In Proceedings of the 4th International Conference on Electronic Commerce Research (ICECR-4), 505 514, Dallas, ATSMA, IFIP, 2001.

Trust-Based Procurement Support
for Software Components*

Peter Herrmann
University of Dortmund
Computer Science Department
44221 Dortmund, Germany
Peter.Herrmann@cs.uni-dortmund.de

Abstract

Component-structured software facilitates the design of problem-specific
software solutions for a reasonable price. Due to the significant number of
principals involved in the component development and employment process,
however, a new class of security problems is introduced. In particular, a
malicious component is a threat to any application incorporating it. Thus,
a customer of software components has to attach importance to security
aspects. Unfortunately, often the available information does not suffice to
perform a decent procurement decision. Therefore components have to be
evaluated by means of certification and runtime monitoring. These meth-
ods, however, are usually laborious and costly. In order to reduce the
expense of evaluating components, we apply an approach which takes the
experience of other customers with a component in question into consider-
ation. It employs the concept of trust management enabling to calculate
trust values (i.e., values describing the trust in a component) from good
or bad evaluations with it. Particularly, we introduce a trust information
service collecting expertises which component customers and certification
authorities gained from certification of a component as well as monitoring
it during deployment. From these evaluations a trust value is generated
and offered to parties interested to purchase the component. Moreover,
we outline an extension of a runtime monitoring software which enables
automatic generation of good or bad monitoring expertises. Likewise, the
intensity of the runtime observations about a component may be adjusted
due to the current trust value of the component.

Key Words: Software component, component procurement, trust manage-
ment, trust information service, runtime monitoring.

*This work was funded by the German research foundation DFG

1 Introduction

In spite of its novelty, the approach of component-structured software gains
more and more popularity. It facilitates the easy and cost-effective creation
of applications built from independently created components (cf. e.g. [38]).
Moreover, component-based systems can be tailored to the special needs of
their customers and varying requirements during runtime result in dynam-
ical changing of components and their couplings. A component-structured
system is not purchased as a monolith. Instead, different developers create
the components separately and offer them on an open market. The target
application designer selects and buys suitable components, probably from
various sources, configures them according to the particular needs of the
application, and couples them to the final software product. The combina-
tion process utilizes the concept of explicit contracts. A contract is legally
binding and describes agreed properties of a component and, in particular,
its interface. According to [2], a contract consists of four parts specifying
the structure of a component interface (i.e., methods, input and output
parameters, exceptions), the desired behavior of the component and its
environment, synchronization aspects, and quantitative quality-of-service
properties. As another means to support system composition, reflection
and introspection [37] of components is provided as well (i.e., components
contain special methods enabling the exploration of component properties,
methods, and interfaces at runtime). Furthermore, comfortable coupling
is facilitated by scripting languages and visual application builder tools
(e.g. [27]).

Meanwhile, some platforms for component-structured software are avail-
able. Best-known are Java Beans [37] and Enterprise Java Beans (EJB) [36].
Moreover, in PC-based environments COM/DCOM [29] is well-established,
too. Finally, the CORBA initiative extended its platform in order to sup-
port component-structured applications [33]. All platforms provide notions
for describing component types, parameter types, and interfaces. Further-
more, means to introspect components as well as coupling support are also
offered.

Like other software, components are usually sold as executable code.
Since their contracts as well as other documentation can be delivered elec-
tronically, too, they are perfectly suited for being traded on electronic mar-
kets. As an alternative, a component vendor may execute a component on
a remote host and offer it as a telecommunication service. Here, the ap-
plication owner purchases just the service in order to realize a distributed

component-structured system. A first system supporting the lookup of
components and services is proposed in [13].

Component-structured software, however, imposes new security risks
since, compared with ordinary object-oriented systems, it introduces new
principles and roles. Besides users and application owners, also component,
vendors, component service providers as well as application builders are
involved in the development and deployment of the software. Yet, the prin-
cipals cannot trust each other to full extent since everybody may exploit the
software and its components in order to get an unwarranted advantage and
therefore forms a potential threat. In particular, someone may maliciously
alter a component spoiling the security of the whole component-structured
system. For instance, a component may be changed in order to leak confi-
dential information to a person not permitted to read it. Thus, to reduce
the risk, a component forms for an application incorporating it, the ap-
plication owner procures components only if she has sufficient trust in the
wellmeaningness of the component vendors. According to [39], an impor-
tant condition to carry out a purchase is that “the item sold corresponds
to its descriptions and is suitable for its intended purpose”.

This paper is centered on an approach to support component procure-
ment decisions by combining trust-management [18] with runtime moni-
toring and certification. Application owners may inform a so-called trust
information service about positive and negative evaluations of component
certification and runtime monitoring. From these expertises, the service
calculates a so-called trust value stating the amount of trust users have in
a certain component. This value is offered to potential customers who may
utilize it for their procurement decisions. Moreover, the trust value can also
be used to decide about the intensity of component runtime monitoring.

