
code developer, it may be distorted in order to mask malicious code.
Thus, one has to check that the program complies to the additional in-
formation used for verification. Here, the concept of generic software
wrappers proves helpful. In this approach a program is extended by a
software checking the code execution during runtime for security proper-
ties. Generic software wrappers are used with firewalls and intrusion de-
tection (Avolio and Ranum, 1994; Goldberg et al., 1996; Monroe, 1993).



State-Based Security Policy Enforcement in E-Commerce Applications 5

Bean

to be

checked

Adapter

Observer Monitor

Adapter Generator

Java

Security

Manager

Trust

Manager

Introspects

Bean
Generates

Reports

Events

Reports

Controls

Controls

Controls

Intensity

of Checks

Watches

Reports

Reports

Controls

Figure 1. Security Wrapper Architecture

Moreover they can also be applied for protecting component-structured
software from malicious system calls (Fraser et al., 1999).

As our approach, Khan et al., 2001, extend component contracts by
security aspects. Unlike us, however, they concentrate on the modeling
of requirement-assurance relationships between components. The model
has a relatively simple structure and does not represent behavioral prop-
erties. Thus, it cannot deal with detailed enforcement policies.

3. Security Wrapper Architecture

Security wrappers (Herrmann and Krumm, 2001) are a useful means
to enforce security policies in component-structured software. The in-
terface behavior of non-trusted components is observed and checked for
compliance with the security objectives described in the component con-
tract. Figure 1 depicts a wrapper implementation (Mallek, 2000) for
component-structured systems based on Java Beans. The system con-
sists of adapters, observers, an adapter generator, a monitor, the built-in
Java Security Manager, and a trust manager. Each scrutinized bean is
wrapped by an adapter component discerning all events passing the bean
interface. Moreover, the adapter may seal the bean by blocking all events
if the bean is regarded malicious.

The compliance checks are performed by observer components. An
observer simulates a formal specification modeling a security objective
defined in the contract of the bean in question. If an adapter discerns
an interface event, it blocks the event temporarily and notifies the ob-
servers which check if the event is in compliance with the specifications.



6

If all observers accept the event, it is released and forwarded by the
adapter. Otherwise, the application administrator is notified and the
adapter blocks the bean.

Adapters are created automatically by the adapter generator which
utilizes the Java inspection mechanism to detect the event structure of a
bean. The monitor acts as the interface to the application administrator.
The Java Security Manager is used to prevent hidden data channels of a
wrapped bean by permitting only events which pass the corresponding
adapter.

The trust manager may be used to reduce the monitoring expenditure
depending on the experience, other users gained from the bean. It is
linked to a trust information service (Herrmann, 2001) which stores trust
values (cf. Jøsang and Knapskog, 1998) of registered beans according to
the amount of positive resp. negative evaluation reports. In intervals the
trust manager retrieves the current trust values of the observed beans
and decides about full observation, spot checks, or complete removal
of the adapters. Moreover, the trust information service informs all
interested trust managers about reported malicious behavior. Thus,
often a trust manager may cause an adapter to seal a malicious bean
before it does any harm.

4. Security Policy Patterns

A malicious component may easily spoil a component-based applica-
tion by performing confidentiality, integrity, availability, or non-repudi-
ation attacks. With respect to confidentiality the flow of data may be
changed in a way that a data unit is forwarded to a component granting
access to humans who are not allowed to read the data. This threat is
particularly relevant in distributed component-structured systems since
the components reside on various network-connected computers with dif-
ferent user-access policies. Besides of data flow attacks, confidentiality
may be attacked by utilizing hidden channels. The illegally forwarded
information is either concealed in transferred data (steganography) or in
the order, number, or execution time of interface events between compo-
nents. Integrity attacks modify application functionality and informa-
tion by incorrect component operations, by malicious data base updates,
and by manipulations of application configuration parameters. Attacks
on the availability of components may be performed in two ways: At first,
a service provided by another component is called very often. In conse-
quence, the called component cannot serve other components anymore
(denial-of-service attack). At second, a component may block a partner
temporarily or continuously by refusing to perform a desired interface



State-Based Security Policy Enforcement in E-Commerce Applications 7

action. While waiting for this action, the partner cannot serve other
components. Finally, with respect to non-repudiation a component ven-
dor may later deny that the component has triggered or received certain
interface events.

