Modeling and Verifying Real-time
Properties of Reactive Systems

Fenglin Han, Peter Herrmann, Hien Le
Norwegian University of Science and Technology
Department of Telematics, Trondheim, Norway
Email: {sih|herrmann|hiennam}@item.ntnu.no

Abstract—SPACE is a model-driven engineering technique for
reactive distributed systems. It enables to develop system models
from reusable building blocks, formal analysis by model checking
as well as automated transformation to executable code. In this
paper, we describe an extension of the SPACE formalism which
allows to model and verify also real-time behavior. In particular,
one specifies real-time constraints in the interface descriptions of
the building blocks, so-called Real-Time External State-Machines
(RTESMs). The RTESMs are translated to guards, clocks and
invariants of Timed Automata which can be analyzed by means
of the model checker UPPAAL. The approach is explained by
a component protecting an electrical motor controller system
against overspeed. In particular, we prove that by keeping certain
maximum response times, this system guarantees that the speed
of the motor stays within certain limits.

I. INTRODUCTION

Model-based engineering is considered as practical to cre-
ate high-quality distributed software since it enables stepwise
development with varying degrees of abstraction as well as
simulation, verification and evaluation. This is of particular
importance for the design and verification of real-time em-
bedded software used in safety critical systems. For instance,
Buttazzo [1] claims that real-time systems are more vulnerable
than other kinds of systems and names three aspects facilitating
the design of high quality software: The design of software
before building it, complexity reduction, and the enforcement
of system compatibility within the design.

The engineering technique SPACE [2] and its tool-set Arc-
tis [3] make a model-driven development process supporting
these three issues possible. System behavior is modeled by
UML 2 activities (see [4]) that, in a Petri net-like fashion, ex-
press behavior by tokens flowing via the edges of a graph [5].
The approach is scalable since an activity may contain building
blocks that each represents an own activity. The tokens may
jump between the two activities, to which a building block
refers. The building blocks support also the reuse of sub-
models since they allow to model recurrent behavior once and
to use the resulting building blocks later in various application
models. As discussed in [6], in average 70% of a system
model can be developed by reusing blocks from the Arctis
libraries. The easy reuse of building blocks is supported
by External State Machines (ESMs) [6] which describe the
interface behavior of the building blocks. Thus, a user who
wants to integrate a building block into a system model, does
not need to understand its internal behavior, i.e., the activity it
refers to, but only its ESM. Further, the ESMs are an effective
means to mitigate the state space explosion problem which
may occur when model checking that a system model fulfills

certain properties [3]. They make it possible to replace most
of the activities by the more abstract ESMs in the model
checker runs which reduces the state space to be checked
effectively. Besides analysis by model checking, Arctis allows
to automatically translate a system model into executable code.
Currently, it supports the generation of Java code but extended
versions for C resp. C++ are under development.

Our previous work has been centered on modeling func-
tionally correct applications without considering real-time
properties. In particular, we have used a self-developed model
checker to verify basic functional properties (e.g., whether a
building block complies with its ESM) while we apply the
model checker TLC [7], which is based on Lamport’s Temporal
Logic of Actions [8], for more complex proofs (see [9]).

In this paper, we discuss how the advantages of a modular
specification and verification in SPACE can be exploited
for the development of real-time systems. In particular, we
introduce an extension of the ESMs to so-called Real-Time
ESMs (RTESMs) that make the specification of certain real-
time constraints possible. This allows to specify the real-time
constraints, a building block requires from its environment as
well as the real-time properties guaranteed by itself. Moreover,
we added UPPAAL [10] to the set of model checkers supported
by Arctis and realized an automatic transformation of each
building block and RTESM into timed automata [11] that
models relevant time constraints like state invariants, transition
guards and clock updates. The real-time properties stated in the
RTESMs are translated into formulas of the temporal logic
Timed Computation Tree Logic (TCTL) [12]. Together the
building blocks of a system model form a network of timed
automata that can be analyzed by UPPAAL for meeting the
TCTL formulas.

The article is arranged as follows: Section II presents the
SPACE method. For that, we introduce a building block of a
real-life embedded system. In Sect. III, we sketch the Timed
Automata and their verification with UPPAAL. Further, the
RTESMs are presented. Section IV discusses the compositional
character of the real-time behavior verification and presents
the results of proving the real-time aspects in our example.
We verify in Sect. V that the compositional model checks are
sufficient to guarantee that the real-time properties are also met
by the overall system. The paper is completed by references to
related work in Sect. VI followed by some concluding remarks.

II. ARCTIS BUILDING BLOCK MODEL

In this section, we introduce the model-based development
approach using SPACE and Arctis by showing a component

start/
powerUp

[status
start/

puCompleted/status

Pt PP

o ® @

runningMode

speed/slsCommand start/ stop/stopped disableit/

speedExceedSLS powerUp disable
speed/slsCommand JactivatessE @ Jstatus
[status start/

speed/ /activateS disableit/ stop/stopped
disable
[status

disableit/ stop/stopped

disable @

status

activateSSE

runningMode

speed/ speed/slsCommand
setSLS/ JactivateS
[status speed/

[status

reEnable/status y
start,
stop/stopped
runningMode powerUp

speed/ start/
setSLS/ Istatus
[status

Fig. 1. The External State Machine (ESM) of the SLS block

of a control system for electrical motors which has been
developed by Asea Brown Boveri, Ltd. (ABB).

The modeling and verification includes a list of functional
units and test cases of a motor controller system, which coop-
erate with each other realizing the start of the control software.
We ignore the big view of system collaboration and concentrate
on the Safety Limited Speed System (SLS) component. The
SLS complies with the safety standard IEC 61800-5-2 [13]
in order to guarantee that the speed of a motor stays below a
configurable maximum limit. To achieve that, this component
is able to reduce the motor speed or even initiate the stopping
of the motor if necessary.

A. Interface of the SLS Building Block

To understand the functionality of the SLS block, we
look first on its External State Machine (ESM) which is
depicted in Fig. 1.! The ESM reflects nicely that, according
to standard IEC 61800-5-2, the SLS has six different control
states. Thereby, the starting (e) and termination ((¢)) nodes
of the ESM refer to the state idle while the other states
are represented by vertices containing the corresponding state
names:

e idle: The motor control system is switched off.
e powerUp: The motor control system is starting.

e runningMode: The motor is running normally, i.e., it
is below its maximum speed limit.

o speedExceedSLS: The motor runs above its permitted
speed limit but did not yet exceed the maximum
time period after which it has to be shut down by
executing the Safe Stop Emergency (SSE) handler, an-
other system component, that manages the execution
of emergency stops of the motor.