In the sequel, we will outline major security aspects of component struc-
tured software as well as trust management. Thereafter we sketch our trust
information system in order to support procurement decisions. In the fol-
lowing sections, mechanisms to register components and to inquire trust
values are introduced to greater detail. Finally, we outline an extension to
runtime monitoring in order to automate expertise generation and moni-
toring control.

2 Component Security

Distributed component-structured software imposes new security aspects
caused by the high number of different principals. Moreover, it includes

also security problems of local applications, distributed systems, and mobile
code applications. Lindqvist and Jonsson [26] developed a taxonomy of
security risks for components comprising the following aspects:

e Component design: A component may contain inadvertent or inten-
tional design flaws forming security risks for the incorporating applica-
tions (e.g., a Trojan Horse, i.e., additional hidden functions damaging
the component environment). Another problem is caused by inad-
equate or incorrect component interface documentations preventing
secure integration or deployment of components.

e Component procurement: Due to insufficient information about se-
curity aspects of components, it is difficult to decide if a component
conforms with the customer’s real security requirements. Furthermore,
if a component is delivered via an insecure channel, it may be mali-
ciously manipulated by a third party.

e Component integration: If a component is integrated into an appli-
cation without fully understanding the preconditions for secure oper-
ation, a vulnerability may be imposed to the application. Moreover,
two components may be incompatible with respect to their security
levels (i.e., cooperation is only possible if essential safeguards are aban-
doned).

e Distribution of the component-structured system: Data between com-
ponents may be wiretapped, modified, or destroyed during the transfer
via an insecure network. Moreover, a network connection may be ex-
ploited for intruding a host computer in order to attack a component
residing on the host.

e System use: A component-structured application or single components
may be used in a way not intended by the component developers. Thus,
security possibly relies on inadequate security mechanisms.

e System maintenance: Dynamic modification or extension of compo-
nents may lead to side-effects affecting system security. Furthermore,
like the components themselves, updates are subject to modifications
during delivery, too.

A further security aspect, not listed in the taxonomy, is the mutual threat
that a component is attacked by a host computer executing it and vice
versa (cf. [9, 21]). Moreover, component vendors have to be protected

against wrong accusations due to spite of application administrators, other
component vendors, and host operators. Finally, a component vendor has
to be protected against unlicensed deployment of components.

In this publication, we address the security aspects of component pro-
curement. The main problem here is the lack of suitable information in
order to make sensible purchase decisions. At first, the customer needs
information to decide if a component of interest supplies adequate secu-
rity mechanisms in order to guarantee the requirements of the application
owner. At second, the customer has to gain trust in the correctness of the
information (i.e., the component must act in accordance with it).

Useful for component evaluation are the explicit component contracts
(cf. [2, 38]) which can be enriched with formal descriptions of security rel-
evant obligations (cf. [22, 23]). The first aspect, that a component has
to be adequate with security requirements of the application owner, can
be performed by proving formally that the obligation specifications and
their combinations fulfill formal descriptions describing the security require-
ments. A first tool-supported solution for verification that the information
flow in a component-structured system does not violate the requirements
of the application operators, is introduced in [14]. Here, we address the
second aspect guaranteeing that the customer has sufficient confidence in
a component, contract in order to use it for her procurement decision.

A method to gain trust in information about a software component is
certification which may be performed either by the customer herself or by
a certification authority. In a customer-based certification the application
owner performs various checks in order to determine the suitability of the
component for the application, its quality, and its impact on the system
incorporating the component. In particular, one checks that the compo-
nent acts in accordance with its contract descriptions. Voas [41] proposes
black-box testing, software fault injection, and operational system testing
as techniques for certifying component reliability and security. In black-box
component testing the component is executed with various test inputs and
a so-called oracle decides about failures (cf. [30]). In system fault injec-
tion data propagated between components is voluntarily corrupted in order
to provide worst-case predictions in case of malicious component behavior
(cf. [42]). In operational system testing the complete system is executed
in a sand box (cf. [44]) as a complementary means to determine the im-
pact of the component on the system. Other methods to check components
are code inspections (white-box testing) and byte-code verification. In a
code inspection the source code of a component is walked through in or-

der to detect implementation faults. Often, however, code inspections are
impossible since many components are delivered without, source code. In
contrast, in a byte code verification executable code is checked for security
flaws. If techniques based on virtual machines are used (e.g., Java), this
analysis can frequently be performed with an acceptable expenditure due
to the source code-like shape of the byte code and powerful tool-support.

Alternatively, the quality checks may be performed by an authentication
authority. If the tests performed by this trusted third-party were successful,
it issues credentials to interested principals. If a component customer has
confidence in the authority and its testing techniques, she can assume that
a component provided with a credential is secure.