To protect an application from component attacks, one has to define
security objectives and to enforce corresponding policies. The policies
constrain the component behavior in a way that attacks are either pre-
vented or made more difficult. To avoid a confidentiality attack, the
flow of data between two components must be restricted in order to for-
ward data only to components which prevent reading by not authorized
persons. The danger of hidden channels may be reduced by preventing
non-deterministic interface behavior (cf. Zöllner et al., 1998). There-
fore a corresponding security policy defines a functional dependency
between forwarded data units and previous events to avoid steganog-
raphy. Other policies restrict the order, number, and execution time
of events. Security policies counteracting integrity attacks restrict the
execution of interface events. They constrain arguments of events and
apply plausibility checks. In order to prevent denial-of-service attacks,
a protecting security policy may schedule a minimum waiting time be-
tween two service requests. Thus, the called component gains some time
to serve other components. With respect to blocking other components,
a security policy may require that a desired event is executed within a
maximum waiting time. The guarantee of non-repudiation is difficult
since legally binding proofs of event executions are necessary. A step to-
wards such a proof is the incorporation of an independent trusted third
party providing for a logging service and a security policy enforcing the
logging of interface events. Log-entries contain digital signatures identi-
fying the originating component.

The security wrappers introduced in Sec. 3 can only check the events
at the interface of a component but not the internal attribute settings
and internal events. Therefore, enforceable security policies concentrate
on the interface behavior. Thus, we can define four basic policy patterns
which correspond to the four basic aspects of component interfaces:

Enabling condition: The enabling of interface events and the
argument values of the events are constrained.

Enabling history: The enabling conditions of interface events
depend on the context of preceding interface events.

Minimum waiting time: Interface events may only be executed
if some minimum waiting time periods elapsed since preceding
events.



8

Maximum waiting time: Interface events have to occur before
a maximum waiting time expired since preceding events.

These four patterns serve as a basis for more specific policy patterns
which are directly devoted to the security objectives listed above. With
respect to confidentiality we use the following patterns:

Data flow access: A data unit may only be forwarded to a com-
ponent if a corresponding read access permission exists.

Data flow history: A data unit may only be forwarded in the
context of certain preceding interface events.

Hidden channel functional dependency: A forwarded data
unit depends on previously transferred data according to a data
dependency function.

Hidden channel enabling history: The enabling condition of
an interface event and its arguments depend on the context of
preceding events according to a occurrence dependency function.

Hidden channel execution time: An interface event has to be
executed after a preceding interface event within a certain time
period.

Patterns enforcing integrity security objectives are listed in the sequel:

Integrity enabling condition: The enabling conditions of inter-
face events and their arguments are constrained in order to guar-
antee plausible component interaction.

Integrity enabling history: The enabling conditions of inter-
face events and their arguments depend on the context of pre-
ceding interface events in order to guarantee plausible component
interaction.

Security objectives avoiding the two types of availability attacks are
enforced by the policy patterns listed below:

Denial-of-service minimum waiting time: An interface event
may only be executed if a minimum waiting time period elapsed
since a similar event was executed.

Denial-of-service enabling history: The enabling condition of
an interface event depends on the context of certain preceding in-
terface events and additionally on a minimum waiting time period.

Blocking maximum waiting time: An interface event has to
be executed before a maximum waiting time period expired since
a certain preceding interface event.



State-Based Security Policy Enforcement in E-Commerce Applications 9

Blocking enabling history: According to the context of certain
preceding interface events an interface event has to be executed
before a maximum waiting time period expired.

In order to support non-repudiation we use the following pattern:

Event logging: A component has to log an executed or received
event together with a unique signature with a trusted third party
logging service.