'To avoid the problem of a proper vertex placement when displaying an
ESM, Arctis uses the hierarchical style listed in Fig. 1.

o activateSSE: The SSE handler was triggered and the
motor was shut down.

e disable: The SLS block is disabled after the power
for the motor was removed and it cannot produce any
torque again.

The transfer of tokens between the activity of a building block
and its environment is modeled by so-called pins. That are
syntactical constructs used in both the activity modeling the
behavior of the block and the one using it. The ESM of a
building block models the interface behavior of a block by
linking each ESM transition to a number the block’s pins.
The activity to which the block refers, may only carry out a
sequence of token flows if the pins passed in this sequence are
exactly those linked to an ESM transition that is executable in
the current ESM state. For example, the initial transition from
state idle to state powerUp must only be carried out if a token
passes the pin start. Transitions not changing the state of the
ESM are listed in the state identifiers, e.g., in state powerUp
two transitions caused by tokens passing one of the pins status
or start may be executed without changing the ESM state.

In the transition markings, a pin identifier before the slash
symbol (e.g., start /) marks that the transition is triggered by
a token flow originating from the environment of the building
block. In contrast, if there is no pin ahead of the slash (e.g., /
status), the transition is initiated by the block itself which starts
a flow towards its environment. A combination of different pins
on a single transition specifies that several pins are passed
by token flows in the same transition. For instance, speed /
activateS + puFailure + stopped expresses that the transition
is triggered by an incoming token passing the pin speed which
in the same step leads to tokens leaving the block via the pins
activateS, puFailure and stopped.

Altogether, our block uses 12 different pins to interact with
its environment. They are sketched in the following:

e start: The start sequence of this block is initiated. The
token uses a long integer as parameter which describes
the maximum speed limit of the motor.

o puCompleted: A token passing this pin confirms that
the powering up phase of the motor is finished.

e speed: The current speed of the motor is sent as a long
integer value in the tokens passing this pin.

e slsCommand: A token leaving the SLS block through
this pin contains a string which is a command to the
motor to reduce its speed.

e activateS: A token passing this pin activates the Safe
Stop Emergency (SSE) function stopping the motor.

e pukFailure: By this pin, the environment of the SLS is
notified of a failure in the powering up phase due to
an incoming speed or re-enabling signal.

e status: Tokens passing this pin send status information
about the SLS block in form of integer values.

o setSLS: By tokens passing this pin, the maximum
speed limit may be altered. The tokens contain a long
integer carrying the new maximum speed.

e disableit: This pin is used to disable the SLS block.

SLS

main

[#] LimitedSpeed: long

puCompleted

Timer Periodic [#] status: int

start: long startSLS

speed: long j
reEnable =B

starting

speedOUT: long
value: long
currentSpeed

[#] currentSpeed: long

= stopped

|

m status: int

3 setSLS: leng

ExceedLimitedSpeed

slsCommand: String

. [fa\se]
[true]
slsCemmand setSSEtime > startOrContinue: int

ﬂ UpdateStatuslfReturnRunning]

[stopped l

Stop <) ” setDisable 'l—E disableit

Timer 5

activated

1 activateSSE * :

puFailure

fra

stopped [

F stop

Fig. 2. Activity of Secure Limited Speed (SLS) Building Block

e reEnable: A token through this pin re-enables the SLS
block.

e stop: Flows passing this pin switch off the SLS block.

e stopped: This pin is a notification that the SLS block
is terminated.

The block is started by a token passing pin start and re-
mains in state powerUp until a notification is received via
puCompleted. Thereafter, the system is in state runningMode
in which the current speed is received periodically. If the speed
exceeds the given speed limit, the SLS block switches to state
speedExceedSLS which leads to control commands via pin
slsCommand. The block stays in the state speedExceedSLS
until either the speed falls below the limit again after which it
is set to state runningMode or a timeout happens. In the latter
case, a token is sent via activateS to initiate an emergency
stop and the SLS block is set to the state activateSSE. Further,
the system may be disabled as indicated by tokens via pin
disableit. Thereafter, the block will be in state disable until it
is re-enabled via pin reEnable and reaches state runningMode.
In addition, the SLS notifies its environment about its status by
flows through pin status. It is terminated either by an initiative
from the environment which may send tokens via pin stop or
by erroneous speed or re-enabling signals during the power
up phase. In the latter case, the environment is also notified
by a failure message via pin puFailure and an emergency stop
command via activatesS.

B. Behavior of the SLS Component

As sketched in the introduction, system and building block
behavior is modeled in SPACE and Arctis by UML 2 activi-
ties [4]. The activity of the SLS block is depicted in Fig. 2.
It contains the blocks Timer Periodic and Timer 5 which were
taken from an Arctis standard library and describe two different
kinds of timers. The block SLS Filter was created by the
developer of the SLS block to handle the special treatment
of speed and re-enabling messages occurring in the power

up phase. SLS Filter is a so-called shallow block for which
only the pins and the ESM have to be specified while Arctis
generates the block behavior automatically.

The 12 pins introduced above are specified as parameter
nodes on the edge of the activity in Fig. 2 that we will also call
“pins” for simplicity. A flow passing pin start is forwarded to
the operation action startSLS that contains a Java method of the
same name. In this method, the limited speed value is stored
in the long integer variable LimitedSpeed while the block
status, represented by the correspondent variable, is set to the
value active. Thereafter, the token proceeds to a fork node
in which it is duplicated. One token copy reaches the block
SLS Filter to enable error handling of speed and re-enabling
messages during power up. The other copy starts the block
Timer Periodic. From now on, this block will, in intervals,
create tokens leaving its pin tick and being forwarded via a
merge node to the get variable action GET status. Here, the
current value of variable status is stored as a token parameter.
Afterwards, the tokens are sent to the environment via pin
status. The completion of the powering up phase is notified by
a token entering the block via pin puCompleted. This token is
duplicated in a fork. One copy switches the block SLS Filter
into normal mode such that speed and re-enabling messages
are normally treated while the other copy adjusts the status
variable and issues a status output to the environment.