Another method to gain trust in components is runtime monitoring. A
so-called software wrapper [10] is a piece of code extending a component.
While the wrapper does not change the behavior of the component, it mon-
itors the component interface for security flaws. We extended this concept
to generic security wrappers [17]. These wrappers contain security behavior
descriptions of the component contracts which are checked for compliance
with the real actions at the component interface. If a wrapper detects that
an action is not in accordance with a contract description, it immediately
isolates the component and notifies the application operator. While the
mean runtime overhead of the security wrappers is only 5%, one may re-
duce the intensity of the checks if the trust in a component raises due to
long-lasting correct behavior.

The approach introduced below goes a step further. It facilitates to uti-
lize experience, other component users gained from certification or runtime
monitoring. It is similar to the concept of Label Bureaus [35] used to label
web pages in order to protect children from unintentional access to objec-
tionable contents. The labels for the web-pages result from self-ratings of
the web page designers (first-party), community ratings by interested users
(second-party), and rating by trusted authorities (third-party). With re-
spect to security objectives, however, first-party ratings are futile since a
malicious principal would never confess his real intentions. Ratings from
component users can be classified as second-party while expertises by cer-
tification authorities are third-party ratings.

3 Trust Management

Khare and Rifkin [24] predict that the World Wide Web “will soon reflect
the full complexity of trust relationships among people, computers, and or-

ganizations.” Trust management is a new philosophy in order to determine
the adequacy of trust relationships and therefore to protect the Web and
other open, decentralized systems against malicious behaviors. According
to Jgsang [18] trust can be gained in human interaction as well as in in-
teraction of humans and computer systems. Humans are called passionate
entities while things like computers, algorithms, etc. without a free will are
named rational entities. Two separate kinds of trust are defined:

e Trust in a passionate entity: A passionate entity A trusts another
passionate entity B if A believes that B behaves without malicious
intent.

e Trust in a rational entity: A passionate entity A trusts a rational entity
B that it will resist malicious manipulations caused by an external
passionate entity C. This reflects that B cannot be honest or malicious
itself since it has no free will but it can be built in a way that it acts
not, maliciously and withstands hostile attacks.

Moreover, Beth et al. [1] distinguish two further kinds of trust:

e Direct trust: An entity A trusts directly in another entity B if it be-
lieves in the capabilities of B itself.

e Recommendation trust: An entity A trusts in the recommendations of
B with respect to a third entity C' if it believes that B will give a
reliable and honest assessment of the capabilities of C.

Trust in a passionate or rational entity is based on gaining many positive
experience with the entity behavior while the negative experience should
be low. This can be expressed mathematically by trust values expressing
belief, disbelief, and uncertainty in an entity. The description of uncertainty
is necessary since with only small knowledge in an entity it cannot seriously
be assessed. In [19], Josang defines a so-called opinion-triangle (cf. Fig. 1)
for modeling trust values. Belief, disbelief, and uncertainty are specified
by the values b, d, resp. u which are real numbers between 0 and 1 each.
Moreover, b + d + u = 1 holds always and the trust in an entity is stated
by a point in the triangle. The perpendicular models the uncertainty in an
entity while the belief or disbelief is described by the horizontal. A trust
value of an entity based only on low knowledge is modeled by a point close
to the top while points on the right or left bottom state great belief resp.
disbelief which is based on a large number of evaluations.

Uncertainty

1 Disbelief 0 Belief 1

Figure 1: Opinion Triangle (taken from [19])

The trust values are calculated from the number of good or bad exper-
tises of the entity in question. Assuming that the values p and n describe
the numbers of positive resp. negative events with an entity, Jgsang and
Knapskog [20] calculate the three trust values by means of the following
formulas:

1

b = pnt1

d= U

= —p n
p+n+1 p+n+1

Thus, a negative event can be compensated by some positive expertises and
the metric expresses a relatively liberal trust management philosophy. In
contrast, Beth et al. [1] define an unforgiving policy. The probability that
the belief b exceeds a certain value « is expressed by the formula

1—a? :n=0

and the disbelief and uncertainty are calculated from b by the formulas

d= 0:n=0 [1=b:n=0
1 1:n>0 "= 0 :n>0

Thus, a single negative experience destroys the trust in the entity forever.
If nothing bad happens, the amount of belief depends on the number of
good events. Many other metrics are sensible, too, and the rigorousness of
a metric should depend on the consequences, a breach of confidence has for
the entities to protect.

