
In Pro
eedings of the 4th International Conferen
e on Ele
troni
 Commer
e Resear
h (ICECR-4), 505{514, Dallas, ATSMA, IFIP, 2001.Trust-Based Pro
urement Supportfor Software Components�Peter HerrmannUniversity of DortmundComputer S
ien
e Department44221 Dortmund, GermanyPeter.Herrmann�
s.uni-dortmund.deAbstra
tComponent-stru
tured software fa
ilitates the design of problem-spe
i�
software solutions for a reasonable pri
e. Due to the signi�
ant number ofprin
ipals involved in the 
omponent development and employment pro
ess,however, a new 
lass of se
urity problems is introdu
ed. In parti
ular, amali
ious 
omponent is a threat to any appli
ation in
orporating it. Thus,a 
ustomer of software 
omponents has to atta
h importan
e to se
urityaspe
ts. Unfortunately, often the available information does not suÆ
e toperform a de
ent pro
urement de
ision. Therefore 
omponents have to beevaluated by means of 
erti�
ation and runtime monitoring. These meth-ods, however, are usually laborious and 
ostly. In order to redu
e theexpense of evaluating 
omponents, we apply an approa
h whi
h takes theexperien
e of other 
ustomers with a 
omponent in question into 
onsider-ation. It employs the 
on
ept of trust management enabling to 
al
ulatetrust values (i.e., values des
ribing the trust in a 
omponent) from goodor bad evaluations with it. Parti
ularly, we introdu
e a trust informationservi
e 
olle
ting expertises whi
h 
omponent 
ustomers and 
erti�
ationauthorities gained from 
erti�
ation of a 
omponent as well as monitoringit during deployment. From these evaluations a trust value is generatedand o�ered to parties interested to pur
hase the 
omponent. Moreover,we outline an extension of a runtime monitoring software whi
h enablesautomati
 generation of good or bad monitoring expertises. Likewise, theintensity of the runtime observations about a 
omponent may be adjusteddue to the 
urrent trust value of the 
omponent.Key Words: Software 
omponent, 
omponent pro
urement, trust manage-ment, trust information servi
e, runtime monitoring.�This work was funded by the German resear
h foundation DFG
1 Introdu
tionIn spite of its novelty, the approa
h of 
omponent-stru
tured software gainsmore and more popularity. It fa
ilitates the easy and 
ost-e�e
tive 
reationof appli
ations built from independently 
reated 
omponents (
f. e.g. [38℄).Moreover, 
omponent-based systems 
an be tailored to the spe
ial needs oftheir 
ustomers and varying requirements during runtime result in dynam-i
al 
hanging of 
omponents and their 
ouplings. A 
omponent-stru
turedsystem is not pur
hased as a monolith. Instead, di�erent developers 
reatethe 
omponents separately and o�er them on an open market. The targetappli
ation designer sele
ts and buys suitable 
omponents, probably fromvarious sour
es, 
on�gures them a

ording to the parti
ular needs of theappli
ation, and 
ouples them to the �nal software produ
t. The 
ombina-tion pro
ess utilizes the 
on
ept of expli
it 
ontra
ts. A 
ontra
t is legallybinding and des
ribes agreed properties of a 
omponent and, in parti
ular,its interfa
e. A

ording to [2℄, a 
ontra
t 
onsists of four parts spe
ifyingthe stru
ture of a 
omponent interfa
e (i.e., methods, input and outputparameters, ex
eptions), the desired behavior of the 
omponent and itsenvironment, syn
hronization aspe
ts, and quantitative quality-of-servi
eproperties. As another means to support system 
omposition, re
e
tionand introspe
tion [37℄ of 
omponents is provided as well (i.e., 
omponents
ontain spe
ial methods enabling the exploration of 
omponent properties,methods, and interfa
es at runtime). Furthermore, 
omfortable 
ouplingis fa
ilitated by s
ripting languages and visual appli
ation builder tools(e.g. [27℄).Meanwhile, some platforms for 
omponent-stru
tured software are avail-able. Best-known are Java Beans [37℄ and Enterprise Java Beans (EJB) [36℄.Moreover, in PC-based environments COM/DCOM [29℄ is well-established,too. Finally, the CORBA initiative extended its platform in order to sup-port 
omponent-stru
tured appli
ations [33℄. All platforms provide notionsfor des
ribing 
omponent types, parameter types, and interfa
es. Further-more, means to introspe
t 
omponents as well as 
oupling support are alsoo�ered.Like other software, 
omponents are usually sold as exe
utable 
ode.Sin
e their 
ontra
ts as well as other do
umentation 
an be delivered ele
-troni
ally, too, they are perfe
tly suited for being traded on ele
troni
 mar-kets. As an alternative, a 
omponent vendor may exe
ute a 
omponent ona remote host and o�er it as a tele
ommuni
ation servi
e. Here, the ap-pli
ation owner pur
hases just the servi
e in order to realize a distributed1




omponent-stru
tured system. A �rst system supporting the lookup of
omponents and servi
es is proposed in [13℄.Component-stru
tured software, however, imposes new se
urity riskssin
e, 
ompared with ordinary obje
t-oriented systems, it introdu
es newprin
iples and roles. Besides users and appli
ation owners, also 
omponentvendors, 
omponent servi
e providers as well as appli
ation builders areinvolved in the development and deployment of the software. Yet, the prin-
ipals 
annot trust ea
h other to full extent sin
e everybody may exploit thesoftware and its 
omponents in order to get an unwarranted advantage andtherefore forms a potential threat. In parti
ular, someone may mali
iouslyalter a 
omponent spoiling the se
urity of the whole 
omponent-stru
turedsystem. For instan
e, a 
omponent may be 
hanged in order to leak 
on�-dential information to a person not permitted to read it. Thus, to redu
ethe risk, a 
omponent forms for an appli
ation in
orporating it, the ap-pli
ation owner pro
ures 
omponents only if she has suÆ
ient trust in thewellmeaningness of the 
omponent vendors. A