Speed messages reaching pin speed are forwarded to the
block SLS Filter. If the block is in the power up phase, the
token is forwarded via pin error to a fork which generates
three copies forwarded to the pins activateS via an operation
adjusting the status, puFailure and stopped. The pin stopped
is a terminating pin. When it is passed by a token, all
remaining tokens in the system are removed and the three
inner blocks are set to their respective idle states. Thus, the
SLS building block is re-initialized. If the power up phase is
already completed, the speed message is forwarded from block
SLS Filter to the set variable action SET currentSpeed storing
the parameter of the token. Thereafter the flow reaches the

operation ExceedLimitedSpeed in which the current speed is
compared with the speed limit. The token leaving this block
carries a boolean value. If the motor is on overspeed, it is
forwarded from the decision node via the edge true to a fork.
One of the copies is forwarded to the operation slsCommand
which generates the speed reduction command leaving the
block via pin slsCommand. The other token starts block Timer
5 to enable an activation of the SSE system if the overspeed
stays for a certain period of time, i.e., 1000 ms. If the motor
runs in normal speed, the token leaves the decision via the
edge false which updates the status and stops the timer. A
timeout of the timer in block 7imer 5 leads to a token passing
pin activateS.

Disabling the SLS block by sending a token through pin
disableit switches off Timer 5 since an activation of the SSE
is not allowed in the state disable. The block can be enabled
again by a flow via pin reEnable which during power up leads
to an error handling while, otherwise, the block is re-enabled
followed by a status message. Further flows enable to change
the limited speed via a token passing pin setSLS and to stop
the SLS building block using the pins stop and stopped.

Using the built-in Arctis model checker [3], we could
easily prove that the activity listed in Fig. 2 fulfills the ESM
depicted in Fig. 1 such that the block correctly realizes its
interface behavior. This block can now be combined with
similar blocks of the motor control unit and, utilizing the Arctis
code generation, program code can be created.

III. REAL-TIME EXTENSION

The two key performance requirements of the Safety Lim-
ited Speed (SLS) component can be stated as follows:

1) Except for the idle and power up phases, a reduce
speed command (slsCommand) should always be ex-
ecuted when a speed notification showing overspeed
of the motor is detected.

2) The activation of the Safety Stop Emergency (SSE)
component shall be executed not later than 1000 ms
after overspeed was detected, as long as the speed
does not fall back below the limit in this period.

The first requirement holds obviously since one can easily see
from the activity in Fig. 2 that every speed input showing
overspeed leads to a slsCommand. Formally, that can be
verified using the model checker TLC [7].

The second requirement describes a typical hard real-
time requirement that, before now, could not be modeled and
verified directly by the tool-set Arctis. To prove properties
like this one, we had to extend the SPACE syntax and the
analysis capabilities of Arctis in a way that real-time properties
including bounded response-time guarantees can be modeled
and verified as well (see also [14]-[16]). While the semantics
of SPACE is based on Lamport’s Temporal Logic of Actions
(TLA) [8], we refrained from using the corresponding way to
model real-time [17], [18]. The problem is that in this method,
real-time is specified by real numbered values which would
lead to systems enclosing huge (or even infinite) numbers of
states that exceed the ability of TLC and other model checkers.
Thus, we would need to use either manual verification or rely
on theorem provers requiring a significant verification guidance

such that carrying out the proofs would be long-lasting and
tedious. Therefore we decided to base the system extension on
Timed Automata [11] and the verification tool UPPAAL [10]
which are sketched in Sect. III-A. We decided to extend the
ESMs by annotations that make it possible to model real-
time properties which have to be kept by both the building
block to which the ESM belongs and its environment. The
resulting Real-Time External State Machines (RTESMs) are
introduced in Sect. III-B. Together with the activities, they
are transformed to Timed Automata which form the input
for the UPPAAL-based proofs. The corresponding mapping
is described in Sect. III-C.

A. Timed-Automata and UPPAAL

Several approaches to model real-time properties are
available, e.g., IO automata [19], hybrid automata [20] and
timed statecharts [21]. We decided to apply Timed Automata
(TA) [11] which were employed by Rajeev Alur and David
Dill in 1990 since TAs fit excellently with SPACE and Arctis
and provide a powerful model checking environment as we
will discuss below. Timed Automata are extended finite state
machines which allow to specify real-time values as environ-
ment clock variables. These variables are synchronized with
the clock such that they express natural time elapsing. Each
variable may be set or reset when the state machine carries
a certain transition. Further, one may define so-called clock
invariants restricting the time, a state machine may rest in a
certain state of a TA.

UPPAAL [10] is a modeling and verification tool for Timed
Automata which is suited to verify that a system fulfills certain
real-time properties. It enables to express systems consisting
of various timed state machines, so-called templates, which
can run in parallel and interact via synchronization channels.
A TA transition can be amended by the following annotations:

e Guards: A transition may only be taken if its guard is
true.

e Synchronization: Timed automata exchange signals
with each other synchronously by send (!) and receive
(?) signal pairs. The synchronization supports binary
transmissions from a timed automaton to another one
as well as broadcasts. In the latter case, a signal is
sent by one timed automaton and received by various
others.

e Updates: The environment variables are updated when
a transition is carried out.

The clocks, invariants, guards, and updates of the timed
automata are represented in UPPAAL as annotations of the
state machines using a C-like syntax. Further, timed properties
to be verified are expressed as formulas in a subset of the
branching-time temporal logic Timed Computation Tree Logic
(TCTL) [12].

B. Real Time External State Machines

We extend the ESMs in SPACE to Real-Time External State
Machines (RTESMs) by introducing also environment clock
variables, clock invariants and updates. This well-arranged
concept of the Timed Automata allows to model real-time

startOrContinue/

z=0 |
active
startOrContinue/

., stop/stopped L [timeout \/
urgent

Real-Time External State Machine (RTESM) of block Timer 5

stop/stopp\)ed

@

Fig. 3.

properties to be fulfilled by the interface behavior of building
blocks in an easily understandable way. Like in the TAs, the
states may contain clock invariants determining how long the
RTESM may stay in a state. However, the initial and termi-
nating states must not contain clock invariants. The RTESM
transitions may contain updates to manage the environment
variables.