Trust management can be used for several application domains and in [1]
key generation, authorization, keeping secrets, certification, clock synchro-
nization, and program validation are listed as possible areas. In the field of
authorization systems first solutions are implemented (e.g., [5]). Here, ac-
cess to a resource does not depend on traditional access control mechanisms.
Instead, a caller has to show credentials issued by third parties stating the
direct trust these parties have into the caller. Depending on these values
as well as on the recommendation trust in the third parties, the resource
owner may decide about granting or rejecting access. Implementations on
trust management-based authorization systems comprise PolicyMaker [6],
REFEREE [8], and KeyNote [4]. Another realization are the Label Bu-
reaus [35] outlined in Sec. 2. Here, the labels for evaluating the content of
web pages are calculated depending on the ratings of the various parties as
well as on the trust in these parties.

4 Trust Information System

In order to utilize experiences users made with a component, we need a
trusted third-party collecting expertises of good and bad component behav-
ior, calculating trust values from the expertises, and passing trust values to
interested customers. The tasks are realized by the Trust Information Ser-
vice delineated in Fig. 2. This service corresponds with component vendors,
interested principals purchasing and deploying components, and authorities
certifying components in behalf of a vendor or user.

Component vendors may register any software component offered com-
mercially or free of charge declaring themselves to be in agreement that
the trust information service collects expertises about the component and
offers the corresponding trust values to interested parties. Of course, the
decision to register a component is voluntary. Nevertheless, since registra-
tion shows confidence with the offered product, it is an effective marketing
instrument. Furthermore, due to the increased information customers may
decide to buy only registered and evaluated products and therefore, de
facto, enforce component vendors to register.

Parties interested in information about components inquire their trust
values from the trust information service. Moreover, the trust information
service offers an alarm service notifying all interested component users im-
mediately about malicious experiences gained with a component. To get
a large number of expertises from varying sources, the trust information
services calls all customers in intervals for reports about the component

Component Certification ¢
Vendor Certification Authority | Authority
Y certifies component

in behalf of vend
1n behatt ot vendor Certification

Vendor registers .
Authority passes

component and

receives signed cipher _Teport on
certification results

b Trust Information Service
. Trust
Cipher
ph - = Value
Service Cipher Service Manager
announces new cipher 7'y
C Trust Information
c omponent Service delivers
Cinher service ustomer passes trust value
. P . reports on . based on cipher
delivers public key experiences with and
ciphered component notifies customer
about incoming
»| Component bad experiences

A

»| Customer |

Vendor delivers
signed cipher

Certification Authority
certifies component
in behalf of customer

Figure 2: Trust Information Service

behavior during runtime. Furthermore, if a component user detects a se-
rious incident indicating malicious component behavior, she informs the
trust information service immediately in order to warn other users.

To guarantee a high degree of privacy for the component producers, the
expertises of components are not stored together with complete component,
descriptors but are separated. Thus, the trust information service consists
of two parts: a Cipher Service and a Trust Value Manager. If a component
vendor registers a new component, the cipher service stores the relevant
data and creates a unique cipher. In contrast, the trust value manager
performs the storage of expertises, calculation of trust values, transmission
of trust values and alarm messages, as well as the inquiry of expertises based
on the ciphers. This separation of component identifiers and expertise data
between two parts provides privacy since neither the cipher service nor
the trust value manager have complete knowledge about the components.
In contrast, the component customers and certification authorities have
complete knowledge which, however, is limited to the very small amount of
components employed or certified by themselves.

5 Component Registration

If a component, vendor decides to subject a component to the trust-based
evaluation process, he first registers it with the trust information service.
The registration procedure has to ensure that the vendor does not ma-
nipulate a component between registration and delivery in order to cheat
the trust information service. Moreover, one has to prevent third-parties
to change components during delivery to customers or registration. These
tasks are guaranteed by employing digital signatures (e.g., [34]) which are
realized by the Java Cryptography Architecture [11]. A digital signature of
a data set is performed in two steps: At first, the data transmitter generates
a hash-value of the data set, the so-called message digest, by means of the
hash function SHA-1 [32]. Thereafter, he encrypts the message digest us-
ing his private key by applying the Digital Signature Algorithm (DSA) [31]
and transmits the resulting digital signature together with the data set.
The receiver decrypts the signature with the public key of the transmitter.
Finally, she hashes the data set herself and compares the two hash-values.
If the hash-values are different, the data was altered during transport. A
malicious third-party cannot create a digital signature compatible to his
manipulations since he has not access to the private key of the transmitter.

In the first step of the registration procedure the component vendor cre-
ates a digital signature A of the component to register and transmits A
together with the component to the cipher service which checks the hash-
values. If the component was not manipulated, the cipher service creates
a unique cipher of the component and stores it with other relevant data of
the component and its vendor in a local database. Moreover, protected by
a digital signature B, the cipher is sent to the trust value manager which
adds a new entry to its trust value database. The cipher service creates a
third digital signature C' from the record of A and the cipher. C' is trans-
mitted to the component vendor who delivers it to persons interested in the
component. Since C' contains the digital signature A which was encrypted
by the private key of the cipher service, the vendor cannot alter the com-
ponent anymore without notifying the cipher service. The cipher service,
however, does not register an altered component without creating a new
cipher. Therefore a customer can compare the hash-values of signature A
which is included in C' and of the procured component by using the public
keys of the cipher service and the vendor. If the hash-values are identi-
cal, she has confidence that the cipher in C really belongs to the procured
component and that the component was not changed during delivery.

