
In Proeedings of the 4th International Conferene on Eletroni Commere Researh (ICECR-4), 505{514, Dallas, ATSMA, IFIP, 2001.Trust-Based Prourement Supportfor Software Components�Peter HerrmannUniversity of DortmundComputer Siene Department44221 Dortmund, GermanyPeter.Herrmann�s.uni-dortmund.deAbstratComponent-strutured software failitates the design of problem-spei�software solutions for a reasonable prie. Due to the signi�ant number ofprinipals involved in the omponent development and employment proess,however, a new lass of seurity problems is introdued. In partiular, amaliious omponent is a threat to any appliation inorporating it. Thus,a ustomer of software omponents has to attah importane to seurityaspets. Unfortunately, often the available information does not suÆe toperform a deent prourement deision. Therefore omponents have to beevaluated by means of erti�ation and runtime monitoring. These meth-ods, however, are usually laborious and ostly. In order to redue theexpense of evaluating omponents, we apply an approah whih takes theexperiene of other ustomers with a omponent in question into onsider-ation. It employs the onept of trust management enabling to alulatetrust values (i.e., values desribing the trust in a omponent) from goodor bad evaluations with it. Partiularly, we introdue a trust informationservie olleting expertises whih omponent ustomers and erti�ationauthorities gained from erti�ation of a omponent as well as monitoringit during deployment. From these evaluations a trust value is generatedand o�ered to parties interested to purhase the omponent. Moreover,we outline an extension of a runtime monitoring software whih enablesautomati generation of good or bad monitoring expertises. Likewise, theintensity of the runtime observations about a omponent may be adjusteddue to the urrent trust value of the omponent.Key Words: Software omponent, omponent prourement, trust manage-ment, trust information servie, runtime monitoring.�This work was funded by the German researh foundation DFG
1 IntrodutionIn spite of its novelty, the approah of omponent-strutured software gainsmore and more popularity. It failitates the easy and ost-e�etive reationof appliations built from independently reated omponents (f. e.g. [38℄).Moreover, omponent-based systems an be tailored to the speial needs oftheir ustomers and varying requirements during runtime result in dynam-ial hanging of omponents and their ouplings. A omponent-struturedsystem is not purhased as a monolith. Instead, di�erent developers reatethe omponents separately and o�er them on an open market. The targetappliation designer selets and buys suitable omponents, probably fromvarious soures, on�gures them aording to the partiular needs of theappliation, and ouples them to the �nal software produt. The ombina-tion proess utilizes the onept of expliit ontrats. A ontrat is legallybinding and desribes agreed properties of a omponent and, in partiular,its interfae. Aording to [2℄, a ontrat onsists of four parts speifyingthe struture of a omponent interfae (i.e., methods, input and outputparameters, exeptions), the desired behavior of the omponent and itsenvironment, synhronization aspets, and quantitative quality-of-servieproperties. As another means to support system omposition, reetionand introspetion [37℄ of omponents is provided as well (i.e., omponentsontain speial methods enabling the exploration of omponent properties,methods, and interfaes at runtime). Furthermore, omfortable ouplingis failitated by sripting languages and visual appliation builder tools(e.g. [27℄).Meanwhile, some platforms for omponent-strutured software are avail-able. Best-known are Java Beans [37℄ and Enterprise Java Beans (EJB) [36℄.Moreover, in PC-based environments COM/DCOM [29℄ is well-established,too. Finally, the CORBA initiative extended its platform in order to sup-port omponent-strutured appliations [33℄. All platforms provide notionsfor desribing omponent types, parameter types, and interfaes. Further-more, means to introspet omponents as well as oupling support are alsoo�ered.Like other software, omponents are usually sold as exeutable ode.Sine their ontrats as well as other doumentation an be delivered ele-tronially, too, they are perfetly suited for being traded on eletroni mar-kets. As an alternative, a omponent vendor may exeute a omponent ona remote host and o�er it as a teleommuniation servie. Here, the ap-pliation owner purhases just the servie in order to realize a distributed1