As an example, we depict the RTESM of the Arctis build-
ing block Timer 5 in Fig. 3. This block realizes a persistent
timer running 1000 ms after being started via a token through
pin startOrContinue until it issues a token via pin timeout. The
time is expressed by the clock variable z which is set to its
initial value O when the transition startOrContinue is executed
for the first time switching the RTESM from the state idle to
active. When further tokens pass the pin startOrContinue in
state active, z is not set to 0 which models the persistence
property of the timer. The state active is provided with the
clock invariant z < 1000 stating that the RTESM may only
stay less than 1000 ms in this state before it has to be left,
i.e., an urgent action (timeout) has to be taken when the timer
reaches 1000 ms. Transitions representing urgent actions are
marked with the label urgent. These constructs allow to model
bounded liveness properties [14], e.g., guaranteeing that the
transition timeout must be executed if it, otherwise, will be
continuously enabled. In Sect. IV, we show that the urgent
transitions are used to find out whether a clock invariant is
guaranteed by the activity of the building block to which the
RTESM is assigned or by the one carrying the block identifier.
To guarantee that this is unambiguously defined, each state
containing a clock invariant must have at least one downstream
edge marked as urgent and all urgent edges leaving the same
source state have to be either triggered by the activity in the
block or the one modeling the environment.

The RTESM of the block Timer 5 states that, as long as
the timer is not stopped (transition stop/stopped) resp. deleted
together with the block including it (transition /), a token has
to pass pin timeout before the 1000 ms limit is reached. That
is exactly the real-time property we like to be guaranteed by
the building block.

C. Mapping from SPACE to UPPAAL

The reactive SPACE semantics [5] defines the UML 2
activities as state transition systems in a run-to-completion
fashion. The states are represented by tokens resting on activity
vertices and edges. A token may stop only on activity nodes
modeling system elements demanding it to wait for a certain
period of time. Besides initial nodes describing the token
setting at system start, there are receiving nodes at which a
token has to wait for a signal from an external event source.

f a) Arctis Models

parameter in parameter out time out restart

Activity Initial
@@= P1 X\.: > Fma(lgode Ngde

p1 %O\—V
t1

\

-
b) UPPAAL Models

synchronization synchronization time out restart
signal signal
) p1? pil _reset!
internal > —> O—0
t1<value ?
pi! p1? _reset?
external > >

.

Fig. 4. Mapping between the Activity Behavior and TAs

Likewise, tokens reaching timer nodes have to wait for a fixed
perioded of time. Further, a token may wait on the edge
leading to a join node which, being the complement of a
fork, synchronizes various tokens, i.e., only when tokens are
reaching all of its input edges, one of them may pass the join.
In analogy to Petri-nets, we call the nodes and edges, on which
tokens may rest, inner places. At most one token may wait at
the same time on an inner place.

A collaborative building block as discussed in [3] refers
to various components which are represented in its activity
by different partitions. Thus, edges crossing a partition border
model the interchange of signals between the components.
Since the communication is asynchronous, these edges include
queue places on which tokens rest during transfer. In contrast
to the inner places, queue places may contain various tokens at
the same time. They are stored in a FIFO queue with a limited
queue size.

In the SPACE semantics, a transition corresponds to a so-
called activity step, in which a token starts at an inner or queue
place and moves forward on the activity graph in a run-to-
completion fashion until it reaches another place respectively
a final node on which it is deleted. If the token passes
an operation, the corresponding Java method is executed. If
the pass of the token goes via a fork node, on which it is
duplicated, all copies are handled within the same activity step.
Likewise, the jumping of a token between activities via the pins
takes place within a single activity step. The reactive nature of
the semantics is guaranteed since any transition is triggered by
the reception of a signal or a timeout. The semantics facilitates
an automatic transformation of the activities to executable
UML 2 state machines [22] from which Java code can be
generated.

By our Arctis to UPPAAL mapping algorithm introduced
below, an Arctis building block is transformed into a network
of Timed Automata (TAs). To facilitate the understanding
of this transformation, we distinguish so-called internal TAs,
which are generated from the activities, from external TAs
transformed from the RTESMs. The states of an internal TA
correspond to the different token settings on the queue and
inner places of an activity while the activity steps are mapped
to the TA transitions. Some aspects of the mapping of Arctis
activities to internal TAs are highlighted in Fig. 4:

e A token arriving at an activity via pin p/ is translated
to a binary synchronization channel in which the

) Arctis Models expressed as

S Models expre b) UPPAAL Models "®\
Q@000

Fig. 5. Several pins in an RTESM transition

internal TA carries out a receive signal (pl?).

e A token leaving an activity via pin p/ is mapped to a
binary synchronization channel in which the internal
TA executes a send signal (p1/).

e A timer ¢/ in an activity is transferred to a node of the
internal TA, which is provided with an environment
clock variable that is set to 0 by the upstream edge to
this node. Further, a clock invariant states that the TA
may only be in the state if the upper bound limit of the
clock is not yet reached (expressed as t1 < duration).

e A terminated building block (e.g., by a token reaching
an Activity Final Node ((®), may be restarted at any
time. To model this property also in the TAs, we add
special reset transitions from the final node to the
initial node using a broadcast channel _reset.

In practice, a UML activity is first transferred into an ex-
ecutable state machine using the Arctis transformation tool.
Thereafter, this state machine is automatically transformed to
the internal TA following the mapping sketched above.

Similar to the TAs, the RTESMs are state transition systems
which allow for a direct mapping of the states including
the clock invariants. The RTESM transitions are transformed
to send and receive signals of the synchronization channels
representing the pins with which they are annotated. As shown
in Fig. 4, all token flows leaving a building block B are
specified in the external TAs modeling B’s own RTESM and
the ones of its inner blocks as receive signals (p/?). This is the
case since, from B’s view, the RTESMs represent the activities
of its environment respectively the activities of the inner blocks
which all receive the tokens sent by B. Likewise, token flows
heading towards B are modeled in the external TAs by send
signals (p1/).