ording to [39℄, an impor-tant 
ondition to 
arry out a pur
hase is that \the item sold 
orrespondsto its des
riptions and is suitable for its intended purpose".This paper is 
entered on an approa
h to support 
omponent pro
ure-ment de
isions by 
ombining trust-management [18℄ with runtime moni-toring and 
erti�
ation. Appli
ation owners may inform a so-
alled trustinformation servi
e about positive and negative evaluations of 
omponent
erti�
ation and runtime monitoring. From these expertises, the servi
e
al
ulates a so-
alled trust value stating the amount of trust users have ina 
ertain 
omponent. This value is o�ered to potential 
ustomers who mayutilize it for their pro
urement de
isions. Moreover, the trust value 
an alsobe used to de
ide about the intensity of 
omponent runtime monitoring.In the sequel, we will outline major se
urity aspe
ts of 
omponent stru
-tured software as well as trust management. Thereafter we sket
h our trustinformation system in order to support pro
urement de
isions. In the fol-lowing se
tions, me
hanisms to register 
omponents and to inquire trustvalues are introdu
ed to greater detail. Finally, we outline an extension toruntime monitoring in order to automate expertise generation and moni-toring 
ontrol.2 Component Se
urityDistributed 
omponent-stru
tured software imposes new se
urity aspe
ts
aused by the high number of di�erent prin
ipals. Moreover, it in
ludes
also se
urity problems of lo
al appli
ations, distributed systems, and mobile
ode appli
ations. Lindqvist and Jonsson [26℄ developed a taxonomy ofse
urity risks for 
omponents 
omprising the following aspe
ts:� Component design: A 
omponent may 
ontain inadvertent or inten-tional design 
aws forming se
urity risks for the in
orporating appli
a-tions (e.g., a Trojan Horse, i.e., additional hidden fun
tions damagingthe 
omponent environment). Another problem is 
aused by inad-equate or in
orre
t 
omponent interfa
e do
umentations preventingse
ure integration or deployment of 
omponents.� Component pro
urement: Due to insuÆ
ient information about se-
urity aspe
ts of 
omponents, it is diÆ
ult to de
ide if a 
omponent
onforms with the 
ustomer's real se
urity requirements. Furthermore,if a 
omponent is delivered via an inse
ure 
hannel, it may be mali-
iously manipulated by a third party.� Component integration: If a 
omponent is integrated into an appli-
ation without fully understanding the pre
onditions for se
ure oper-ation, a vulnerability may be imposed to the appli
ation. Moreover,two 
omponents may be in
ompatible with respe
t to their se
uritylevels (i.e., 
ooperation is only possible if essential safeguards are aban-doned).� Distribution of the 
omponent-stru
tured system: Data between 
om-ponents may be wiretapped, modi�ed, or destroyed during the transfervia an inse
ure network. Moreover, a network 
onne
tion may be ex-ploited for intruding a host 
omputer in order to atta
k a 
omponentresiding on the host.� System use: A 
omponent-stru
tured appli
ation or single 
omponentsmay be used in a way not intended by the 
omponent developers. Thus,se
urity possibly relies on inadequate se
urity me
hanisms.� System maintenan
e: Dynami
 modi�
ation or extension of 
ompo-nents may lead to side-e�e
ts a�e
ting system se
urity. Furthermore,like the 
omponents themselves, updates are subje
t to modi�
ationsduring delivery, too.A further se
urity aspe
t, not listed in the taxonomy, is the mutual threatthat a 
omponent is atta
ked by a host 
omputer exe
uting it and vi
eversa (
f. [9, 21℄). Moreover, 
omponent vendors have to be prote
ted2



against wrong a

usations due to spite of appli
ation administrators, other
omponent vendors, and host operators. Finally, a 
omponent vendor hasto be prote
ted against unli
ensed deployment of 
omponents.In this publi
ation, we address the se
urity aspe
ts of 
omponent pro-
urement. The main problem here is the la
k of suitable information inorder to make sensible pur
hase de
isions. At �rst, the 
ustomer needsinformation to de
ide if a 
omponent of interest supplies adequate se
u-rity me
hanisms in order to guarantee the requirements of the appli
ationowner. At se
ond, the 
ustomer has to gain trust in the 
orre
tness of theinformation (i.e., the 
omponent must a
t in a

ordan
e with it).Useful for 
omponent evaluation are the expli
it 
omponent 
ontra
ts(
f. [2, 38℄) whi
h 
an be enri
hed with formal des
riptions of se
urity rel-evant obligations (
f. [22, 23℄). The �rst aspe
t, that a 
omponent hasto be adequate with se
urity requirements of the appli
ation owner, 
anbe performed by proving formally that the obligation spe
i�
ations andtheir 
ombinations ful�ll formal des
riptions des
ribing the se
urity require-ments. A �rst tool-supported solution for veri�
ation that the information
ow in a 
omponent-stru
tured system does not violate the requirementsof the appli
ation operators, is introdu
ed in [14℄. Here, we address these
ond aspe
t guaranteeing that the 
ustomer has suÆ
ient 
on�den
e ina 
omponent 
ontra
t in order to use it for her pro
urement de
ision.A method to gain trust in information about a software 
omponent is
erti�
ation whi
h may be performed either by the 
ustomer herself or bya 
erti�
ation authority. In a 
ustomer-based 
erti�
ation the appli
ationowner performs various 
he
ks in order to determine the suitability of the
omponent for the appli
ation, its quality, and its impa
t on the systemin
orporating the 
omponent. In parti
ular, one 
he
ks that the 
ompo-nent a
ts in a