omponent-strutured system. A �rst system supporting the lookup ofomponents and servies is proposed in [13℄.Component-strutured software, however, imposes new seurity riskssine, ompared with ordinary objet-oriented systems, it introdues newpriniples and roles. Besides users and appliation owners, also omponentvendors, omponent servie providers as well as appliation builders areinvolved in the development and deployment of the software. Yet, the prin-ipals annot trust eah other to full extent sine everybody may exploit thesoftware and its omponents in order to get an unwarranted advantage andtherefore forms a potential threat. In partiular, someone may maliiouslyalter a omponent spoiling the seurity of the whole omponent-struturedsystem. For instane, a omponent may be hanged in order to leak on�-dential information to a person not permitted to read it. Thus, to reduethe risk, a omponent forms for an appliation inorporating it, the ap-pliation owner proures omponents only if she has suÆient trust in thewellmeaningness of the omponent vendors. Aording to [39℄, an impor-tant ondition to arry out a purhase is that \the item sold orrespondsto its desriptions and is suitable for its intended purpose".This paper is entered on an approah to support omponent proure-ment deisions by ombining trust-management [18℄ with runtime moni-toring and erti�ation. Appliation owners may inform a so-alled trustinformation servie about positive and negative evaluations of omponenterti�ation and runtime monitoring. From these expertises, the serviealulates a so-alled trust value stating the amount of trust users have ina ertain omponent. This value is o�ered to potential ustomers who mayutilize it for their prourement deisions. Moreover, the trust value an alsobe used to deide about the intensity of omponent runtime monitoring.In the sequel, we will outline major seurity aspets of omponent stru-tured software as well as trust management. Thereafter we sketh our trustinformation system in order to support prourement deisions. In the fol-lowing setions, mehanisms to register omponents and to inquire trustvalues are introdued to greater detail. Finally, we outline an extension toruntime monitoring in order to automate expertise generation and moni-toring ontrol.2 Component SeurityDistributed omponent-strutured software imposes new seurity aspetsaused by the high number of di�erent prinipals. Moreover, it inludes
also seurity problems of loal appliations, distributed systems, and mobileode appliations. Lindqvist and Jonsson [26℄ developed a taxonomy ofseurity risks for omponents omprising the following aspets:� Component design: A omponent may ontain inadvertent or inten-tional design aws forming seurity risks for the inorporating applia-tions (e.g., a Trojan Horse, i.e., additional hidden funtions damagingthe omponent environment). Another problem is aused by inad-equate or inorret omponent interfae doumentations preventingseure integration or deployment of omponents.� Component prourement: Due to insuÆient information about se-urity aspets of omponents, it is diÆult to deide if a omponentonforms with the ustomer's real seurity requirements. Furthermore,if a omponent is delivered via an inseure hannel, it may be mali-iously manipulated by a third party.� Component integration: If a omponent is integrated into an appli-ation without fully understanding the preonditions for seure oper-ation, a vulnerability may be imposed to the appliation. Moreover,two omponents may be inompatible with respet to their seuritylevels (i.e., ooperation is only possible if essential safeguards are aban-doned).� Distribution of the omponent-strutured system: Data between om-ponents may be wiretapped, modi�ed, or destroyed during the transfervia an inseure network. Moreover, a network onnetion may be ex-ploited for intruding a host omputer in order to attak a omponentresiding on the host.� System use: A omponent-strutured appliation or single omponentsmay be used in a way not intended by the omponent developers. Thus,seurity possibly relies on inadequate seurity mehanisms.� System maintenane: Dynami modi�ation or extension of ompo-nents may lead to side-e�ets a�eting system seurity. Furthermore,like the omponents themselves, updates are subjet to modi�ationsduring delivery, too.A further seurity aspet, not listed in the taxonomy, is the mutual threatthat a omponent is attaked by a host omputer exeuting it and vieversa (f. [9, 21℄). Moreover, omponent vendors have to be proteted2

against wrong ausations due to spite of appliation administrators, otheromponent vendors, and host operators. Finally, a omponent vendor hasto be proteted against unliensed deployment of omponents.In this publiation, we address the seurity aspets of omponent pro-urement. The main problem here is the lak of suitable information inorder to make sensible purhase deisions. At �rst, the ustomer needsinformation to deide if a omponent of interest supplies adequate seu-rity mehanisms in order to guarantee the requirements of the appliationowner. At seond, the ustomer has to gain trust in the orretness of theinformation (i.e., the omponent must at in aordane with it).Useful for omponent evaluation are the expliit omponent ontrats(f. [2, 38℄) whih an be enrihed with formal desriptions of seurity rel-evant obligations (f. [22, 23℄). The �rst aspet, that a omponent hasto be adequate with seurity requirements of the appliation owner, anbe performed by proving formally that the obligation spei�ations andtheir ombinations ful�ll formal desriptions desribing the seurity require-ments. A �rst tool-supported solution for veri�ation that the informationow in a omponent-strutured system does not violate the requirementsof the appliation operators, is introdued in [14℄. Here, we address theseond aspet guaranteeing that the ustomer has suÆient on�dene ina omponent ontrat in order to use it for her prourement deision.A method to gain trust in information about a software omponent iserti�ation whih may be performed either by the ustomer herself or bya erti�ation authority. In a ustomer-based erti�ation the appliationowner performs various heks in order to determine the suitability of theomponent for the appliation, its quality, and its impat on the systeminorporating the omponent. In partiular, one heks that the ompo-nent ats in aordane with its ontrat desriptions. Voas [41℄ proposesblak-box testing, software fault injetion, and operational system testingas tehniques for ertifying omponent reliability and seurity. In blak-boxomponent testing the omponent is exeuted with various test inputs anda so-alled orale deides about failures (f. [30℄). In system fault inje-tion data propagated between omponents is voluntarily orrupted in orderto provide worst-ase preditions in ase of maliious omponent behavior(f. [42℄). In operational system testing the omplete system is exeutedin a sand box (f. [44℄) as a omplementary means to determine the im-pat of the omponent on the system. Other methods to hek omponentsare ode inspetions (white-box testing) and byte-ode veri�ation. In aode inspetion the soure ode of a omponent is walked through in or-
der to detet implementation faults. Often, however, ode inspetions areimpossible sine many omponents are delivered without soure ode. Inontrast, in a byte ode veri�ation exeutable ode is heked for seurityaws. If tehniques based on virtual mahines are used (e.g., Java), thisanalysis an frequently be performed with an aeptable expenditure dueto the soure ode-like shape of the byte ode and powerful tool-support.Alternatively, the quality heks may be performed by an authentiationauthority. If the tests performed by this trusted third-party were suessful,it issues redentials to interested prinipals. If a omponent ustomer hason�dene in the authority and its testing tehniques, she an assume thata omponent provided with a redential is seure.Another method to gain trust in omponents is runtime monitoring. Aso-alled software wrapper [10℄ is a piee of ode extending a omponent.While the wrapper does not hange the behavior of the omponent, it mon-itors the omponent interfae for seurity aws. We extended this oneptto generi seurity wrappers [17℄. These wrappers ontain seurity behaviordesriptions of the omponent ontrats whih are heked for omplianewith the real ations at the omponent interfae. If a wrapper detets thatan ation is not in aordane with a ontrat desription, it immediatelyisolates the omponent and noti�es the appliation operator. While themean runtime overhead of the seurity wrappers is only 5%, one may re-due the intensity of the heks if the trust in a omponent raises due tolong-lasting orret behavior.The approah introdued below goes a step further. It failitates to uti-lize experiene, other omponent users gained from erti�ation or runtimemonitoring. It is similar to the onept of Label Bureaus [35℄ used to labelweb pages in order to protet hildren from unintentional aess to obje-tionable ontents. The labels for the web-pages result from self-ratings ofthe web page designers (�rst-party), ommunity ratings by interested users(seond-party), and rating by trusted authorities (third-party). With re-spet to seurity objetives, however, �rst-party ratings are futile sine amaliious prinipal would never onfess his real intentions. Ratings fromomponent users an be lassi�ed as seond-party while expertises by er-ti�ation authorities are third-party ratings.3 Trust ManagementKhare and Rifkin [24℄ predit that the World Wide Web \will soon reetthe full omplexity of trust relationships among people, omputers, and or-3