An issue to be treated when mapping RTESM transitions to
transitions of the external TAs, is that the RTESM transitions
may refer to various pins while TAs do not allow to combine
different synchronization channels in a single transition. We
address that by sequences of TA transitions following the
order of the pins. This leads to intermediary states that are
declared as committed locations, i.e., states not modeling any
passing of time. For pins which may be executed in parallel,
we provide separate paths enabling any communication order.
According to our experience, the additional states do not have
an appreciable impact on the model checker performance.

An example is shown in Fig. 5. Here, due to the RTESM
transition, a building block receives first a token via pin a
which, in the same activity step, leads to two tokens leaving
the block via b and ¢ in parallel. In the corresponding ex-
ternal environment TA, first a receive signal via channel a is
received which leads to an interleaving of sending signals via
b respective c. Finally, like in the internal TAs we use special

startOrContinue

z=0

z<1000 i
active

Fig. 6. External block TA of building block Timer 5

reset transitions from the final to the initial nodes to model
that RTESMs can be restarted at any time.

As an example of mapping an RTESM to an external TA,
we use the RTESM of block Timer 5 depicted in Fig. 3 and
the resulting external TA shown in Fig. 6. We see that the
three states of the RTESM. i.e., active as well as the initial
and final states are mapped to three states active, _initial and
_final in the external TA. Further, two committed locations
(©) are used to treat the two RTESM transitions stop/stopped.
Since this external TA shows the view from the block Timer
5, the transition startOrContinue/ which is originated from the
environment of this block is represented as a send signal.> The
environment variable z and the invariant on the state active are
directly mapped to the external TA. The restart of the RTESM
is specified by the transition _reset?.

To prove that a building block B fulfills the real-time
properties stated in its own RTESM and the ones of its inner
blocks, we use the transformations introduced above to create
a network of TAs. It consists of the inner TA representing B’s
activity as well as the external TAs mapped from its RTESM
and the ones of its inner blocks. In the next section, we show
how this network is used to prove with UPPAAL that the real-
time properties stated in the RTESMs are kept.

IV. COMPOSITIONAL VERIFICATION OF REAL-TIME
BEHAVIOR

As mentioned in the introduction, an advantage of using
ESMs to model the interface of building blocks is that the
number of states to be inspected by the model checkers can
be kept smaller than in monolithic proofs. This results from
the fact that the ESMs represent the behavior of both the
environment of a block and its inner blocks in a more abstract
way. The verification of properties is provided in two separate
steps (see [3], [9]). First, one verifies for each instance C of a
building block in a SPACE system model that C’s activity
as well as the one of its environment block B fulfill C’s
ESM. Thereafter, if we want to prove that B meets certain
properties, we can replace the activities of its inner blocks (e.g.,
C) with their ESMs. Since these ESMs usually contain less
states than the corresponding activities as they do not model
internal behavior, this reduces the state space of the model
checker runs significantly.

We aim at using this kind of compositional verification
also for the UPPAAL-based real-time proofs. As introduced in

2If we create the external TA of this RTESM from the viewpoint of the
environment of Timer 5, e.g., block SLS in Fig. 2, startOrContinue/ is modeled
as a receive signal.

Fig. 7. Internal TA of building block Zimer 5

Sect. III, we express real-time properties in form of states with
clock invariants defined in the RTESMs. Moreover, each clock
invariant is guaranteed by exactly one of the two activities to
which an RTESM refers. To model which activity indeed has to
guarantee a clock invariant, we use the labels of type urgent
that are assigned to transitions leaving RTESM states with
clock invariants. For instance, the clock invariant of state active
in Fig. 3 has to be guaranteed by the block Timer 5 since the
transition /timeout, that is labeled urgent, is triggered from this
block. Below, we describe clock invariants guaranteed by the
inner activity of the block as cib and the ones realized by the
environment activity as cie. The verification of the two types
of clock invariants is conducted by proving that the activity of
a block B fulfills all clock invariants of type cib of its RTESM
as well as all the clock invariants of type cie in the RTESMs
of its inner blocks. As discussed in Sect. V, these verifications
are sufficient to allow reducing the proof that a system Sys
fulfills a real-time property P to the verification that an activity
A in Sys implies P as long as we represent the environment
of A as well as its inner blocks by the respective RTESMs.

To prove that a block B indeed fulfills the mentioned clock
invariants, the transformation tool uses the network of internal
and external TAs described at the end of Sect. IIl. It makes
first a state space exploration of the combined states of this
network and mark all those combined states to which one of
the external TAs participate with a state containing a clock
invariant that has to be guaranteed by B. For instance, to prove
that the clock invariant z < 1000 in state active of the external
TA of block Timer 5 in Fig. 6 is met, we extract all combined
network states in which active is the state component of this
TA. This, are altogether five states to which the internal TA of
Timer 5 (see Fig. 7) participates with its states s/ to s5.

For each state of the internal TA, that refers to a marked
combined state but is not a committed location, we create a
TCTL invariant stating that in this state the clock invariant of
the corresponding state in the external TA is fulfilled. In our
example, s3 is the only one of the five states that is not a
committed location such that we create the following invariant
specified in the TCTL subset accepted by UPPAAL.:

Al|(Timer5iT A.s3 imply Timer5eT A.z < 1000) (1)

Here, the designators TimerbiT A and TimerdeT A refer to
the internal resp. external TA of Timer 5.

Thereafter, we verify the created TCTL invariants with
UPPAAL. It accepts formula (1) since the clock invariant of

state s3 modeling a timer node guarantees that state s6 or
_final will be reached within 1000 time units resulting that the
external TA leaves its state active within this period of time
as well.

It is sufficient to prove the TCTL invariants generated by
our tool since all other states s of the internal TA fulfill at
least one of the following two properties:

1) The state s is a committed location. In this case, it
is per definition timeless and will be left without
any elapsing of time. By the built-in Arctis model
checker, we proved that the activity of the analyzed
block is in compliance with its ESMs. This guaran-
tees by construction that, if an internal TA awaits
a signal in a committed location, the external TA
sending this signal is also in a committed location
such that the signal is immediately sent.

2) The state s does not participate in a combined state of
the network of TAs to which one of the external TAs
participates with a state carrying a clock invariant.
The internal TA may rest arbitrarily long in state s
since that does not violate any real-time properties.