All of these security policies can be modeled formally as state transi-
tion systems. The policy enforcement wrappers (cf. Sec. 3) implement
corresponding state machines by means of state representations and state
change operations (Herrmann and Krumm, 2001). During run-time, the
occurrences of component interface events trigger state changes. Thus,
the state machines keep track of the execution history and the compli-
ance of interface events with the security policies can be checked.

For the specification of the policies, we used the formal specification
technique cTLA (cf. Herrmann and Krumm, 2000a) which facilitates
specifications of safety, liveness, and real-time (Herrmann and Krumm,
2000b) properties in a process style similar to high-level programming
languages. Furthermore, cTLA supports the design of constraint-orien-
ted specifications (cf. Vissers et al., 1988). Thus, different security
policies may be specified and observed separately. Moreover, we like
to mention that cTLA can additionally be used for verifying that the
combination of the implemented policy enforcements of an application
guarantees abstract application security properties.

We propose, that component vendors add cTLA specifications of suit-
able security policies to component contracts. Before incorporating a
component into an application, an application developer may check and
extend the proposed security policies. The detailed policy specifications
used in the following e-requisitioner example can be accessed via WWW
(URL: ls4-www.informatik.uni-dortmund.de/RVS/P-SACS/eReq). The
transformation of these cTLA specifications to implementing Java code
has been performed manually since a suitable cTLA-to-Java compiler is
not yet operational.

5. Component-Structured E-Procurement
Application

To support standardization of electronic procurement (e-procurement)
procedures, the OBI consortium issued a set of specifications for Open
Buying on the Internet (OBI, 1999). According to these specifications
the architecture for e-procurement activities consists of a buying organi-



10

zation, a selling organization, a payment authority, and a requisitioner.
In behalf of the buying organization the requisitioner carries out orders
of goods at the selling organization which are paid by means of the
payment authority. The corresponding OBI business-to-business (B2B)
model consists of seven successive steps:

1 The requisitioner asks the buying organization for hyperlinks to
merchant servers of selling organizations.

2 The requisitioner requests the selling organization to offer tenders
for the desired goods.

3 Each selling organization creates a tender and maps it into an OBI
order request which is compatible to the EDI standard (DISA,
2001) and transfers it to the buying organization either via the
requisitioner or directly.

4 Based on the tenders, the requisitioner and possibly other entities
of the buying organization select a winning selling organization
and generate an order.

5 The completed order is formatted as an EDI-compatible OBI order
object and is transferred to the winning selling organization.

6 The selling organization fulfills the order.

7 In behalf of the selling organization the payment authority issues
an invoice to the buying organization and receives a payment.

Our example system performs the commodity management of fast-
food franchise restaurants. It was developed on the basis of the Sales-
Point-Framework (Schmitz, 1999). This framework is non-profit and fa-
cilitates the construction of various shop systems. It supports business
functions like buying, selling, or leasing goods as well as administrative
functions like accounting, storekeeping, and management of product cat-
alogs. The framework is implemented in Java but was originally not
component-structured. Therefore we adapted the commodity manage-
ment system and created three Java Bean-based components which real-
ize the sale functions of the restaurant, the management of the counting
stock, and the catalog of offered products.

To enable automated e-procurement of the food and beverages, we
created and added three other components making the restaurant to an
OBI buying organization (cf. Fig. 2). First we extended the OBI specifi-
cation in order to integrate automated procurement which in contrast to
OBI is not performed by humans but by an electronic requisitioner com-
ponent OBI-E-Requisitioner. Moreover, we added a Directory of Sellers

containing the addresses and range of goods for sale of the selling orga-
nizations. Finally, the OBI-Buying Adapter manages the formatting of



State-Based Security Policy Enforcement in E-Commerce Applications 11

Selling

Organization

Selling

Organization

Selling

Organization

Restau-

rant

Catalog

Counting-

Stock

OBI-

E-Requi-

sitioner

OBI-
Buying
Adapter

0

2.1

3.1

3.2

5.2

Buying Organization

4.2

4.1

Directory

of Sellers

1

2.2

5.1

Logging-

Service

2.3 5.3 3.3

Figure 2. E-Procurement System

tender requests, tenders, and orders according to the OBI specification
and acts as an interface to the selling organization. The composition of
the six components realizes the buying system. Moreover, a group of
selling systems was developed based on the SalesPoint-Framework. Fi-
nally, we created a trusted third party logging service in order to support
non-repudiation of transactions. Since we are mainly interested in the
order process, we omitted the payment authority for the sake of simplic-
ity. The components can be downloaded from the WWW-project page
(URL: ls4-www.informatik.uni-dortmund.de/RVS/P-SACS/eReq).