ganizations." Trust management is a new philosophy in order to determinethe adequay of trust relationships and therefore to protet the Web andother open, deentralized systems against maliious behaviors. Aordingto J�sang [18℄ trust an be gained in human interation as well as in in-teration of humans and omputer systems. Humans are alled passionateentities while things like omputers, algorithms, et. without a free will arenamed rational entities. Two separate kinds of trust are de�ned:� Trust in a passionate entity: A passionate entity A trusts anotherpassionate entity B if A believes that B behaves without maliiousintent.� Trust in a rational entity: A passionate entity A trusts a rational entityB that it will resist maliious manipulations aused by an externalpassionate entity C. This reets that B annot be honest or maliiousitself sine it has no free will but it an be built in a way that it atsnot maliiously and withstands hostile attaks.Moreover, Beth et al. [1℄ distinguish two further kinds of trust:� Diret trust: An entity A trusts diretly in another entity B if it be-lieves in the apabilities of B itself.� Reommendation trust: An entity A trusts in the reommendations ofB with respet to a third entity C if it believes that B will give areliable and honest assessment of the apabilities of C.Trust in a passionate or rational entity is based on gaining many positiveexperiene with the entity behavior while the negative experiene shouldbe low. This an be expressed mathematially by trust values expressingbelief, disbelief, and unertainty in an entity. The desription of unertaintyis neessary sine with only small knowledge in an entity it annot seriouslybe assessed. In [19℄, J�sang de�nes a so-alled opinion-triangle (f. Fig. 1)for modeling trust values. Belief, disbelief, and unertainty are spei�edby the values b, d, resp. u whih are real numbers between 0 and 1 eah.Moreover, b + d + u = 1 holds always and the trust in an entity is statedby a point in the triangle. The perpendiular models the unertainty in anentity while the belief or disbelief is desribed by the horizontal. A trustvalue of an entity based only on low knowledge is modeled by a point loseto the top while points on the right or left bottom state great belief resp.disbelief whih is based on a large number of evaluations.
BeliefDisbelief

Uncertainty

0

0

0

1 1

b

u

d

1

Figure 1: Opinion Triangle (taken from [19℄)The trust values are alulated from the number of good or bad exper-tises of the entity in question. Assuming that the values p and n desribethe numbers of positive resp. negative events with an entity, J�sang andKnapskog [20℄ alulate the three trust values by means of the followingformulas: b = pp+n+1 d = np+n+1 u = 1p+n+1Thus, a negative event an be ompensated by some positive expertises andthe metri expresses a relatively liberal trust management philosophy. Inontrast, Beth et al. [1℄ de�ne an unforgiving poliy. The probability thatthe belief b exeeds a ertain value � is expressed by the formulaP (b > �jp; n) = � 1� �p : n = 00 : n > 0and the disbelief and unertainty are alulated from b by the formulasd = � 0 : n = 01 : n > 0 u = � 1� b : n = 00 : n > 0Thus, a single negative experiene destroys the trust in the entity forever.If nothing bad happens, the amount of belief depends on the number ofgood events. Many other metris are sensible, too, and the rigorousness ofa metri should depend on the onsequenes, a breah of on�dene has forthe entities to protet.4