ordan
e with its 
ontra
t des
riptions. Voas [41℄ proposesbla
k-box testing, software fault inje
tion, and operational system testingas te
hniques for 
ertifying 
omponent reliability and se
urity. In bla
k-box
omponent testing the 
omponent is exe
uted with various test inputs anda so-
alled ora
le de
ides about failures (
f. [30℄). In system fault inje
-tion data propagated between 
omponents is voluntarily 
orrupted in orderto provide worst-
ase predi
tions in 
ase of mali
ious 
omponent behavior(
f. [42℄). In operational system testing the 
omplete system is exe
utedin a sand box (
f. [44℄) as a 
omplementary means to determine the im-pa
t of the 
omponent on the system. Other methods to 
he
k 
omponentsare 
ode inspe
tions (white-box testing) and byte-
ode veri�
ation. In a
ode inspe
tion the sour
e 
ode of a 
omponent is walked through in or-
der to dete
t implementation faults. Often, however, 
ode inspe
tions areimpossible sin
e many 
omponents are delivered without sour
e 
ode. In
ontrast, in a byte 
ode veri�
ation exe
utable 
ode is 
he
ked for se
urity
aws. If te
hniques based on virtual ma
hines are used (e.g., Java), thisanalysis 
an frequently be performed with an a

eptable expenditure dueto the sour
e 
ode-like shape of the byte 
ode and powerful tool-support.Alternatively, the quality 
he
ks may be performed by an authenti
ationauthority. If the tests performed by this trusted third-party were su

essful,it issues 
redentials to interested prin
ipals. If a 
omponent 
ustomer has
on�den
e in the authority and its testing te
hniques, she 
an assume thata 
omponent provided with a 
redential is se
ure.Another method to gain trust in 
omponents is runtime monitoring. Aso-
alled software wrapper [10℄ is a pie
e of 
ode extending a 
omponent.While the wrapper does not 
hange the behavior of the 
omponent, it mon-itors the 
omponent interfa
e for se
urity 
aws. We extended this 
on
eptto generi
 se
urity wrappers [17℄. These wrappers 
ontain se
urity behaviordes
riptions of the 
omponent 
ontra
ts whi
h are 
he
ked for 
omplian
ewith the real a
tions at the 
omponent interfa
e. If a wrapper dete
ts thatan a
tion is not in a

ordan
e with a 
ontra
t des
ription, it immediatelyisolates the 
omponent and noti�es the appli
ation operator. While themean runtime overhead of the se
urity wrappers is only 5%, one may re-du
e the intensity of the 
he
ks if the trust in a 
omponent raises due tolong-lasting 
orre
t behavior.The approa
h introdu
ed below goes a step further. It fa
ilitates to uti-lize experien
e, other 
omponent users gained from 
erti�
ation or runtimemonitoring. It is similar to the 
on
ept of Label Bureaus [35℄ used to labelweb pages in order to prote
t 
hildren from unintentional a

ess to obje
-tionable 
ontents. The labels for the web-pages result from self-ratings ofthe web page designers (�rst-party), 
ommunity ratings by interested users(se
ond-party), and rating by trusted authorities (third-party). With re-spe
t to se
urity obje
tives, however, �rst-party ratings are futile sin
e amali
ious prin
ipal would never 
onfess his real intentions. Ratings from
omponent users 
an be 
lassi�ed as se
ond-party while expertises by 
er-ti�
ation authorities are third-party ratings.3 Trust ManagementKhare and Rifkin [24℄ predi
t that the World Wide Web \will soon re
e
tthe full 
omplexity of trust relationships among people, 
omputers, and or-3



ganizations." Trust management is a new philosophy in order to determinethe adequa
y of trust relationships and therefore to prote
t the Web andother open, de
entralized systems against mali
ious behaviors. A

ordingto J�sang [18℄ trust 
an be gained in human intera
tion as well as in in-tera
tion of humans and 
omputer systems. Humans are 
alled passionateentities while things like 
omputers, algorithms, et
. without a free will arenamed rational entities. Two separate kinds of trust are de�ned:� Trust in a passionate entity: A passionate entity A trusts anotherpassionate entity B if A believes that B behaves without mali
iousintent.� Trust in a rational entity: A passionate entity A trusts a rational entityB that it will resist mali
ious manipulations 
aused by an externalpassionate entity C. This re
e
ts that B 
annot be honest or mali
iousitself sin
e it has no free will but it 
an be built in a way that it a
tsnot mali
iously and withstands hostile atta
ks.Moreover, Beth et al. [1℄ distinguish two further kinds of trust:� Dire
t trust: An entity A trusts dire
tly in another entity B if it be-lieves in the 
apabilities of B itself.� Re
ommendation trust: An entity A trusts in the re
ommendations ofB with respe
t to a third entity C if it believes that B will give areliable and honest assessment of the 
apabilities of C.Trust in a passionate or rational entity is based on gaining many positiveexperien
e with the entity behavior while the negative experien
e shouldbe low. This 
an be expressed mathemati
ally by trust values expressingbelief, disbelief, and un
ertainty in an entity. The des
ription of un
ertaintyis ne
essary sin
e with only small knowledge in an entity it 
annot seriouslybe assessed. In [19℄, J�sang de�nes a so-
alled opinion-triangle (
f. Fig. 1)for modeling trust values. Belief, disbelief, and un
ertainty are spe
i�edby the values b, d, resp. u whi
h are real numbers between 0 and 1 ea
h.Moreover, b + d + u = 1 holds always and the trust in an entity is statedby a point in the triangle. The perpendi
ular models the un
ertainty in anentity while the belief or disbelief is des
ribed by the horizontal. A trustvalue of an entity based only on low knowledge is modeled by a point 
loseto the top while points on the right or left bottom state great belief resp.disbelief whi
h is based on a large number of evaluations.
BeliefDisbelief

Uncertainty

0

0

0

1 1

b

u

d

1

Figure 1: Opinion Triangle (taken from [19℄)The trust values are 
al
ulated from the number of good or bad exper-tises of the entity in question. Assuming that the values p and n des
ribethe numbers of positive resp. negative events with an entity, J�sang andKnapskog [20℄ 
al
ulate the three trust values by means of the followingformulas: b = pp+n+1 d = np+n+1 u = 1p+n+1Thus, a negative event 
an be 
ompensated by some positive expertises andthe metri
 expresses a relatively liberal trust management philosophy. In
ontrast, Beth et al. [1℄ de�ne an unforgiving poli
y. The probability thatthe belief b ex
eeds a 
ertain value � is expressed by the formulaP (b > �jp; n) = � 1� �p : n = 00 : n > 0and the disbelief and un
ertainty are 
al
ulated from b by the formulasd = � 0 : n = 01 : n > 0 u = � 1� b : n = 00 : n > 0Thus, a single negative experien
e destroys the trust in the entity forever.If nothing bad happens, the amount of belief depends on the number ofgood events. Many other metri
s are sensible, too, and the rigorousness ofa metri
 should depend on the 
onsequen
es, a brea
h of 
on�den
e has forthe entities to prote
t.4