6 Trust Value Inquiry

If a customer wants to assess various components in order to get sufficient
information for her procurement decision, she asks the vendors for the dig-
ital signatures C of the components which are usually delivered without
the component code. Thereafter, the customer decrypts the signatures in
order to get the corresponding ciphers which are transmitted! to the trust
value manager. For each component two separate trust values are stored.
One trust value is calculated according to the metric of Jgsang and Knap-
skog [20] while the other reflects the policy of Beth et al. [1]. Thus, more
tolerant as well as more rigid customer policies are supported. Since a trust
value consists of three values indicating the belief, disbelief, and uncertainty
in a component (cf. Sec. 3), the trust value manager passes six values for
each cipher component to the customer.

Now the customer can compare the trust values of the components in
question. Besides procurement, they can also be used to decide about
subjecting the component to a certification process as well as to determine
the intensity of runtime monitoring measures (cf. Sec. 7). The trust values,
however, describe only one aspect of a component. Other aspects comprise
the price of a component, the interface structure which may facilitate or
impede the integration of the component into the application, and quality
of service issues like performance requirements. Moreover, one can also take
the dependability of a component in consideration which can be calculated
by similar metrics as the trust values [43].

In order to offer trust values with a high decree of certainty, a large
number of expertises is needed. Therefore the trust value manager calls
a customer about a week after an inquiry for trust values. The customer
retransmits the cipher of the selected components, the results of customer-
based certifications, as well as first evaluations of runtime monitoring. If
the certification or the monitoring measures could not disprove that the
behavior of a component complies with its contract description, the cus-
tomer passes a positive rating. If the customer detected errors, she sends
a negative expertise together with a log of interface actions proving the
malfunctioning and preventing wrong accusations. Since certifications tend
to be more thorough and profound than runtime monitoring, a customer-
based certification is rated to three runtime evaluations. After the first

n order to prevent manipulations of the ciphers, all data transmissions are protected
by digital signatures.

inquiry, the trust value manager asks a customer every six weeks? about
the experience with components gained by runtime monitoring. Moreover,
if a component owner detects serious malicious component behaviors, she
informs the trust value manager immediately.

Another valuable means of gaining expertises are certification authorities.
If the component vendor or a customer initiates a third-party certification,
the component is sent together with the digital signature C' and the author-
ity is asked to transmit the certification result to the trust value manager.
Depending on the recommendation trust in the certification authority the
certification results are calculated between three and 50 runtime monitoring
expertises.

In order to protect application owners against malicious component be-
havior, the trust value manager offers an alarm service. A customer booking
this service is immediately notified when bad expertises about a component,
are received. Thus, users can often isolate a faulty component before it
causes harm for its application. Currently, two alarm modes are offered:
In the first variant an alarm is only triggered if an user reports a severe
security violation while in the second mode the alarm message is executed
after any kind of negative evaluation.

7 Trust-Based Runtime Monitoring

The process to gain evaluations based on runtime monitoring can be facil-
itated by application of the security wrappers introduced in [17]. Here, a
component in question is wrapped with special components checking the
events at the component interface for compliance with security objectives
fixed in the component contract. The constraints are modeled by state-
transition-systems which are simulated during runtime (cf. [3]). Each model
constrains the passing of events and the component interface in order to
guarantee a certain security aspect. For instance, assume that the com-
ponent in question A may only call a method M of a partner component,
B, if it previously received a certain credential from a third component C
by means of C calling the method N of A. The corresponding constraint
specification uses the states s and ¢. s is initial and states that the cre-
dential did not arrived yet while ¢ models that the credential is available.
The transitions concern the events M and N. When N is executed, the

2Tn case of electronic trust managers (cf. Sec. 7) the calls are performed every 48
hours.

Adapter Generator

Generates Introspects

Bean
v v
Bean Java
Watches
Adapter to be ace Security
checked Manager
F 3 A
3 Reports
Controls Events Controls Reports
Controls
Intensity v v
of Checks Reports _
» >
= Observer Monitor
Manager |4 4
Reports Controls

Figure 3: Security Wrapper Architecture

specification sets the current state to ¢. Transitions of event M state that
this event may only be fired in state ¢t but not in s. The particular model
does not reflect other events at the interface.