A. Proving the Real-time Property of the SLS Block

Using the method described above, we can verify the
second property stated in Sect. III, i.e., that the motor may
be permanently in overspeed for at most 1000 ms until the
Safety Stop Emergency (SSE) component is activated. For the
proof of this property, we use a network containing the internal
TA of the SLS block depicted in Fig. 8 that we call igrg
below. The network includes also an external TA representing
the RTESM of the SLS block. It corresponds with the ESM
shown in Fig. 1 but is amended with an environment clock
variable z and a clock invariant z < 1000 stating the RTESM
does not remain longer than 1000 time units (i.e., milliseconds)
in the state speedExceedSLS. Further, the external TA of the
block Timer 5, named ebrs in the following, is part of the
network. It corresponds with the TA listed in Fig. 6 but with
permuted send and receive signals since, here, we reflect the
view on the RTESM from the environment of block Timer 5.
Finally, the network contains the RTESMs of the other two
inner blocks Timer Periodic and SLS Filter.

For easier understanding, we colored the transitions of i1
that are synchronized with the ones of ebrs in red. The state
s14 on the right upper corner of the graph in Fig. 8 indicates
the state that overspeed was detected but the SSE not yet
triggered. This state can only be reached from state s2 on
the top center if a startOrContinue signal is sent to Timer 5.
Thus, ebys will be in state active which it has to leave within
1000 ms according to its clock invariant. The state active is
left if 57,5 moves to state s2 since it sends a clstop (cl is
the instance name of Timer 5 in activity SLS) signal to ebrs.
This path models that the speed has fallen below the critical
limit again. Likewise, cIsfop is transmitted to ebrs on the path
to state s/2 modeling that the SLS block was disabled. Also
the pass to s22, indicating that the SLS block was stopped,
allows ebys to leave its state active since then the guard of the
spontaneous transition to the final state is true. If not one of
these three passes are followed, igr s remains in s/4 or one
of the committed locations through which one circles back to

s14 timer5z<1000

e g

StartOrContinue

timer5z=0

s28
timer5z<1000
stop?

startOrContinue

Fig. 8.

Internal timed automaton of SLS building block

s14 when a new overspeed notification is handled. Due to the
clock invariant in ebrs, a time-out signal will be sent within
1000 ms, after which ig;,5 reaches a committed location such
that it immediately sends an activateS signal to its environment
which basically guarantees the key requirement.

The states s/4 and s28 are the only not committed states in
isrs which refer to state speedExceedSLS in the RTESM of
the SLS block. Therefore the transformation tool just created
the following invariant with clock sls describing the external
interface time constraints of the SLS building block:

A[J(SLSiT A.s14||s28 imply SLSeT A.sls < 1000) (2)

Due to the clock invariant of the RTESM of block Zimer 5 that
we proved in formula (1), UPPAAL accepted this invariant as
being correct. Running on an Windows 7 laptop system with
8 GB memory and an Intel(R) Core(TM) 2 Duo 2.40 GHz
CPU, the verification of formula (2) took 0.004 second, 27352
KB of virtual memory and 7576 KB of resident memory at
peak. The proof of formula (1) needed even less computing
resources.

V. CORRECTNESS OF THE COMPOSITIONAL
VERIFICATION

In Sect. IV, we pointed out that it is sufficient to prove
certain TCTL invariant formulas with UPPAAL to verify that
the activity of a block B together with real-time properties
fulfilled by B’s environment and its inner blocks guarantees a
certain real-time property P. To make these checks practically
feasible, however, it has to be confirmed that the UPPAAL-
based checks are sufficient to guarantee that P is also met
by the system Sys containing block B. In theory, Sys might

contain other building blocks which impede or delay the
execution of crucial transitions leading to a violation of P.
In the following proof, we establish that our compositional
concept using RTESMs as behavioral interfaces rules such real-
time hampering behavior out.

A system Sys in SPACE and Arctis can be seen as a
tree structure of building blocks since any inner block of an
activity may contain inner blocks as well. For example, the
block Timer 5 uses a shallow block (see Sect. II-B) from an
Arctis library filtering out all but the first token reaching the
block via pin startOrContinue. In this tree, an activity Ay is
the parent of another activity A, if A, is the inner activity of
block ¢ and Ay its environment activity. If we want to prove
that a system Sys modeled in Arctis fulfills a certain invariant
real-time property P, this corresponds to the verification of the
following equation:

/\bEAct(Sys) Ab =P)
Here, Act(Sys) refers to the set consisting of all the activities
specifying system Sys.

To utilize the compositional nature of our verifications,
however, we want to verify that P is fulfilled by a single
activity A, together with its RTESMs as discussed in Sect. IV.
For example, the proof in Sect. IV-A shall be sufficient to
assure that the overall motor control system guarantees the
real-time property stated in Sect. III. A UPPAAL-based proof,
that a real-time property P stated as TCTL formulas is kept
by a network of TAs, corresponds to equation

Ap el 1 /\ceChld(b) cic = P “)

where cip denotes that the clock invariants in the RTESM of
activity A are met by block b or its environment. C'hld(b)
refers to the set of b’s children in the tree mentioned above. In
consequence, we have to justify that proving equation (4) is
sufficient to guarantee equation (3). This can be achieved by
verifying the following fomula:

/\beAct(Sys) Ap = Vb € Act(Sys) : cip A /\Cecmd(b) Cie
It is evident that the conjunction of equations (4) and (5)
directly implies equation (3).

For the proof that equation (5) holds, we utilize the
proceeding model checkers use to verify invariants. A model
checker proves that the invariant is fulfilled by the initial states
of a system and that none of the system transitions falsifies
the invariant if it holds before. In consequence, the invariant
is fulfilled by all reachable states of the system. Be S, the
set of all reachable states of activity .4, and Initg, C Sy the
set of its initial states. The SPACE approach is constraint-
oriented (see [23]). That means, all state designators (i.e.,
queue and inner places resp. variables) are assigned to exactly
one activity. Thus, we can define the system state space as the
Cartesian product of all state sets in the activities (i.e., S5y £
S x ... x Sy, if Sys = {1,...,n}). The set of initial system
states is defined as Imitgys = {(s1,...,8,) : 8i € Initg,}.
By the function Is £ (s : Sgys,a: {1,...,n}) = S,, we map
a system state s to the state component expressing the state of
activity a.