Trust management 
an be used for several appli
ation domains and in [1℄key generation, authorization, keeping se
rets, 
erti�
ation, 
lo
k syn
hro-nization, and program validation are listed as possible areas. In the �eld ofauthorization systems �rst solutions are implemented (e.g., [5℄). Here, a
-
ess to a resour
e does not depend on traditional a

ess 
ontrol me
hanisms.Instead, a 
aller has to show 
redentials issued by third parties stating thedire
t trust these parties have into the 
aller. Depending on these valuesas well as on the re
ommendation trust in the third parties, the resour
eowner may de
ide about granting or reje
ting a

ess. Implementations ontrust management-based authorization systems 
omprise Poli
yMaker [6℄,REFEREE [8℄, and KeyNote [4℄. Another realization are the Label Bu-reaus [35℄ outlined in Se
. 2. Here, the labels for evaluating the 
ontent ofweb pages are 
al
ulated depending on the ratings of the various parties aswell as on the trust in these parties.4 Trust Information SystemIn order to utilize experien
es users made with a 
omponent, we need atrusted third-party 
olle
ting expertises of good and bad 
omponent behav-ior, 
al
ulating trust values from the expertises, and passing trust values tointerested 
ustomers. The tasks are realized by the Trust Information Ser-vi
e delineated in Fig. 2. This servi
e 
orresponds with 
omponent vendors,interested prin
ipals pur
hasing and deploying 
omponents, and authorities
ertifying 
omponents in behalf of a vendor or user.Component vendors may register any software 
omponent o�ered 
om-mer
ially or free of 
harge de
laring themselves to be in agreement thatthe trust information servi
e 
olle
ts expertises about the 
omponent ando�ers the 
orresponding trust values to interested parties. Of 
ourse, thede
ision to register a 
omponent is voluntary. Nevertheless, sin
e registra-tion shows 
on�den
e with the o�ered produ
t, it is an e�e
tive marketinginstrument. Furthermore, due to the in
reased information 
ustomers mayde
ide to buy only registered and evaluated produ
ts and therefore, defa
to, enfor
e 
omponent vendors to register.Parties interested in information about 
omponents inquire their trustvalues from the trust information servi
e. Moreover, the trust informationservi
e o�ers an alarm servi
e notifying all interested 
omponent users im-mediately about mali
ious experien
es gained with a 
omponent. To geta large number of expertises from varying sour
es, the trust informationservi
es 
alls all 
ustomers in intervals for reports about the 
omponent

Trust

Value

Manager

Cipher

Service

Trust Information Service

Component

Vendor

Component

Customer

Certification

Authority

Vendor registers

component and

receives signed cipher

Cipher Service

announces new cipher

Vendor delivers

signed cipher

Cipher service

delivers public key

Trust Information

Service delivers

trust value

based on cipher

and

notifies customer

about incoming

bad experiences

Component

Customer passes

reports on

experiences with

ciphered component

Certification Authority

certifies component

in behalf of vendor

Certification Authority

certifies component

in behalf of customer

Certification

Authority passes

report on

certification results

Figure 2: Trust Information Servi
ebehavior during runtime. Furthermore, if a 
omponent user dete
ts a se-rious in
ident indi
ating mali
ious 
omponent behavior, she informs thetrust information servi
e immediately in order to warn other users.To guarantee a high degree of priva
y for the 
omponent produ
ers, theexpertises of 
omponents are not stored together with 
omplete 
omponentdes
riptors but are separated. Thus, the trust information servi
e 
onsistsof two parts: a Cipher Servi
e and a Trust Value Manager. If a 
omponentvendor registers a new 
omponent, the 
ipher servi
e stores the relevantdata and 
reates a unique 
ipher. In 
ontrast, the trust value managerperforms the storage of expertises, 
al
ulation of trust values, transmissionof trust values and alarm messages, as well as the inquiry of expertises basedon the 
iphers. This separation of 
omponent identi�ers and expertise databetween two parts provides priva
y sin
e neither the 
ipher servi
e northe trust value manager have 
omplete knowledge about the 
omponents.In 
ontrast, the 
omponent 
ustomers and 
erti�
ation authorities have
omplete knowledge whi
h, however, is limited to the very small amount of
omponents employed or 
erti�ed by themselves.5



5 Component RegistrationIf a 
omponent vendor de
ides to subje
t a 
omponent to the trust-basedevaluation pro
ess, he �rst registers it with the trust information servi
e.The registration pro
edure has to ensure that the vendor does not ma-nipulate a 
omponent between registration and delivery in order to 
heatthe trust information servi
e. Moreover, one has to prevent third-partiesto 
hange 
omponents during delivery to 
ustomers or registration. Thesetasks are guaranteed by employing digital signatures (e.g., [34℄) whi
h arerealized by the Java Cryptography Ar
hite
ture [11℄. A digital signature ofa data set is performed in two steps: At �rst, the data transmitter generatesa hash-value of the data set, the so-
alled message digest, by means of thehash fun
tion SHA-1 [32℄. Thereafter, he en
rypts the message digest us-ing his private key by applying the Digital Signature Algorithm (DSA) [31℄and transmits the resulting digital signature together with the data set.The re
eiver de
rypts the signature with the publi
 key of the transmitter.Finally, she hashes the data set herself and 
ompares the two hash-values.If the hash-values are di�erent, the data was altered during transport. Amali
ious third-party 
annot 
reate a digital signature 
ompatible to hismanipulations sin
e he has not a