The task of the security wrapper is to simulate the model and to check it
for compliance with the real interface behavior. In particular, it stores and
calculates the current state and compares interface events with the model.
If in our example component A wants to executed the method call M, the
wrapper first checks if the call is performed in state s or . The method
call is legal if the model simulation is in the state ¢ and the wrapper passes
M to component B. However, the call of method M in state s indicates
that A tried the call without the credential which is a violation of the
corresponding security objective. Here, the wrapper seals the component
by blocking the interaction between the component and its environment.
Moreover, the application operator is informed about the violation.

We specify the security constraints in the formal specification tech-
nique cTLA [16] which is based on Lamport’s Temporal Logic of Actions
(TLA) [25]. ¢TLA facilitates modeling of safety, liveness, and realtime [15]
properties in a process style similar to high-level programming languages.
Moreover, it supports the definition of constraint-oriented specifications
(cf. [40]) each modeling a separate security aspect of a component. The
security objectives can also be specified as diagrams in the popular Unified
Modeling Language (UML) [7] and translated to ¢cTLA processes (cf. [12]).

A first prototype implementation [28] is realized as a component struc-
tured system itself based on Java Beans [37]. Fig. 3 delineates the enforce-
ment system. Each bean to be checked is wrapped by a special Adapter
component. It does not interact directly with its environment but only via
the adapter. Thus, incoming and outgoing events can be observed and —
in case of sealing the bean — also blocked.

The compliance checks are performed by the Observer components. For
each ¢TLA constraint specification a separate observer is generated which
simulates a cTLA process and checks if the real bean behavior corresponds
to the simulated behavior. Therefore the adapter forwards all interface
events to the observers which perform the compliance checks and send the
results back to the adapter. If all checks are correct, the adapter passes
incoming events to the bean and outgoing events to the environment. On
the other hand, if an observer detects a violation, the adapter blocks all
ongoing events leading to the isolation of the bean in the application.

Other objects of the wrapper comprise an Adapter Generator analyzing
a bean to be checked by introspection and creating an adapter based on
this analysis. The Monitor acts as an interactive interface to the applica-
tion administrator. If an observer detects a violation, it reports it to the
monitor which shows it on the administrator screen. Moreover, the tool
utilizes the built-in Java Security Manager. In order to prevent hidden
data channels, the administrator may reduce the access of beans to certain
system resources by parameterizing the security manager.

The Trust Manager is of particular interest for the work introduced in
this paper since it represents the link between the security wrapper and
the trust information system outlined above. If an observer detects a vio-
lation, it notifies not only the monitor but also the trust manager. If the
trust manager considers the violation as severe, it sends a warning message
to the trust value manager which includes a log of the events at the bean
interface. Moreover, the trust manager replies inquiries of the trust value
manager. If it was notified by an observer about a violation, it transmits
a negative expertise and, otherwise, a positive evaluation report. Further-
more, the trust manager reacts on incoming alarm messages from the trust
information system. After an alarm it calls an observer which causes the
adapter to seal the bean in order to protect the application.

Experiences showed that the performance penalty of the security wrapper
is less than 5 % on a state-of-the-art PC (cf. [17]). Nevertheless, one can
also use the system to adapt the monitoring expenditure to the current trust
value of a bean. Therefore, the trust manager implements a security policy

stating the amount of observation with respect to a certain trust policy. In
intervals, it inquires the trust information system for trust values. Based on
the current values it can omit compliance tests by stopping observers. Here,
two possibilities are available: At first, an observer can be removed which
renders maximum performance gain but rules out the possibility to continue
observations at a later time since the current state of the cTLA process is
lost. To prevent this, in the second alternative an observer is switched into
a special mode where it omits compliance checks but still calculates the
current ¢TLA process states. Thus, the observer can be reactivated again
if the trust values are getting worse. Moreover, it is possible to perform
spot checks where an observer perform compliance tests only in intervals.
The duration of the checks may be adjusted according to the trust value of
the component.

8 Conclusion

We proposed an approach to support secure procurement, and deployment,
of components by introduction of a trust information service employing the
experience gained by other component users. Currently, a first prototype
is under development [45]. It is created based on Java Beans and will be
compatible with the security wrapper introduced in [17]. For a commer-
cial realization, however, more problems have to be solved. In particular,
financing issues have to be considered. Potential sources of income to fi-
nance the trust information service comprise the component vendors who
may use good ratings for marketing, the component customers who are
supported to buy secure components, and internet advertisements offered
in the service web representation.