Be fb C Sp x Sp the set of activity steps carried out in
activity Ap. Then we define the transitions of this activity as
T, = T, U{(s,s) : s € Sp} allowing also stuttering steps
in which the activity does not change its state. So, we can
define the set of system transitions Ty 27 x...xT,
since, in a constraint-oriented model, each component takes
part by either a local transition or a stuttering step in a system
transition. Moreover, we use a mapping It = (¢ : Tsys,a :
{1,...,n}) = T, to access the local transition of activity a
carried out in the system step ¢. Now we can express formula
(5) as the conjunct of the two following equations:

Vs € Initg,s¥b € Act(Sys) : ©)
cip(ls(s,0)) AN Ncecniaw) Cie(ls(s, c))

Vs, s € Sgys¥b € Act(Sys) :
1t((Is(s,b),ls(s',b)),b) € Ty
Acip(ls(8,0)) A N cecniaw) ciels(s,) O
= cip(Is(s',b)) A /\CeChld(b) cic(Is(s',¢))

Here, ciy(s) states that the clock invariants of the RTESM of
activity A, hold in its state s. Equation (6) is trivially true
since in the initial system state all the RTESMs are in their
idle states that must not carry any clock invariants. Equation
(7) is guaranteed by the TCTL invariant proofs discussed in
Sect. IV. There, we proved by UPPAAL for every activity A,
that the clock invariants of its own RTESM as well as the
ones of its inner blocks are guaranteed after carrying out any
of its local transitions as long as they were preserved also
before. Since A, participates in a system transition either by
a local activity step or a stuttering step, this implies formula
(7) directly.

Thus, by combining the various proof steps discussed
above, we verified that one can replace a complex UPPAAL
proof using all the internal TAs of the involved Activities, i.e.,
equation (3), by a number of much simpler RTESM proofs, i.e.,
the verifications of the clock invariants fulfilling formula (7),
as well as a property proof using the RTESMs of the inner
blocks of an activity, i.e., equation (4). In all these proofs,
a much smaller number of system states has to be checked
such that the compositional verification is a useful means to
circumvent the state space explosion problem.

VI. RELATED WORK

Proposing model-driven development and verification of
real-time systems using UML models is not a new idea. Similar
to us, David et al. [24] extend UML statechart diagrams
with real-time constructs and translate the resulting formalism
(Hierarchical Timed Automata) into networks of TAs that can
also be checked with the tool UPPAAL. In contrast to us,
however, they do not utilize the structure of their models
to reduce the verification overhead as we do by applying
compositional verification. In [25], Knapp et al. describe their
prototype tool HUGO/RT for the modeling of a generalized
realroad crossing (GRC) problem. The control state machines
of models are translated into Timed Automata in UPPAAL
verifying the safety and utility properties of the GRC problem.
In [18], Graw et al. suggest to use cTLA, a compositional
extension of the Temporal Logic of Actions TLA [8], for the
formal verification of UML models that describes real-time
behaviors of a system. In [26], Furfaro and Nigro specify the
translation of models in the formal language H-CRSM, which
can also be used for the modular development of reactive
real-time systems, to TAs in UPPAAL. In [27], Dong et
al. summarize a series of patterns when modeling real-time
systems using timed automata and provide a translation from
a real time specification language, i.e., timed communication
sequential process (CSP), to timed automata to facilitate the
verification capabilities in UPPAAL.

Abstracting program code is another way to prove real-
time constraints. For instance, Chaki et al. describe in [28] the
tool MAGIC which is capable to abstract C-code into Labeled
Transition Systems (LTSs) preserving the real-time properties
of the code. Similarly, Gong et al. [29] construct UPPAAL
models directly from source code in order to check various
real-time, safety and liveness properties.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an extension of our model-
based engineering approach SPACE for reactive systems to
support also the description and model checker-driven verifi-
cation of real-time properties. In particular, we extended the
External State Machines (ESMs) describing the interfaces of
our building blocks to Real-Time ESMs (RTESMs) which
enable to specify invariant real-time properties fulfilled by
a building block and its environment. This approach allows
for an automated transformation to Timed Automata and, in
consequence, verification using the model checker UPPAAL.
As shown, the approach makes it possible to use compositional
verification reducing the state space to be checked significantly.

In its present state, our approach does not consider time-
delays caused by executing the activity steps and, in particular,

the Java methods which are supported by our current platform.
In the ongoing research, we propose to take the execution
time into consideration, and associate a building block with
a task model. For that purpose, we can apply code level
benchmarking techniques to evaluate and predicate the best
cast execution time (bcet) and worst case execution time (wcet).
In the model level, we propose to translate building blocks
into Timed Automata as Task models (see [30]), such that
the performance and schedulability of a building block can be
analyzed by such task models.

Already in its present state we consider our approach
meaningful since it allows to detect real-time flaws in system
designs which can already be found and corrected in the
early development phase of system modeling. Due to the
compositional verification, we can use the approach for real-
life applications like the speed control protection mechanism
for motors introduced in this paper. As missing real-time con-
straints are a major issue for the violation of safety properties,
we consider this work as a suitable extension to our endeavor
for the creation of safe embedded systems (see, e.g., [9]). The
Arctis tool including standard libraries of building blocks is
available from Bitreactive AS.?

REFERENCES

[1] G. Buttazzo, Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications. Kluwer Academic Publishers, 1997.

[2] F. A. Kraemer, “Engineering Reactive Systems: A Compositional and
Model-Driven Method Based on Collaborative Building Blocks,” Ph.D.
dissertation, Department of Telematics, Norwegian University of Sci-
ence and Technology (NTNU), 2008.

[3] F. A.Kraemer, V. Slétten, and P. Herrmann, “Tool Support for the Rapid
Composition, Analysis and Implementation of Reactive Services,” Jour-
nal of Systems and Software, vol. 82, no. 12, pp. 2068-2080, 2009.

[4] Object Management Group, “Unified Modeling Language: Superstruc-
ture, Version 2.3,” 2010.

[5] F. A. Kraemer and P. Herrmann, ‘“Reactive Semantics for Distributed
UML Activities,” in Formal Techniques for Distributed Systems, Joint
12th IFIP WG 6.1 Int. Conf. (FMOODSI10) and 30th IFIP WG 6.1 Int.
Conf. (FORTEI0), ser. Lecture Notes in Computer Science, J. Hatcliff
and E. Zucca, Eds., vol. 6117. Springer, June 2010.