ess to the private key of the transmitter.In the �rst step of the registration pro
edure the 
omponent vendor 
re-ates a digital signature A of the 
omponent to register and transmits Atogether with the 
omponent to the 
ipher servi
e whi
h 
he
ks the hash-values. If the 
omponent was not manipulated, the 
ipher servi
e 
reatesa unique 
ipher of the 
omponent and stores it with other relevant data ofthe 
omponent and its vendor in a lo
al database. Moreover, prote
ted bya digital signature B, the 
ipher is sent to the trust value manager whi
hadds a new entry to its trust value database. The 
ipher servi
e 
reates athird digital signature C from the re
ord of A and the 
ipher. C is trans-mitted to the 
omponent vendor who delivers it to persons interested in the
omponent. Sin
e C 
ontains the digital signature A whi
h was en
ryptedby the private key of the 
ipher servi
e, the vendor 
annot alter the 
om-ponent anymore without notifying the 
ipher servi
e. The 
ipher servi
e,however, does not register an altered 
omponent without 
reating a new
ipher. Therefore a 
ustomer 
an 
ompare the hash-values of signature Awhi
h is in
luded in C and of the pro
ured 
omponent by using the publi
keys of the 
ipher servi
e and the vendor. If the hash-values are identi-
al, she has 
on�den
e that the 
ipher in C really belongs to the pro
ured
omponent and that the 
omponent was not 
hanged during delivery.
6 Trust Value InquiryIf a 
ustomer wants to assess various 
omponents in order to get suÆ
ientinformation for her pro
urement de
ision, she asks the vendors for the dig-ital signatures C of the 
omponents whi
h are usually delivered withoutthe 
omponent 
ode. Thereafter, the 
ustomer de
rypts the signatures inorder to get the 
orresponding 
iphers whi
h are transmitted1 to the trustvalue manager. For ea
h 
omponent two separate trust values are stored.One trust value is 
al
ulated a

ording to the metri
 of J�sang and Knap-skog [20℄ while the other re
e
ts the poli
y of Beth et al. [1℄. Thus, moretolerant as well as more rigid 
ustomer poli
ies are supported. Sin
e a trustvalue 
onsists of three values indi
ating the belief, disbelief, and un
ertaintyin a 
omponent (
f. Se
. 3), the trust value manager passes six values forea
h 
ipher 
omponent to the 
ustomer.Now the 
ustomer 
an 
ompare the trust values of the 
omponents inquestion. Besides pro
urement, they 
an also be used to de
ide aboutsubje
ting the 
omponent to a 
erti�
ation pro
ess as well as to determinethe intensity of runtime monitoring measures (
f. Se
. 7). The trust values,however, des
ribe only one aspe
t of a 
omponent. Other aspe
ts 
omprisethe pri
e of a 
omponent, the interfa
e stru
ture whi
h may fa
ilitate orimpede the integration of the 
omponent into the appli
ation, and qualityof servi
e issues like performan
e requirements. Moreover, one 
an also takethe dependability of a 
omponent in 
onsideration whi
h 
an be 
al
ulatedby similar metri
s as the trust values [43℄.In order to o�er trust values with a high de
ree of 
ertainty, a largenumber of expertises is needed. Therefore the trust value manager 
allsa 
ustomer about a week after an inquiry for trust values. The 
ustomerretransmits the 
ipher of the sele
ted 
omponents, the results of 
ustomer-based 
erti�
ations, as well as �rst evaluations of runtime monitoring. Ifthe 
erti�
ation or the monitoring measures 
ould not disprove that thebehavior of a 
omponent 
omplies with its 
ontra
t des
ription, the 
us-tomer passes a positive rating. If the 
ustomer dete
ted errors, she sendsa negative expertise together with a log of interfa
e a
tions proving themalfun
tioning and preventing wrong a

usations. Sin
e 
erti�
ations tendto be more thorough and profound than runtime monitoring, a 
ustomer-based 
erti�
ation is rated to three runtime evaluations. After the �rst1In order to prevent manipulations of the 
iphers, all data transmissions are prote
tedby digital signatures.6



inquiry, the trust value manager asks a 
ustomer every six weeks2 aboutthe experien
e with 
omponents gained by runtime monitoring. Moreover,if a 
omponent owner dete
ts serious mali
ious 
omponent behaviors, sheinforms the trust value manager immediately.Another valuable means of gaining expertises are 
erti�
ation authorities.If the 
omponent vendor or a 
ustomer initiates a third-party 
erti�
ation,the 
omponent is sent together with the digital signature C and the author-ity is asked to transmit the 
erti�
ation result to the trust value manager.Depending on the re
ommendation trust in the 
erti�
ation authority the
erti�
ation results are 
al
ulated between three and 50 runtime monitoringexpertises.In order to prote
t appli
ation owners against mali
ious 
omponent be-havior, the trust value manager o�ers an alarm servi
e. A 
ustomer bookingthis servi
e is immediately noti�ed when bad expertises about a 
omponentare re
eived. Thus, users 
an often isolate a faulty 
omponent before it
auses harm for its appli
ation. Currently, two alarm modes are o�ered:In the �rst variant an alarm is only triggered if an user reports a severese
urity violation while in the se
ond mode the alarm message is exe
utedafter any kind of negative evaluation.7 Trust-Based Runtime MonitoringThe pro
ess to gain evaluations based on runtime monitoring 
an be fa
il-itated by appli
ation of the se
urity wrappers introdu
ed in [17℄. Here, a
omponent in question is wrapped with spe
ial 
omponents 
he
king theevents at the 
omponent interfa
e for 
omplian
e with se
urity obje
tives�xed in the 
omponent 
ontra
t. The 
onstraints are modeled by state-transition-systems whi
h are simulated during runtime (
f. [3℄). Ea
h model
onstrains the passing of events and the 
omponent interfa
e in order toguarantee a 
ertain se
urity aspe
t. For instan
e, assume that the 
om-ponent in question A may only 
all a method M of a partner 
omponentB, if it previously re
eived a 
ertain 
redential from a third 
omponent Cby means of C 
alling the method N of A. The 
orresponding 
onstraintspe
i�
ation uses the states s and t. s is initial and states that the 
re-dential did not arrived yet while t models that the 
redential is available.The transitions 
on
ern the events M and N . When N is exe
uted, the2In 
ase of ele
troni
 trust managers (
f. Se
. 7) the 
alls are performed every 48hours.
Bean