Trust management an be used for several appliation domains and in [1℄key generation, authorization, keeping serets, erti�ation, lok synhro-nization, and program validation are listed as possible areas. In the �eld ofauthorization systems �rst solutions are implemented (e.g., [5℄). Here, a-ess to a resoure does not depend on traditional aess ontrol mehanisms.Instead, a aller has to show redentials issued by third parties stating thediret trust these parties have into the aller. Depending on these valuesas well as on the reommendation trust in the third parties, the resoureowner may deide about granting or rejeting aess. Implementations ontrust management-based authorization systems omprise PoliyMaker [6℄,REFEREE [8℄, and KeyNote [4℄. Another realization are the Label Bu-reaus [35℄ outlined in Se. 2. Here, the labels for evaluating the ontent ofweb pages are alulated depending on the ratings of the various parties aswell as on the trust in these parties.4 Trust Information SystemIn order to utilize experienes users made with a omponent, we need atrusted third-party olleting expertises of good and bad omponent behav-ior, alulating trust values from the expertises, and passing trust values tointerested ustomers. The tasks are realized by the Trust Information Ser-vie delineated in Fig. 2. This servie orresponds with omponent vendors,interested prinipals purhasing and deploying omponents, and authoritiesertifying omponents in behalf of a vendor or user.Component vendors may register any software omponent o�ered om-merially or free of harge delaring themselves to be in agreement thatthe trust information servie ollets expertises about the omponent ando�ers the orresponding trust values to interested parties. Of ourse, thedeision to register a omponent is voluntary. Nevertheless, sine registra-tion shows on�dene with the o�ered produt, it is an e�etive marketinginstrument. Furthermore, due to the inreased information ustomers maydeide to buy only registered and evaluated produts and therefore, defato, enfore omponent vendors to register.Parties interested in information about omponents inquire their trustvalues from the trust information servie. Moreover, the trust informationservie o�ers an alarm servie notifying all interested omponent users im-mediately about maliious experienes gained with a omponent. To geta large number of expertises from varying soures, the trust informationservies alls all ustomers in intervals for reports about the omponent

Trust

Value

Manager

Cipher

Service

Trust Information Service

Component

Vendor

Component

Customer

Certification

Authority

Vendor registers

component and

receives signed cipher

Cipher Service

announces new cipher

Vendor delivers

signed cipher

Cipher service

delivers public key

Trust Information

Service delivers

trust value

based on cipher

and

notifies customer

about incoming

bad experiences

Component

Customer passes

reports on

experiences with

ciphered component

Certification Authority

certifies component

in behalf of vendor

Certification Authority

certifies component

in behalf of customer

Certification

Authority passes

report on

certification results

Figure 2: Trust Information Serviebehavior during runtime. Furthermore, if a omponent user detets a se-rious inident indiating maliious omponent behavior, she informs thetrust information servie immediately in order to warn other users.To guarantee a high degree of privay for the omponent produers, theexpertises of omponents are not stored together with omplete omponentdesriptors but are separated. Thus, the trust information servie onsistsof two parts: a Cipher Servie and a Trust Value Manager. If a omponentvendor registers a new omponent, the ipher servie stores the relevantdata and reates a unique ipher. In ontrast, the trust value managerperforms the storage of expertises, alulation of trust values, transmissionof trust values and alarm messages, as well as the inquiry of expertises basedon the iphers. This separation of omponent identi�ers and expertise databetween two parts provides privay sine neither the ipher servie northe trust value manager have omplete knowledge about the omponents.In ontrast, the omponent ustomers and erti�ation authorities haveomplete knowledge whih, however, is limited to the very small amount ofomponents employed or erti�ed by themselves.5