Due to the integration of automated procurement we had to extend
OBI by format definitions for machine-processable tender request mes-
sages. Since the EDI standard (DISA, 2001) does not support tender
requests, we encoded tender requests, tenders, and orders in commercial
eXtensible Markup Language (cXML, 2001). This more modern B2B
encoding standard is based on the popular XML and supports not only
purchase orders and tenders but also tender requests.

The realization of the procurement steps is delineated by the edge
labels in Fig. 2. Since the e-requisitioner manages not only the pro-
curement process but also the decision, when to order, the procurement
starts with a new step 0. Here, the e-requisitioner inspects the counting
stock in intervals. If new goods are needed, it requests the addresses of
selling organizations from the directory of sellers (step 1). Thereafter
tender requests are generated and forwarded to the selling organizations
via the buying adapter (step 2). The sellers react with tenders which
are sent to the buying adapter and delivered to the e-requisitioner (step
3). In step 4 the e-requisitioner consults the catalog and the counting
stock beans, makes a procurement decision based on the tenders, the



12

stock volume, and the sale prices, and creates the order objects. Finally,
the orders are sent to the buying adapter which forwards them to the
corresponding selling organizations (step 5). The steps 6 and 7 realizing
the payment are omitted. In order to log the tender requests, incoming
tenders, and orders, in the steps 2, 3, and 5 the requisitioner sends the
corresponding log data to the logging service.

6. Component Behavior Enforcement

Since the procurement process is controlled by the electronic requi-
sitioner, correct and secure execution of this component is crucial for
the whole application. Malicious behavior of the OBI-E-Requisitioner

may lead to various security violations like forwarding of competitor’s
tenders to preferred selling organizations, ordering not from the least
expensive seller, hurting the buyer by too large, too small, resp. too
late orders, or repudiation of orders. Assuming that the e-requisitioner
was procured from a possibly not trustworthy company, we applied the
security patterns described in Sec. 4. Under instantiation of these pat-
terns, a set of suitable policies were designed and described by cTLA
specifications. The cTLA specifications were transformed to Java code
which was integrated into the wrapper of the e-requisitioner component.

Following confidentiality protecting policies are used:

A tender request contains only articles which, according to the
directory of sellers, are in the range of articles offered by the par-
ticular seller (Data flow access).

A tender is requested only from sellers contained in the directory
of sellers (Data flow access).

The order amount for an article depends unambiguously from the
amount of the particular article in the stock (Hidden channel func-
tional dependency).

A tender request and an order may be executed only if the last
order was carried out in the meantime (Hidden channel enabling
history).

The first two policies guarantee that information about the portfolio of
the buying organization and the existence of the procurement procedure
are only forwarded to appropriate sellers. The two other security policies
make the use of hidden channels (e.g., for information about competitors’
tenders) more difficult by avoiding non-deterministic interface behavior.

With respect to integrity following policies are used:

An order may be generated only after a certain minimum number
of tenders were received (Integrity enabling history).



State-Based Security Policy Enforcement in E-Commerce Applications 13

The requisitioner orders one of the least expensive tenders (In-
tegrity enabling history).

The values in the counting stock, the catalog, the directory of
sellers, the OBI-Buying Adapter, and the logging service are not
changed (Integrity enabling condition “false” for modifying oper-
ations).

The amount ordered is in an interval between a certain minimum
and maximum (Integrity enabling condition).