to be

checked

Adapter

Observer Monitor

Adapter Generator

Java

Security

Manager

Trust

Manager

Introspects

Bean
Generates

Reports

Events

Reports

Controls

Controls

Controls

Intensity

of Checks

Watches

Reports

Reports

Controls

Figure 3: Se
urity Wrapper Ar
hite
turespe
i�
ation sets the 
urrent state to t. Transitions of event M state thatthis event may only be �red in state t but not in s. The parti
ular modeldoes not re
e
t other events at the interfa
e.The task of the se
urity wrapper is to simulate the model and to 
he
k itfor 
omplian
e with the real interfa
e behavior. In parti
ular, it stores and
al
ulates the 
urrent state and 
ompares interfa
e events with the model.If in our example 
omponent A wants to exe
uted the method 
all M , thewrapper �rst 
he
ks if the 
all is performed in state s or t. The method
all is legal if the model simulation is in the state t and the wrapper passesM to 
omponent B. However, the 
all of method M in state s indi
atesthat A tried the 
all without the 
redential whi
h is a violation of the
orresponding se
urity obje
tive. Here, the wrapper seals the 
omponentby blo
king the intera
tion between the 
omponent and its environment.Moreover, the appli
ation operator is informed about the violation.We spe
ify the se
urity 
onstraints in the formal spe
i�
ation te
h-nique 
TLA [16℄ whi
h is based on Lamport's Temporal Logi
 of A
tions(TLA) [25℄. 
TLA fa
ilitates modeling of safety, liveness, and realtime [15℄properties in a pro
ess style similar to high-level programming languages.Moreover, it supports the de�nition of 
onstraint-oriented spe
i�
ations(
f. [40℄) ea
h modeling a separate se
urity aspe
t of a 
omponent. These
urity obje
tives 
an also be spe
i�ed as diagrams in the popular Uni�edModeling Language (UML) [7℄ and translated to 
TLA pro
esses (
f. [12℄).7



A �rst prototype implementation [28℄ is realized as a 
omponent stru
-tured system itself based on Java Beans [37℄. Fig. 3 delineates the enfor
e-ment system. Ea
h bean to be 
he
ked is wrapped by a spe
ial Adapter
omponent. It does not intera
t dire
tly with its environment but only viathe adapter. Thus, in
oming and outgoing events 
an be observed and |in 
ase of sealing the bean | also blo
ked.The 
omplian
e 
he
ks are performed by the Observer 
omponents. Forea
h 
TLA 
onstraint spe
i�
ation a separate observer is generated whi
hsimulates a 
TLA pro
ess and 
he
ks if the real bean behavior 
orrespondsto the simulated behavior. Therefore the adapter forwards all interfa
eevents to the observers whi
h perform the 
omplian
e 
he
ks and send theresults ba
k to the adapter. If all 
he
ks are 
orre
t, the adapter passesin
oming events to the bean and outgoing events to the environment. Onthe other hand, if an observer dete
ts a violation, the adapter blo
ks allongoing events leading to the isolation of the bean in the appli
ation.Other obje
ts of the wrapper 
omprise an Adapter Generator analyzinga bean to be 
he
ked by introspe
tion and 
reating an adapter based onthis analysis. The Monitor a
ts as an intera
tive interfa
e to the appli
a-tion administrator. If an observer dete
ts a violation, it reports it to themonitor whi
h shows it on the administrator s
reen. Moreover, the toolutilizes the built-in Java Se
urity Manager. In order to prevent hiddendata 
hannels, the administrator may redu
e the a

ess of beans to 
ertainsystem resour
es by parameterizing the se
urity manager.The Trust Manager is of parti
ular interest for the work introdu
ed inthis paper sin
e it represents the link between the se
urity wrapper andthe trust information system outlined above. If an observer dete
ts a vio-lation, it noti�es not only the monitor but also the trust manager. If thetrust manager 
onsiders the violation as severe, it sends a warning messageto the trust value manager whi
h in
ludes a log of the events at the beaninterfa
e. Moreover, the trust manager replies inquiries of the trust valuemanager. If it was noti�ed by an observer about a violation, it transmitsa negative expertise and, otherwise, a positive evaluation report. Further-more, the trust manager rea
ts on in
oming alarm messages from the trustinformation system. After an alarm it 
alls an observer whi
h 
auses theadapter to seal the bean in order to prote
t the appli
ation.Experien
es showed that the performan
e penalty of the se
urity wrapperis less than 5 % on a state-of-the-art PC (
f. [17℄). Nevertheless, one 
analso use the system to adapt the monitoring expenditure to the 
urrent trustvalue of a bean. Therefore, the trust manager implements a se
urity poli
y
stating the amount of observation with respe
t to a 
ertain trust poli
y. Inintervals, it inquires the trust information system for trust values. Based onthe 
urrent values it 
an omit 
omplian
e tests by stopping observers. Here,two possibilities are available: At �rst, an observer 
an be removed whi
hrenders maximum performan
e gain but rules out the possibility to 
ontinueobservations at a later time sin
e the 
urrent state of the 
TLA pro
ess islost. To prevent this, in the se
ond alternative an observer is swit
hed intoa spe
ial mode where it omits 
omplian
e 
he
ks but still 
al
ulates the
urrent 
TLA pro
ess states. Thus, the observer 
an be rea
tivated againif the trust values are getting worse. Moreover, it is possible to performspot 
he
ks where an observer perform 
omplian
e tests only in intervals.The duration of the 
he
ks may be adjusted a