5 Component RegistrationIf a omponent vendor deides to subjet a omponent to the trust-basedevaluation proess, he �rst registers it with the trust information servie.The registration proedure has to ensure that the vendor does not ma-nipulate a omponent between registration and delivery in order to heatthe trust information servie. Moreover, one has to prevent third-partiesto hange omponents during delivery to ustomers or registration. Thesetasks are guaranteed by employing digital signatures (e.g., [34℄) whih arerealized by the Java Cryptography Arhiteture [11℄. A digital signature ofa data set is performed in two steps: At �rst, the data transmitter generatesa hash-value of the data set, the so-alled message digest, by means of thehash funtion SHA-1 [32℄. Thereafter, he enrypts the message digest us-ing his private key by applying the Digital Signature Algorithm (DSA) [31℄and transmits the resulting digital signature together with the data set.The reeiver derypts the signature with the publi key of the transmitter.Finally, she hashes the data set herself and ompares the two hash-values.If the hash-values are di�erent, the data was altered during transport. Amaliious third-party annot reate a digital signature ompatible to hismanipulations sine he has not aess to the private key of the transmitter.In the �rst step of the registration proedure the omponent vendor re-ates a digital signature A of the omponent to register and transmits Atogether with the omponent to the ipher servie whih heks the hash-values. If the omponent was not manipulated, the ipher servie reatesa unique ipher of the omponent and stores it with other relevant data ofthe omponent and its vendor in a loal database. Moreover, proteted bya digital signature B, the ipher is sent to the trust value manager whihadds a new entry to its trust value database. The ipher servie reates athird digital signature C from the reord of A and the ipher. C is trans-mitted to the omponent vendor who delivers it to persons interested in theomponent. Sine C ontains the digital signature A whih was enryptedby the private key of the ipher servie, the vendor annot alter the om-ponent anymore without notifying the ipher servie. The ipher servie,however, does not register an altered omponent without reating a newipher. Therefore a ustomer an ompare the hash-values of signature Awhih is inluded in C and of the proured omponent by using the publikeys of the ipher servie and the vendor. If the hash-values are identi-al, she has on�dene that the ipher in C really belongs to the prouredomponent and that the omponent was not hanged during delivery.
6 Trust Value InquiryIf a ustomer wants to assess various omponents in order to get suÆientinformation for her prourement deision, she asks the vendors for the dig-ital signatures C of the omponents whih are usually delivered withoutthe omponent ode. Thereafter, the ustomer derypts the signatures inorder to get the orresponding iphers whih are transmitted1 to the trustvalue manager. For eah omponent two separate trust values are stored.One trust value is alulated aording to the metri of J�sang and Knap-skog [20℄ while the other reets the poliy of Beth et al. [1℄. Thus, moretolerant as well as more rigid ustomer poliies are supported. Sine a trustvalue onsists of three values indiating the belief, disbelief, and unertaintyin a omponent (f. Se. 3), the trust value manager passes six values foreah ipher omponent to the ustomer.Now the ustomer an ompare the trust values of the omponents inquestion. Besides prourement, they an also be used to deide aboutsubjeting the omponent to a erti�ation proess as well as to determinethe intensity of runtime monitoring measures (f. Se. 7). The trust values,however, desribe only one aspet of a omponent. Other aspets omprisethe prie of a omponent, the interfae struture whih may failitate orimpede the integration of the omponent into the appliation, and qualityof servie issues like performane requirements. Moreover, one an also takethe dependability of a omponent in onsideration whih an be alulatedby similar metris as the trust values [43℄.In order to o�er trust values with a high deree of ertainty, a largenumber of expertises is needed. Therefore the trust value manager allsa ustomer about a week after an inquiry for trust values. The ustomerretransmits the ipher of the seleted omponents, the results of ustomer-based erti�ations, as well as �rst evaluations of runtime monitoring. Ifthe erti�ation or the monitoring measures ould not disprove that thebehavior of a omponent omplies with its ontrat desription, the us-tomer passes a positive rating. If the ustomer deteted errors, she sendsa negative expertise together with a log of interfae ations proving themalfuntioning and preventing wrong ausations. Sine erti�ations tendto be more thorough and profound than runtime monitoring, a ustomer-based erti�ation is rated to three runtime evaluations. After the �rst1In order to prevent manipulations of the iphers, all data transmissions are protetedby digital signatures.6

inquiry, the trust value manager asks a ustomer every six weeks2 aboutthe experiene with omponents gained by runtime monitoring. Moreover,if a omponent owner detets serious maliious omponent behaviors, sheinforms the trust value manager immediately.Another valuable means of gaining expertises are erti�ation authorities.If the omponent vendor or a ustomer initiates a third-party erti�ation,the omponent is sent together with the digital signature C and the author-ity is asked to transmit the erti�ation result to the trust value manager.Depending on the reommendation trust in the erti�ation authority theerti�ation results are alulated between three and 50 runtime monitoringexpertises.In order to protet appliation owners against maliious omponent be-havior, the trust value manager o�ers an alarm servie. A ustomer bookingthis servie is immediately noti�ed when bad expertises about a omponentare reeived. Thus, users an often isolate a faulty omponent before itauses harm for its appliation. Currently, two alarm modes are o�ered:In the �rst variant an alarm is only triggered if an user reports a severeseurity violation while in the seond mode the alarm message is exeutedafter any kind of negative evaluation.7 Trust-Based Runtime MonitoringThe proess to gain evaluations based on runtime monitoring an be fail-itated by appliation of the seurity wrappers introdued in [17℄. Here, aomponent in question is wrapped with speial omponents heking theevents at the omponent interfae for ompliane with seurity objetives�xed in the omponent ontrat. The onstraints are modeled by state-transition-systems whih are simulated during runtime (f. [3℄). Eah modelonstrains the passing of events and the omponent interfae in order toguarantee a ertain seurity aspet. For instane, assume that the om-ponent in question A may only all a method M of a partner omponentB, if it previously reeived a ertain redential from a third omponent Cby means of C alling the method N of A. The orresponding onstraintspei�ation uses the states s and t. s is initial and states that the re-dential did not arrived yet while t models that the redential is available.The transitions onern the events M and N . When N is exeuted, the2In ase of eletroni trust managers (f. Se. 7) the alls are performed every 48hours.
Bean