The first two security policies guarantee that all selling organizations
have a fair chance to win an order. Attacks against other components
are avoided by the third objective while the last one prevents orders with
unreasonable amounts of an article.

To prevent attacks against the availability of the system, the security
policies below are used:

Operations of the counting stock, the catalog, the directory of sell-
ers, and the buying adapter are called only after minimum waiting
time intervals (Denial-of-service minimum waiting time).

The counting stock is polled within maximum waiting time inter-
vals (Blocking maximum waiting time).

If, according to the counting stock, the number of a certain article
is low, a procurement process for this article is started within a
maximum time interval (Blocking enabling history).

After receiving the threshold number of tenders an order is exe-
cuted within a maximum waiting time (Blocking enabling history).

Denial-of-service attacks against the partner components are prevented
by the first security objective while the other specifications guarantee
that orders are executed timely to avoid cleared stocks.

Finally, to assure that the buying organization can audit requested
and incoming tenders as well as all orders, the following non-repudiation
security policy is used:

Tender requests, tender deliveries, and orders are logged at the
logging service (Event logging).

7. Concluding Remarks

We reported on the use of formal security policy specifications in com-
ponent contracts. The compliance of the real behavior with the contracts
is enforced at run-time by means of wrappers. In our e-procurement ex-
ample the run-time enforcement causes a performance penalty between 5



14

and 10%. While this penalty seems acceptable, it can be reduced by us-
ing a trust manager which controls the amount of observation according
to the current trust value, which is assigned to the component by a trust
information service (cf. Herrmann, 2001). Current work concentrates on
the development of a component system security framework which —
besides of enforceable policies — additionally provides patterns for the
specification of abstract application security properties. Moreover, the
framework contains proof theorems facilitating the formal proof that the
security properties of an application are fulfilled by its components.

References

Avolio, F. M. and Ranum, M. J. (1994). A Network Perimeter with Secure External
Access. In Proceedings of the Internet Society Symposium on Network and Dis-
tributed System Security, Glenwood.

Bershad, B., Savage, S., Pardyak, P., Sirer, E. G., Becker, D., Fiuczynski, M., Cham-
bers, C., and Eggers, S. (1995). Extensibility, safety, and performance in the SPIN
operating system. In Proceedings of the 15th Symposium on Operating System Prin-
ciples, pages 267–284. ACM.

Beugnard, A., Jézéquel, J.-M., Plouzeau, N., and Watkins, D. (1999). Making Com-
ponents Contract Aware. IEEE Computer, 32(7):38–45.

Biskup, J. and Eckert, C. (1994). About the enforcement of state dependent security
specifications. In Keefe, T. and Landwehr, C., editors, Database Security, pages
3–17. Elsevier Science (NorthHolland).

cXML (2001). cXML User’s Guide. cXML.org, 1.2.006 edition.

DISA (2001). X12 Standard. Data Interchange Standards Association, release 4050
edition.

Ferrari, E., Samarati, P., Bertino, E., and Jajodia, S. (1997). Providing flexibility in
information flow control for object-oriented systems. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 130–140, Oakland.

Fraser, T., Badger, L., and Feldman, M. (1999). Hardening COTS Software with
Generic Software Wrappers. In Proceedings of the 1999 IEEE Symposium on Se-
curity and Privacy.

Goldberg, I., Wagner, D., Thomas, R., and Brewer, E. (1996). A Secure Environment
for Untrusted Helper Applications. In Proceedings of the 6th USENIX Security
Symposium.

Herrmann, P. (2001). Trust-Based Procurement Support for Software Components. In
Proceedings of the 4th International Conference on Electronic Commerce Research
(ICECR-4), pages 505–514, Dallas. ATSMA, IFIP.

Herrmann, P. and Krumm, H. (2000a). A Framework for Modeling Transfer Protocols.
Computer Networks, 34(2):317–337.

Herrmann, P. and Krumm, H. (2000b). A Framework for the Hazard Analysis of
Chemical Plants. In Proceedings of the 11th IEEE International Symposium on
Computer-Aided Control System Design (CACSD2000), pages 35–41, Anchorage.
IEEE CSS, Omnipress.