Another problem is to find solutions to protect component vendors
against erroneous accusations causing bad trust values of a component
wrongly. Here, trusted third-party components may be used to mediate
conflicts between principles. For instance, an arbiter component may be
called if a customer or a certification authority passes a bad evaluation to
the trust value manager. The arbiter checks logs and audits of the event
in question as well as the trust value of the component vendor and decides
if the accusation is correct. The trust value manager may only recognize
the negative expertise if the component vendor is pronounced guilty by
the arbiter. The mediation can be supported by another class of compo-
nents acting as witnesses. On behalf of the vendor, the customer, or the
arbiter these witnesses may observe components and the incorporating ap-

plications. In case of an accusation, the witnesses support the arbiter by
telling their observations. Furthermore, the trust information service can
be extended in order to store evaluations and trust values not only of com-
ponents but also of component vendors and customers. Thus, the arbiter
may utilize the reputations of a vendor and a customer in order to decide
about accusations.

References

[1]

2]

[10]

T. Beth, M. Borcherding, and B. Klein, “Valuation of Trust in Open
Networks”, in: European Symposium on Research in Security (ES-
ORICS), Brighton, LNCS 875, Springer-Verlag, 3-18 (1994).

A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins, “Making
Components Contract Aware”, IEEE Computer, vol. 32, no. 7, 38—45
(1999).

J. Biskup and C. Eckert, “About the enforcement of state depen-
dent security specifications”, in: Database Security, eds. T. Keefe and
C. Landwehr, Elsevier Science (NorthHolland), 3-17 (1994).

M. Blaze, J. Feigenbaum, J. Toannidis, and A. D. Keromytis, “The
KeyNote Trust Management System, Version 2”, in: Report RFC-
2704, TETF (1999).

M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, “The Role
of Trust Management in Distributed Systems Security”, in: Internet
Programming: Security Issues for Mobile and Distributed Objects, eds.
J. Vitek and C. Jensen, Springer-Verlag (1999).

M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized Trust Manage-
ment”, in: 17th Symposium on Security and Privacy, Oakland, IEEE
Computer Society Press, 164-173 (1996).

G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified Modeling
Language User Guide”, Addison-Wesley Longman (1999).

Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss,
“REFEREE: Trust Management for Web Applications”, World Wide
Web Journal, vol. 2, 127-139 (1997).

W. Farmer, J. Guttman, and V. Swarup, “Security for Mobile Agents:
Issues and Requirements”, in: 19th National Information Systems
Security Conference (NISSC 96), 591 597 (1996).

T. Fraser, L. Badger, and M. Feldman, “Hardening COTS Software
with Generic Software Wrappers”, in: 1999 IEEE Symposium on Se-
curity and Privacy (1999).

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

23]

L. Gong, “Java Security Architecture (JDK1.2)”, available via WWW:
java.sun.com/products/jdk/1.2/docs/guide/security /spec/security-
spec.doc.html (1998).

G. Graw, P. Herrmann, and H. Krumm, “Constraint-Oriented For-
mal Modelling of OO-Systems”, in: Second IFIP WG 6.1 Interna-
tional Working Conference on Distributed Applications and Interoper-
able Systems (DAIS 99), Helsinki, Kluwer Academic Publisher, 345—
358 (1999).

J. Grundy, “Storage and retrieval of Software Components using As-
pects”, in: 2000 Australasian Computer Science Conference, Can-
berra, IEEE Computer Society Press (2000).

P. Herrmann, “Information Flow Analysis of Component-Structured
Applications”, to appear in: 17th Annual Computer Security Applica-
tions Conference (ACSAC’2001), New Orleans, ACM SIGSAC, ITEEE
Computer Society Press (2001).

P. Herrmann and H. Krumm, “Formal Hazard Analysis of Hybrid
Systems in ¢TLA”, in: 18th IEEE Symposium on Reliable Distributed
Systems (SRDS’99), Lausanne, IEEE Computer Society Press, 68-77
(1999).

P. Herrmann and H. Krumm, “A Framework for Modeling Transfer
Protocols”, Computer Networks, vol. 34, no. 2, 317 337 (2000).

P. Herrmann and H. Krumm, “Trust-adapted enforcement of security
policies in distributed component-structured applications”, in: 6th
IEEE Symposium on Computers and Communications, Hammamet,
TEEE Computer Society Press, 2-8 (2001).

A. Jgsang, “The right type of trust for distributed systems”, in: UCLA
conference on New security paradigms workshops, Lake Arrowhead,
ACM, 119-131 (1996).

A. Jgsang, “An Algebra for Assessing Trust in Certification Chains”,
in: Network and Distributed Systems Security Symposium (NDSS’99),
ed. J. Kochmar, The Internet Society (1999).

A. Jgsang and S. J. Knapskog, “A metric for trusted systems”, in:
21st National Security Conference, NSA (1998).

G. Karjoth, D. Lange, and M. Oshima, “A Security Model for Aglets”,
IEEE Internet Computing, 68 77 (1997).

K. Khan, J. Han, and Y. Zheng, “Specifying security requirements
and assurances of software components”, in: Australian Workshop on
Requirements Engineering, Brisbane, 57-65 (2000).