to be

checked

Adapter

Observer Monitor

Adapter Generator

Java

Security

Manager

Trust

Manager

Introspects

Bean
Generates

Reports

Events

Reports

Controls

Controls

Controls

Intensity

of Checks

Watches

Reports

Reports

Controls

Figure 3: Seurity Wrapper Arhiteturespei�ation sets the urrent state to t. Transitions of event M state thatthis event may only be �red in state t but not in s. The partiular modeldoes not reet other events at the interfae.The task of the seurity wrapper is to simulate the model and to hek itfor ompliane with the real interfae behavior. In partiular, it stores andalulates the urrent state and ompares interfae events with the model.If in our example omponent A wants to exeuted the method all M , thewrapper �rst heks if the all is performed in state s or t. The methodall is legal if the model simulation is in the state t and the wrapper passesM to omponent B. However, the all of method M in state s indiatesthat A tried the all without the redential whih is a violation of theorresponding seurity objetive. Here, the wrapper seals the omponentby bloking the interation between the omponent and its environment.Moreover, the appliation operator is informed about the violation.We speify the seurity onstraints in the formal spei�ation teh-nique TLA [16℄ whih is based on Lamport's Temporal Logi of Ations(TLA) [25℄. TLA failitates modeling of safety, liveness, and realtime [15℄properties in a proess style similar to high-level programming languages.Moreover, it supports the de�nition of onstraint-oriented spei�ations(f. [40℄) eah modeling a separate seurity aspet of a omponent. Theseurity objetives an also be spei�ed as diagrams in the popular Uni�edModeling Language (UML) [7℄ and translated to TLA proesses (f. [12℄).7

A �rst prototype implementation [28℄ is realized as a omponent stru-tured system itself based on Java Beans [37℄. Fig. 3 delineates the enfore-ment system. Eah bean to be heked is wrapped by a speial Adapteromponent. It does not interat diretly with its environment but only viathe adapter. Thus, inoming and outgoing events an be observed and |in ase of sealing the bean | also bloked.The ompliane heks are performed by the Observer omponents. Foreah TLA onstraint spei�ation a separate observer is generated whihsimulates a TLA proess and heks if the real bean behavior orrespondsto the simulated behavior. Therefore the adapter forwards all interfaeevents to the observers whih perform the ompliane heks and send theresults bak to the adapter. If all heks are orret, the adapter passesinoming events to the bean and outgoing events to the environment. Onthe other hand, if an observer detets a violation, the adapter bloks allongoing events leading to the isolation of the bean in the appliation.Other objets of the wrapper omprise an Adapter Generator analyzinga bean to be heked by introspetion and reating an adapter based onthis analysis. The Monitor ats as an interative interfae to the applia-tion administrator. If an observer detets a violation, it reports it to themonitor whih shows it on the administrator sreen. Moreover, the toolutilizes the built-in Java Seurity Manager. In order to prevent hiddendata hannels, the administrator may redue the aess of beans to ertainsystem resoures by parameterizing the seurity manager.The Trust Manager is of partiular interest for the work introdued inthis paper sine it represents the link between the seurity wrapper andthe trust information system outlined above. If an observer detets a vio-lation, it noti�es not only the monitor but also the trust manager. If thetrust manager onsiders the violation as severe, it sends a warning messageto the trust value manager whih inludes a log of the events at the beaninterfae. Moreover, the trust manager replies inquiries of the trust valuemanager. If it was noti�ed by an observer about a violation, it transmitsa negative expertise and, otherwise, a positive evaluation report. Further-more, the trust manager reats on inoming alarm messages from the trustinformation system. After an alarm it alls an observer whih auses theadapter to seal the bean in order to protet the appliation.Experienes showed that the performane penalty of the seurity wrapperis less than 5 % on a state-of-the-art PC (f. [17℄). Nevertheless, one analso use the system to adapt the monitoring expenditure to the urrent trustvalue of a bean. Therefore, the trust manager implements a seurity poliy
stating the amount of observation with respet to a ertain trust poliy. Inintervals, it inquires the trust information system for trust values. Based onthe urrent values it an omit ompliane tests by stopping observers. Here,two possibilities are available: At �rst, an observer an be removed whihrenders maximum performane gain but rules out the possibility to ontinueobservations at a later time sine the urrent state of the TLA proess islost. To prevent this, in the seond alternative an observer is swithed intoa speial mode where it omits ompliane heks but still alulates theurrent TLA proess states. Thus, the observer an be reativated againif the trust values are getting worse. Moreover, it is possible to performspot heks where an observer perform ompliane tests only in intervals.The duration of the heks may be adjusted aording to the trust value ofthe omponent.8 ConlusionWe proposed an approah to support seure prourement and deploymentof omponents by introdution of a trust information servie employing theexperiene gained by other omponent users. Currently, a �rst prototypeis under development [45℄. It is reated based on Java Beans and will beompatible with the seurity wrapper introdued in [17℄. For a ommer-ial realization, however, more problems have to be solved. In partiular,�naning issues have to be onsidered. Potential soures of inome to �-nane the trust information servie omprise the omponent vendors whomay use good ratings for marketing, the omponent ustomers who aresupported to buy seure omponents, and internet advertisements o�eredin the servie web representation.Another problem is to �nd solutions to protet omponent vendorsagainst erroneous ausations ausing bad trust values of a omponentwrongly. Here, trusted third-party omponents may be used to mediateonits between priniples. For instane, an arbiter omponent may bealled if a ustomer or a erti�ation authority passes a bad evaluation tothe trust value manager. The arbiter heks logs and audits of the eventin question as well as the trust value of the omponent vendor and deidesif the ausation is orret. The trust value manager may only reognizethe negative expertise if the omponent vendor is pronouned guilty bythe arbiter. The mediation an be supported by another lass of ompo-nents ating as witnesses. On behalf of the vendor, the ustomer, or thearbiter these witnesses may observe omponents and the inorporating ap-8