Herrmann, P. and Krumm, H. (2001). Trust-adapted enforcement of security policies
in distributed component-structured applications. In Proceedings of the 6th IEEE



State-Based Security Policy Enforcement in E-Commerce Applications 15

Symposium on Computers and Communications, pages 2–8, Hammamet. IEEE
Computer Society Press.

Jøsang, A. and Knapskog, S. J. (1998). A metric for trusted systems. In Proceedings
of the 21st National Security Conference. NSA.

Khan, K., Han, J., and Zheng, Y. (2001). A Framework for an Active Interface to
Characterise Compositional Security Contracts of Software Components. In Pro-
ceedings of the Australian Software Engineering Conference (ASWEC’01), pages
117–126, Canberra. IEEE Computer Society Press.

Kozen, D. (1998). Efficient code certification. Technical Report 98–1661, Computer
Science Department, Cornell University.

Kozen, D. (1999). Language-Based Security. In Kutylowski, M., Pacholski, L., and
Wierzbicki, T., editors, Proceedings of the Conference on Mathematical Founda-
tions of Computer Science (MFCS’99), Lecture Notes in Computer Science 1672,
pages 284–298. Springer-Verlag.

Mallek, A. (2000). Sicherheit komponentenstrukturierter verteilter Systeme: Vertrau-
ensabhängige Komponentenüberwachung (in German). Diploma Thesis, Univer-
sität Dortmund, Informatik IV, D-44221 Dortmund.

Monroe, M. A. (1993). Security Tool Review: TCP Wrappers. ;login:, 18(6):15–16.

Morrisett, G., Walker, D., Crary, K., and Glew, N. (1998). From System F to typed as-
sembly language. In Proceedings of the 25th ACM SIGPLAN/SIGACT Symposium
on Principles of Programming Languages, pages 85–97, San Diego.

Myers, A. C. and Liskov, B. (1998). Complete, Safe Information with Decentralized
Labels. In Proceedings of the IEEE Symposium on Security and Privacy, pages
186–197, Oakland.

Necula, G. C. (1998). Compiling with proofs. PhD thesis, Carnegie Mellon University.

OBI (1999). OBI Technical Specifications — Open Buying on the Internet. OBI Con-
sortium, draft release v2.1 edition.

Schmitz, L. (1999). The SalesPoint Framework — Technical Overview. WWW: ist.
unibw-muenchen.de/Lectures/SalesPoint/overview/english/TechDoc.htm.

Schneider, F. B. (1997). Towards fault-tolerant and secure agentry. In Proceedings of
the 11th International Workshop on Distributed Algorithms (WDAG’97), Lecture
Notes in Computer Science 1320, pages 1–14. ACM SIGPLAN, Springer-Verlag.

Szyperski, C. (1997). Component Software — Beyond Object Oriented Programming.
Addison-Wesley Longman.

Tarditi, D., Morrisett, G., Cheng, P., Stone, C., Harper, R., and Lee, P. (1996). TIL:
A type-directed optimizing compiler for ML. In Proceedings of the Conference on
Programming Language Design and Implementation. ACM SIGPLAN.

Vissers, C. A., Scollo, G., and van Sinderen, M. (1988). Architecture and specification
style in formal descriptions of distributed systems. In Agarwal, S. and Sabnani,
K., editors, Protocol Specification, Testing and Verification, volume VIII, pages
189–204, Elsevier. IFIP.

Wabbe, R., Lucco, S., Anderson, T. E., and Graham, S. L. (1993). Efficient software-
based fault isolation. In Proceedings of the 14th Symposium on Operating System
Principles, pages 203–216. ACM.

Zöllner, J., Federrath, H., Klimant, H., Pfitzmann, A., Piotraschke, R., Westfeld, A.,
Wicke, G., and Wolf, G. (1998). Modeling the security of steganographic systems.
In Proceedings of the 2nd Workshop of Information Hiding, LNCS 1525, pages
345–355, Portland. Springer-Verlag.