[6] ——, “Automated Encapsulation of UML Activities for Incremental De-
velopment and Verification,” in Proceedings of the 12th Int. Conference
on Model Driven Engineering, Languages and Systems (MoDELS), ser.
LNCS, A. Schiirr and B. Selic, Eds., vol. 5795. Springer-Verlag, Oct.
2009, pp. 571-585.

[7]1 Y. Yu, P. Manolios, and L. Lamport, “Model Checking TLA+ Specifi-
cations,” in Proceedings of the 10th IFIP WG 10.5 Advanced Research
Working Conference on Correct Hardware Design and Verification
Methods (CHARME99). London: Springer-Verlag, 1999, pp. 54-66.

[8] L. Lamport, Specifying Systems. Addison-Wesley, 2002.

[9] V. Slitten, F. A. Kraemer, and P. Herrmann, “Towards Automatic
Generation of Formal Specifications to Validate and Verify Reliable
Distributed Systems: A Method Exemplified by an Industrial Case
Study,” in Proceedings of the 10th ACM International Conference
on Generative Programming and Component Engineering (GPCEII).
ACM, 2011, pp. 147-156.

[10] J. Bengtsson, F. Larsson, P. Pettersson, W. Yi, P. Christensen, J. Jensen,
P. Jensen, K. Larsen, and T. Sorensen, “UPPAAL: A Tool Suite for
Validation and Verification of Real-Time Systems,” 1996.

[11] R. Alur and D. Dill, “Automata for Modeling Real-Time Systems,”
in Automata, Languages and Programming, ser. Lecture Notes in
Computer Science, M. Paterson, Ed. Springer Berlin / Heidelberg,
1990, vol. 443, pp. 322-335.

3http://www.bitreactive.com

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

R. Alur, C. Courcoubetis, and D. L. Dill, “Model-Checking for Real-
Time Systems,” in 5th Symposium on Logic in Computer Science
(LICS90), 1990, pp. 414-425.

IEC, “International Standard 61800-5-2, Adjustable Speed Electrical
Power Drive Systems — Part 5-2: Safety Requirements — Functional,”
July 2007.

L. Aceto, A. Burgueno, and K. Larsen, “Model Checking via Reach-
ability Testing for Timed Automata,” in Tools and Algorithms for the
Construction and Analysis of Systems, ser. Lecture Notes in Computer
Science, B. Steffen, Ed. Springer Berlin / Heidelberg, 1998, vol. 1384,
pp. 263-280.

L. Aceto, P. Bouyer, A. Burgueno, and K. G. Larsen, “The Power
of Reachability Testing for Timed Automata,” Theoretical Computer
Science, vol. 300, pp. 411-475, May 2003.

M. Lindahl, P. Pettersson, and W. Yi, “Formal Design and Analysis
of a Gear Controller,” in 4th International Workshop on Tools and
Algorithms for the Construction and Analysis of Systems, ser. Lecture
Notes in Computer Science, vol. 1384. Springer Verlag, 1998, pp.
281-297.

M. Abadi and L. Lamport, “An old-fashioned recipe for real time,”
ACM Transactions on Programming Languages and Systems, vol. 16,
pp. 1543-1571, 1994.

G. Graw, P. Herrmann, and H. Krumm, ‘“Verification of UML-based
real-time system designs by means of cTLA,” in Proceedings of the 3rd
IEEE International Symposium on Object-oriented Real-time distributed
Computing (ISORC2K). Newport Beach: IEEE Computer Society
Press, 2000, pp. 86-95.

N. A. Lynch and N. Shavit, “Timing-Based Mutual Exclusion,” in IEEE
Real-Time Systems Symposium. 1EEE Computer Society Press, 1992,
pp. 2-11.

T. A. Henzinger, “The Theory of Hybrid Automata,” in 1/th Annual
IEEE Symposium on Logic in Computer Science. ~1EEE Computer
Society Press, 1996, pp. 278-292.

K. Kesten and A. Pnueli, “Timed and Hybrid Statecharts and their
Textual Representation,” in Formal Techniques in Real-Time and Fault-
Tolerant Systems. Springer-Verlag, 1992, pp. 591-620.

F. A. Kraemer and P. Herrmann, “Transforming Collaborative Service
Specifications into Efficiently Executable State Machines,” ECEASST,
vol. 6, 2007.

R. Kurki-Suonio, A Practical Theory of Reactive Systems — Incremental
Modeling of Dynamic Behaviors. Springer-Verlag, 2005.
A. David, M. O. Miiller, and W. Yi, “Formal Verification of UML
Statecharts with Real-Time Extensions,” in Fundamental Approaches
to Software Engineering (FASEQ2), ser. Lecture Notes in Computer
Science, vol. 2306. Springer-Verlag, 2002, pp. 218-232.

A. Knapp, S. Merz, and C. Rauh, “Model checking - timed uml state
machines and collaborations,” in Proceedings of the 7th International
Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems: Co-sponsored by IFIP WG 2.2, ser. FTRTFT *02. London,
UK, UK: Springer-Verlag, 2002, pp. 395-416.

A. Furfaro and L. Nigro, “Model Checking Hierarchical Communicating
Real-Time State Machines,” in 10th IEEE Conference on Emerging
Technologies and Factory Automation (ETFAOS), vol. 1, Sept. 2005,
pp. 6 pp. —370.

J. S. Dong, P. Hao, S. Qin, J. Sun, and W. Yi, “Timed automata
patterns,” Software Engineering, IEEE Transactions on, vol. 34, no. 6,
pp. 844-859, 2008.

S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith, “Modular Verifi-
cation of Software Components in C,” IEEE Transactions on Software
Engineering, pp. 385-395, 2003.

X. Gong, J. Ma, Q. Li, and J. Zhang, “Automatic Model Building and
Verification of Embedded Software with UPPAAL,” in 2011 IEEE 10th
International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom). IEEE Computer Society Press, Nov.
2011, pp. 1118-1124.

C. Norstrom, A. Wall, and W. Yi, “Timed Automata as Task Models
for Event-Driven Systems,” in Real-Time Computing Systems and
Applications, 1999. RTCSA ’99. Sixth International Conference on,
1999, pp. 182 —189.