K. Khan, J. Han, and Y. Zheng, “A Framework for an Active Interface

[24]
[25]
[26]

[27]

[28]

[29]

[30]

[31]
[32]
[33]

[34]

[35]

[36]

to Characterise Compositional Security Contracts of Software Compo-
nents” | in: Australian Software Engineering Conference (ASWEC’01),
Canberra, IEEE Computer Society Press, 117 126 (2001).

R. Khare and A. Rifkin, “Weaving a Web of Trust”, World Wide Web
Journal, vol. 2, no. 3, 77-112 (1997).

L. Lamport, “The Temporal Logic of Actions”, ACM Transactions on
Programming Languages and Systems, vol. 16, no. 3, 872-923 (1994).
U. Lindqvist and E. Jonsson, “A Map of Security Risks Associated
with Using COTS”, IEEE Computer, vol. 31, no. 6, 60-66 (1998).

C. Liier and D. S. Rosenblum, “WREN — An Environment for
Component-Based Development”, Technical Report #00-28, Univer-
sity of California, Irvine, Department of Information and Computer
Science (2000).

A. Mallek, “Sicherheit komponentenstrukturierter verteilter Sys-
teme: Vertrauensabhéngige Komponenteniiberwachung” (in German),
Diploma Thesis, University of Dortmund, Computer Science Depart-
ment, 44221 Dortmund, Germany (2000).

Microsoft, “The Microsoft COM Technologies”, available via WWW:
http://www.microsoft.com/com/comPapers.asp (1998).

B. P. Miller, L. Fredrikson, and B. So, “An Empirical Study of the
Reliability of Unix Utilities”, Communications of the ACM, vol. 32,
no. 12, 32-44 (1990).

National Institute of Standards and Technology (NIST), “Digital Sig-
nature Standard (DSS)”, FIPS, edition 186 (2000).

National Institute of Standards and Technology (NIST), “Secure Hash
Standard (SHS)”, FIPS, edition 180-1 (2000).

Object Management Group, “CORBA Component Model Request for
Proposals” (1997).

R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public Key Cryptosystems”, Communications
of the ACM, vol. 21, no. 2, 120 126 (1978).

M. Shepherd, A. Dhonde, and C. Watters, “Building Trust for E-
Commerce: Collaborating Label Bureaus”, in: 2nd International
Symposium on Electronic Commerce Technologies (ISEC’2001), eds.
W. Kou, Y. Yesha, and C. J. Tan, Hong Kong, LNCS 2040, Springer-
Verlag, 42 56 (2001).

Sun Microsystems, “Enterprise Java Beans Technology Server Com-
ponent Model for the Java Platform (White Paper)”, available via
WWW: java.sun.com/products/ejb/white_paper.html (1998).

10

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Sun Microsystems, “Java Beans Specification”, available via WWW:
java.sun.com/beans/docs/spec.html (1998).

C. Szyperski, “Component Software ~ Beyond Object Oriented Pro-
gramming”, Addison-Wesley Longman (1997).

K. A. Tee, “E-Commerce in an Era of Creative Destruction”, avail-
able via WWW: www.alumni.nus.edu.sg/Alumnus/jul2000/ecom.html
(2000).

C. A. Vissers, G. Scollo, and M. van Sinderen, “Architecture and spec-
ification style in formal descriptions of distributed systems”, in: Proto-
col Specification, Testing and Verification (PSTV’VIII), eds. S. Agar-
wal and K. Sabnani, IFTP, Elsevier, 189-204 (1988).

J. Voas, “A Recipe for Certifying High Assurance Software”, in: 22nd
International Computer Software and Application Conference (COMP-
SAC’98), Vienna, IEEE Computer Society Press (1998).

J. Voas, G. McGraw, A. Ghosh, and K. Miller, “Glueing together
Software Components: How good is your Glue?”, in: Pacific Northwest
Software Quality Conference, Portland (1996).

J. Voas and J. Payne, “Dependability Certification of Software Com-
ponents”, The Journal of Systems and Software, vol. 52, no. 2 3,
165-172 (2000).

R. Wabbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation”, in: 14th Symposium on Operating Sys-
tem Principles, ACM, 203 216 (1993).

M. Ziilch, “Ein Werkzeug zum Vertrauensmanagement komponen-
tenbasierter Software” (in German), to appear as: Diploma Thesis,
University of Dortmund, Computer Science Department, 44221 Dort-
mund, Germany (2001).

Peter Herrmann studied Computer Science at the University of Karlsruhe

(diploma in 1990). Since then he works as a researcher in the Computer Net-

works and Distributed Systems Group of the Computer Science Department at

the University of Dortmund (Ph.D. in 1997). His research interests include secu-

rity aspects of distributed component-structured software as well as formal-based

development of distributed applications and hybrid technical systems.