pliations. In ase of an ausation, the witnesses support the arbiter bytelling their observations. Furthermore, the trust information servie anbe extended in order to store evaluations and trust values not only of om-ponents but also of omponent vendors and ustomers. Thus, the arbitermay utilize the reputations of a vendor and a ustomer in order to deideabout ausations.Referenes[1℄ T. Beth, M. Borherding, and B. Klein, \Valuation of Trust in OpenNetworks", in: European Symposium on Researh in Seurity (ES-ORICS), Brighton, LNCS 875, Springer-Verlag, 3{18 (1994).[2℄ A. Beugnard, J.-M. J�ez�equel, N. Plouzeau, and D. Watkins, \MakingComponents Contrat Aware", IEEE Computer, vol. 32, no. 7, 38{45(1999).[3℄ J. Biskup and C. Ekert, \About the enforement of state depen-dent seurity spei�ations", in: Database Seurity, eds. T. Keefe andC. Landwehr, Elsevier Siene (NorthHolland), 3{17 (1994).[4℄ M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, \TheKeyNote Trust Management System, Version 2", in: Report RFC-2704, IETF (1999).[5℄ M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, \The Roleof Trust Management in Distributed Systems Seurity", in: InternetProgramming: Seurity Issues for Mobile and Distributed Objets, eds.J. Vitek and C. Jensen, Springer-Verlag (1999).[6℄ M. Blaze, J. Feigenbaum, and J. Lay, \Deentralized Trust Manage-ment", in: 17th Symposium on Seurity and Privay, Oakland, IEEEComputer Soiety Press, 164{173 (1996).[7℄ G. Booh, J. Rumbaugh, and I. Jaobson, \The Uni�ed ModelingLanguage User Guide", Addison-Wesley Longman (1999).[8℄ Y.-H. Chu, J. Feigenbaum, B. LaMahia, P. Resnik, and M. Strauss,\REFEREE: Trust Management for Web Appliations", World WideWeb Journal, vol. 2, 127{139 (1997).[9℄ W. Farmer, J. Guttman, and V. Swarup, \Seurity for Mobile Agents:Issues and Requirements", in: 19th National Information SystemsSeurity Conferene (NISSC 96), 591{597 (1996).[10℄ T. Fraser, L. Badger, and M. Feldman, \Hardening COTS Softwarewith Generi Software Wrappers", in: 1999 IEEE Symposium on Se-urity and Privay (1999).

[11℄ L. Gong, \Java Seurity Arhiteture (JDK1.2)", available via WWW:java.sun.om/produts/jdk/1.2/dos/guide/seurity/spe/seurity-spe.do.html (1998).[12℄ G. Graw, P. Herrmann, and H. Krumm, \Constraint-Oriented For-mal Modelling of OO-Systems", in: Seond IFIP WG 6.1 Interna-tional Working Conferene on Distributed Appliations and Interoper-able Systems (DAIS 99), Helsinki, Kluwer Aademi Publisher, 345{358 (1999).[13℄ J. Grundy, \Storage and retrieval of Software Components using As-pets", in: 2000 Australasian Computer Siene Conferene, Can-berra, IEEE Computer Soiety Press (2000).[14℄ P. Herrmann, \Information Flow Analysis of Component-StruturedAppliations", to appear in: 17th Annual Computer Seurity Applia-tions Conferene (ACSAC'2001), New Orleans, ACM SIGSAC, IEEEComputer Soiety Press (2001).[15℄ P. Herrmann and H. Krumm, \Formal Hazard Analysis of HybridSystems in TLA", in: 18th IEEE Symposium on Reliable DistributedSystems (SRDS'99), Lausanne, IEEE Computer Soiety Press, 68{77(1999).[16℄ P. Herrmann and H. Krumm, \A Framework for Modeling TransferProtools", Computer Networks, vol. 34, no. 2, 317{337 (2000).[17℄ P. Herrmann and H. Krumm, \Trust-adapted enforement of seuritypoliies in distributed omponent-strutured appliations", in: 6thIEEE Symposium on Computers and Communiations, Hammamet,IEEE Computer Soiety Press, 2{8 (2001).[18℄ A. J�sang, \The right type of trust for distributed systems", in: UCLAonferene on New seurity paradigms workshops, Lake Arrowhead,ACM, 119{131 (1996).[19℄ A. J�sang, \An Algebra for Assessing Trust in Certi�ation Chains",in: Network and Distributed Systems Seurity Symposium (NDSS'99),ed. J. Kohmar, The Internet Soiety (1999).[20℄ A. J�sang and S. J. Knapskog, \A metri for trusted systems", in:21st National Seurity Conferene, NSA (1998).[21℄ G. Karjoth, D. Lange, and M. Oshima, \A Seurity Model for Aglets",IEEE Internet Computing, 68{77 (1997).[22℄ K. Khan, J. Han, and Y. Zheng, \Speifying seurity requirementsand assuranes of software omponents", in: Australian Workshop onRequirements Engineering, Brisbane, 57{65 (2000).[23℄ K. Khan, J. Han, and Y. Zheng, \A Framework for an Ative Interfae9