ording to the trust value ofthe 
omponent.8 Con
lusionWe proposed an approa
h to support se
ure pro
urement and deploymentof 
omponents by introdu
tion of a trust information servi
e employing theexperien
e gained by other 
omponent users. Currently, a �rst prototypeis under development [45℄. It is 
reated based on Java Beans and will be
ompatible with the se
urity wrapper introdu
ed in [17℄. For a 
ommer-
ial realization, however, more problems have to be solved. In parti
ular,�nan
ing issues have to be 
onsidered. Potential sour
es of in
ome to �-nan
e the trust information servi
e 
omprise the 
omponent vendors whomay use good ratings for marketing, the 
omponent 
ustomers who aresupported to buy se
ure 
omponents, and internet advertisements o�eredin the servi
e web representation.Another problem is to �nd solutions to prote
t 
omponent vendorsagainst erroneous a

usations 
ausing bad trust values of a 
omponentwrongly. Here, trusted third-party 
omponents may be used to mediate
on
i
ts between prin
iples. For instan
e, an arbiter 
omponent may be
alled if a 
ustomer or a 
erti�
ation authority passes a bad evaluation tothe trust value manager. The arbiter 
he
ks logs and audits of the eventin question as well as the trust value of the 
omponent vendor and de
idesif the a

usation is 
orre
t. The trust value manager may only re
ognizethe negative expertise if the 
omponent vendor is pronoun
ed guilty bythe arbiter. The mediation 
an be supported by another 
lass of 
ompo-nents a
ting as witnesses. On behalf of the vendor, the 
ustomer, or thearbiter these witnesses may observe 
omponents and the in
orporating ap-8



pli
ations. In 
ase of an a

usation, the witnesses support the arbiter bytelling their observations. Furthermore, the trust information servi
e 
anbe extended in order to store evaluations and trust values not only of 
om-ponents but also of 
omponent vendors and 
ustomers. Thus, the arbitermay utilize the reputations of a vendor and a 
ustomer in order to de
ideabout a

usations.Referen
es[1℄ T. Beth, M. Bor
herding, and B. Klein, \Valuation of Trust in OpenNetworks", in: European Symposium on Resear
h in Se
urity (ES-ORICS), Brighton, LNCS 875, Springer-Verlag, 3{18 (1994).[2℄ A. Beugnard, J.-M. J�ez�equel, N. Plouzeau, and D. Watkins, \MakingComponents Contra
t Aware", IEEE Computer, vol. 32, no. 7, 38{45(1999).[3℄ J. Biskup and C. E
kert, \About the enfor
ement of state depen-dent se
urity spe
i�
ations", in: Database Se
urity, eds. T. Keefe andC. Landwehr, Elsevier S
ien
e (NorthHolland), 3{17 (1994).[4℄ M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, \TheKeyNote Trust Management System, Version 2", in: Report RFC-2704, IETF (1999).[5℄ M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, \The Roleof Trust Management in Distributed Systems Se
urity", in: InternetProgramming: Se
urity Issues for Mobile and Distributed Obje
ts, eds.J. Vitek and C. Jensen, Springer-Verlag (1999).[6℄ M. Blaze, J. Feigenbaum, and J. La
y, \De
entralized Trust Manage-ment", in: 17th Symposium on Se
urity and Priva
y, Oakland, IEEEComputer So
iety Press, 164{173 (1996).[7℄ G. Boo
h, J. Rumbaugh, and I. Ja
obson, \The Uni�ed ModelingLanguage User Guide", Addison-Wesley Longman (1999).[8℄ Y.-H. Chu, J. Feigenbaum, B. LaMa

hia, P. Resni
k, and M. Strauss,\REFEREE: Trust Management for Web Appli
ations", World WideWeb Journal, vol. 2, 127{139 (1997).[9℄ W. Farmer, J. Guttman, and V. Swarup, \Se
urity for Mobile Agents:Issues and Requirements", in: 19th National Information SystemsSe
urity Conferen
e (NISSC 96), 591{597 (1996).[10℄ T. Fraser, L. Badger, and M. Feldman, \Hardening COTS Softwarewith Generi
 Software Wrappers", in: 1999 IEEE Symposium on Se-
urity and Priva
y (1999).

[11℄ L. Gong, \Java Se
urity Ar
hite
ture (JDK1.2)", available via WWW:java.sun.
om/produ
ts/jdk/1.2/do
s/guide/se
urity/spe
/se
urity-spe
.do
.html (1998).[12℄ G. Graw, P. Herrmann, and H. Krumm, \Constraint-Oriented For-mal Modelling of OO-Systems", in: Se
ond IFIP WG 6.1 Interna-tional Working Conferen
e on Distributed Appli
ations and Interoper-able Systems (DAIS 99), Helsinki, Kluwer A
ademi
 Publisher, 345{358 (1999).[13℄ J. Grundy, \Storage and retrieval of Software Components using As-pe
ts", in: 2000 Australasian Computer S
ien
e Conferen
e, Can-berra, IEEE Computer So
iety Press (2000).[14℄ P. Herrmann, \Information Flow Analysis of Component-Stru
turedAppli
ations", to appear in: 17th Annual Computer Se
urity Appli
a-tions Conferen
e (ACSAC'2001), New Orleans, ACM SIGSAC, IEEEComputer So
iety Press (2001).[15℄ P. Herrmann and H. Krumm, \Formal Hazard Analysis of HybridSystems in 
TLA", in: 18th IEEE Symposium on Reliable DistributedSystems (SRDS'99), Lausanne, IEEE Computer So
iety Press, 68{77(1999).[16℄ P. Herrmann and H. Krumm, \A Framework for Modeling TransferProto
ols", Computer Networks, vol. 34, no. 2, 317{337 (2000).[17℄ P. Herrmann and H. Krumm, \Trust-adapted enfor
ement of se
uritypoli
ies in distributed 
omponent-stru
tured appli
ations", in: 6thIEEE Symposium on Computers and Communi
ations, Hammamet,IEEE Computer So
iety Press, 2{8 (2001).[18℄ A. J�sang, \The right type of trust for distributed systems", in: UCLA
onferen
e on New se
urity paradigms workshops, Lake Arrowhead,ACM, 119{131 (1996).[19℄ A. J�sang, \An Algebra for Assessing Trust in Certi�
ation Chains",in: Network and Distributed Systems Se
urity Symposium (NDSS'99),ed. J. Ko
hmar, The Internet So
iety (1999).[20℄ A. J�sang and S. J. Knapskog, \A metri
 for trusted systems", in:21st National Se
urity Conferen
e, NSA (1998).[21℄ G. Karjoth, D. Lange, and M. Oshima, \A Se
urity Model for Aglets",IEEE Internet Computing, 68{77 (1997).[22℄ K. Khan, J. Han, and Y. Zheng, \Spe
ifying se
urity requirementsand assuran
es of software 
omponents", in: Australian Workshop onRequirements Engineering, Brisbane, 57{65 (2000).[23℄ K. Khan, J. Han, and Y. Zheng, \A Framework for an A
tive Interfa
e9