to Charaterise Compositional Seurity Contrats of Software Compo-nents", in: Australian Software Engineering Conferene (ASWEC'01),Canberra, IEEE Computer Soiety Press, 117{126 (2001).[24℄ R. Khare and A. Rifkin, \Weaving a Web of Trust", World Wide WebJournal, vol. 2, no. 3, 77{112 (1997).[25℄ L. Lamport, \The Temporal Logi of Ations", ACM Transations onProgramming Languages and Systems, vol. 16, no. 3, 872{923 (1994).[26℄ U. Lindqvist and E. Jonsson, \A Map of Seurity Risks Assoiatedwith Using COTS", IEEE Computer, vol. 31, no. 6, 60{66 (1998).[27℄ C. L�uer and D. S. Rosenblum, \WREN | An Environment forComponent-Based Development", Tehnial Report #00-28, Univer-sity of California, Irvine, Department of Information and ComputerSiene (2000).[28℄ A. Mallek, \Siherheit komponentenstrukturierter verteilter Sys-teme: Vertrauensabh�angige Komponenten�uberwahung" (in German),Diploma Thesis, University of Dortmund, Computer Siene Depart-ment, 44221 Dortmund, Germany (2000).[29℄ Mirosoft, \The Mirosoft COM Tehnologies", available via WWW:http://www.mirosoft.om/om/omPapers.asp (1998).[30℄ B. P. Miller, L. Fredrikson, and B. So, \An Empirial Study of theReliability of Unix Utilities", Communiations of the ACM, vol. 32,no. 12, 32{44 (1990).[31℄ National Institute of Standards and Tehnology (NIST), \Digital Sig-nature Standard (DSS)", FIPS, edition 186 (2000).[32℄ National Institute of Standards and Tehnology (NIST), \Seure HashStandard (SHS)", FIPS, edition 180-1 (2000).[33℄ Objet Management Group, \CORBA Component Model Request forProposals" (1997).[34℄ R. L. Rivest, A. Shamir, and L. Adleman, \A Method for ObtainingDigital Signatures and Publi Key Cryptosystems", Communiationsof the ACM, vol. 21, no. 2, 120{126 (1978).[35℄ M. Shepherd, A. Dhonde, and C. Watters, \Building Trust for E-Commere: Collaborating Label Bureaus", in: 2nd InternationalSymposium on Eletroni Commere Tehnologies (ISEC'2001), eds.W. Kou, Y. Yesha, and C. J. Tan, Hong Kong, LNCS 2040, Springer-Verlag, 42{56 (2001).[36℄ Sun Mirosystems, \Enterprise Java Beans Tehnology| Server Com-ponent Model for the Java Platform (White Paper)", available viaWWW: java.sun.om/produts/ejb/white paper.html (1998).
[37℄ Sun Mirosystems, \Java Beans Spei�ation", available via WWW:java.sun.om/beans/dos/spe.html (1998).[38℄ C. Szyperski, \Component Software | Beyond Objet Oriented Pro-gramming", Addison-Wesley Longman (1997).[39℄ K. A. Tee, \E-Commere in an Era of Creative Destrution", avail-able via WWW: www.alumni.nus.edu.sg/Alumnus/jul2000/eom.html(2000).[40℄ C. A. Vissers, G. Sollo, and M. van Sinderen, \Arhiteture and spe-i�ation style in formal desriptions of distributed systems", in: Proto-ol Spei�ation, Testing and Veri�ation (PSTV'VIII), eds. S. Agar-wal and K. Sabnani, IFIP, Elsevier, 189{204 (1988).[41℄ J. Voas, \A Reipe for Certifying High Assurane Software", in: 22ndInternational Computer Software and Appliation Conferene (COMP-SAC'98), Vienna, IEEE Computer Soiety Press (1998).[42℄ J. Voas, G. MGraw, A. Ghosh, and K. Miller, \Glueing togetherSoftware Components: How good is your Glue?", in: Pai� NorthwestSoftware Quality Conferene, Portland (1996).[43℄ J. Voas and J. Payne, \Dependability Certi�ation of Software Com-ponents", The Journal of Systems and Software, vol. 52, no. 2{3,165{172 (2000).[44℄ R. Wabbe, S. Luo, T. E. Anderson, and S. L. Graham, \EÆientsoftware-based fault isolation", in: 14th Symposium on Operating Sys-tem Priniples, ACM, 203{216 (1993).[45℄ M. Z�ulh, \Ein Werkzeug zum Vertrauensmanagement komponen-tenbasierter Software" (in German), to appear as: Diploma Thesis,University of Dortmund, Computer Siene Department, 44221 Dort-mund, Germany (2001).Peter Herrmann studied Computer Siene at the University of Karlsruhe(diploma in 1990). Sine then he works as a researher in the Computer Net-works and Distributed Systems Group of the Computer Siene Department atthe University of Dortmund (Ph.D. in 1997). His researh interests inlude seu-rity aspets of distributed omponent-strutured software as well as formal-baseddevelopment of distributed appliations and hybrid tehnial systems.

10