to Chara
terise Compositional Se
urity Contra
ts of Software Compo-nents", in: Australian Software Engineering Conferen
e (ASWEC'01),Canberra, IEEE Computer So
iety Press, 117{126 (2001).[24℄ R. Khare and A. Rifkin, \Weaving a Web of Trust", World Wide WebJournal, vol. 2, no. 3, 77{112 (1997).[25℄ L. Lamport, \The Temporal Logi
 of A
tions", ACM Transa
tions onProgramming Languages and Systems, vol. 16, no. 3, 872{923 (1994).[26℄ U. Lindqvist and E. Jonsson, \A Map of Se
urity Risks Asso
iatedwith Using COTS", IEEE Computer, vol. 31, no. 6, 60{66 (1998).[27℄ C. L�uer and D. S. Rosenblum, \WREN | An Environment forComponent-Based Development", Te
hni
al Report #00-28, Univer-sity of California, Irvine, Department of Information and ComputerS
ien
e (2000).[28℄ A. Mallek, \Si
herheit komponentenstrukturierter verteilter Sys-teme: Vertrauensabh�angige Komponenten�uberwa
hung" (in German),Diploma Thesis, University of Dortmund, Computer S
ien
e Depart-ment, 44221 Dortmund, Germany (2000).[29℄ Mi
rosoft, \The Mi
rosoft COM Te
hnologies", available via WWW:http://www.mi
rosoft.
om/
om/
omPapers.asp (1998).[30℄ B. P. Miller, L. Fredrikson, and B. So, \An Empiri
al Study of theReliability of Unix Utilities", Communi
ations of the ACM, vol. 32,no. 12, 32{44 (1990).[31℄ National Institute of Standards and Te
hnology (NIST), \Digital Sig-nature Standard (DSS)", FIPS, edition 186 (2000).[32℄ National Institute of Standards and Te
hnology (NIST), \Se
ure HashStandard (SHS)", FIPS, edition 180-1 (2000).[33℄ Obje
t Management Group, \CORBA Component Model Request forProposals" (1997).[34℄ R. L. Rivest, A. Shamir, and L. Adleman, \A Method for ObtainingDigital Signatures and Publi
 Key Cryptosystems", Communi
ationsof the ACM, vol. 21, no. 2, 120{126 (1978).[35℄ M. Shepherd, A. Dhonde, and C. Watters, \Building Trust for E-Commer
e: Collaborating Label Bureaus", in: 2nd InternationalSymposium on Ele
troni
 Commer
e Te
hnologies (ISEC'2001), eds.W. Kou, Y. Yesha, and C. J. Tan, Hong Kong, LNCS 2040, Springer-Verlag, 42{56 (2001).[36℄ Sun Mi
rosystems, \Enterprise Java Beans Te
hnology| Server Com-ponent Model for the Java Platform (White Paper)", available viaWWW: java.sun.
om/produ
ts/ejb/white paper.html (1998).
[37℄ Sun Mi
rosystems, \Java Beans Spe
i�
ation", available via WWW:java.sun.
om/beans/do
s/spe
.html (1998).[38℄ C. Szyperski, \Component Software | Beyond Obje
t Oriented Pro-gramming", Addison-Wesley Longman (1997).[39℄ K. A. Tee, \E-Commer
e in an Era of Creative Destru
tion", avail-able via WWW: www.alumni.nus.edu.sg/Alumnus/jul2000/e
om.html(2000).[40℄ C. A. Vissers, G. S
ollo, and M. van Sinderen, \Ar
hite
ture and spe
-i�
ation style in formal des
riptions of distributed systems", in: Proto-
ol Spe
i�
ation, Testing and Veri�
ation (PSTV'VIII), eds. S. Agar-wal and K. Sabnani, IFIP, Elsevier, 189{204 (1988).[41℄ J. Voas, \A Re
ipe for Certifying High Assuran
e Software", in: 22ndInternational Computer Software and Appli
ation Conferen
e (COMP-SAC'98), Vienna, IEEE Computer So
iety Press (1998).[42℄ J. Voas, G. M
Graw, A. Ghosh, and K. Miller, \Glueing togetherSoftware Components: How good is your Glue?", in: Pa
i�
 NorthwestSoftware Quality Conferen
e, Portland (1996).[43℄ J. Voas and J. Payne, \Dependability Certi�
ation of Software Com-ponents", The Journal of Systems and Software, vol. 52, no. 2{3,165{172 (2000).[44℄ R. Wabbe, S. Lu

o, T. E. Anderson, and S. L. Graham, \EÆ
ientsoftware-based fault isolation", in: 14th Symposium on Operating Sys-tem Prin
iples, ACM, 203{216 (1993).[45℄ M. Z�ul
h, \Ein Werkzeug zum Vertrauensmanagement komponen-tenbasierter Software" (in German), to appear as: Diploma Thesis,University of Dortmund, Computer S
ien
e Department, 44221 Dort-mund, Germany (2001).Peter Herrmann studied Computer S
ien
e at the University of Karlsruhe(diploma in 1990). Sin
e then he works as a resear
her in the Computer Net-works and Distributed Systems Group of the Computer S
ien
e Department atthe University of Dortmund (Ph.D. in 1997). His resear
h interests in
lude se
u-rity aspe
ts of distributed 
omponent-stru
tured software as well as formal-baseddevelopment of distributed appli
ations and hybrid te
hni
al systems.

10


