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Abstract

The security analysis and protection of modern distributed information
systems has to deal with the complexity, heterogeneity and broad inter-
connectivity of the systems. With respect to that our approach employs
object-oriented modeling techniques in order to facilitate the analysis and
to assure its quality even in case of extensive systems. The analysis efforts
can concentrate on the creation of a model of the existing system, while
threat and weakness identification, risk assessment, and countermeasure
planning are substantially supported by automated tool-assistance. The
tool moreover adopts conceptions of object-oriented design tools like the
utilization of predefined class libraries and the use of graphical UML-based
class and instance diagrams. Therefore the tool already supports the com-
fortable model creation. The following tasks correspond to model analysis,
refinement and augmentation. They are supported by automated tool func-
tions which apply enhanced object-oriented techniques like multiple class
hierarchies, object patterns, and graph rewrite system based transforma-
tion rules. We report on the principles of the approach and clarify its
application by means of an example.

Key Words: security analysis, risk analysis, risk assessment

1 Introduction

The gravity of the information system security issue is rapidly growing.
On the one hand there is an increasing deployment of information technol-
ogy. Thus, institutions as well as persons more and more depend on the
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secure and reliable operation of information systems. On the other hand
the vulnerability of the systems is growing due to their increasing size and
complexity. That trend is strengthened in particular by the internet-based
distribution, inter-system operation, and remote accessibility of modern
systems. In fact, the network technology enables new and important ap-
plications (e.g., e-commerce applications). Nevertheless it is accompanied
with various new threats. So, the distribution of functions and the inter-
operation of systems result in a wider spectrum of points of attack and in
a broader range of possible attack effects since there may be a large series
of connected components and even locally restricted attacks can poten-
tially influence all parts of a system as well as other cooperating systems.
Moreover the internet accessibility of systems may be utilized by a growing
community of attackers.

Therefore an urgent needs for the security analysis and protection of
network-based distributed information systems exists with respect to the
audit of existing systems, to the introduction of countermeasures, and to
the design of secure new systems. The analysis, however, is expensive and
laborious due to the heterogeneity and complexity of the systems. Well-
educated specialists have to analyze the systems in detail under considera-
tion of extensive recommendations and standards (e.g., in order to establish
baseline protection [7] or to certify the state of security [14, 20]). Moreover
they have to be aware of current developments and consult rapidly growing
information bases (e.g., incident notes, vulnerability notes, and advisories,
cf. [10]).

Many procedures for the analysis and design of secure systems were pro-
posed already [3]. Typically one passes possibly under iterations
through a series of phases which are devoted to following subtasks:

e Identification of the system, of its structure and its components,

e valuation of the assets contained in the system and definition of the
security objectives,

e identification of weaknesses and threats,
e assessment of resulting risks,
e planning, design, and evaluation of suitable countermeasures.

Our approach also supports these tasks. In particular, it facilitates the
security analysis, reduces its expenses, and assures its quality by means of



object-oriented modeling techniques. We apply graphical system models in
form of object class and object instance diagrams as they are defined in the
well-known Unified Modeling Language approach [4]. A special interactive
tool provides modeling and analysis assistance.

In our approach expensive human efforts can concentrate on the first two
phases, on the system identification and on the definition of the security
objectives. For both purposes one develops and augments a graphically
defined object-oriented system model. The development is supported by
interactive tool-functions. Moreover, predefined class libraries exist. They
supply a suitable conception for the architecture of models and provide for
the detailed definitions of the object types needed.

The other three phases are performed under substantial support of au-
tomated tool functions where the automation is enabled by the detailed
structure of the object-oriented system model. The functions evaluate the
class memberships, attribute values, and association structures of the object
instances of the model. Based on that information the functions can iden-
tify possible weaknesses and threats and introduce object representations
of them into the model. In the next phase then these augmentations of the
model enable automated risk assessment support. Due to the associations
between threats and assets, the tool identifies the risks automatically and
guides their interactive valuation. In the last phase the tool automatically
detects where countermeasures are of interest. It proposes countermeasures
and their location. Moreover it guides the interactive valuation of their
costs. Further iterations of the phases can be employed for the refinement
of the model and for the analysis of residual risks.

In more detail the automated tool functions are based on enhanced
object-oriented techniques which are employed in addition to graphical
model descriptions and class libraries:

e Object classes define security relevant attributes and associations.
Moreover they define methods for automated class-specific analysis and
evaluation.

e The class libraries supply multiple class hierarchies where each hier-
archy is devoted to the modeling of special aspects. In combination
with multiple inheritance that supports comfortable modeling under
separation of concerns.

e By means of object configuration patterns recurring scenarios are de-
fined, which are used as starting points for special automated analysis

and evaluation procedures.

e For the automated refinement and augmentation of models the ap-
proach of graph rewriting systems is applied (e.g., [1]). A combina-
tion of an object configuration pattern with an applicability condition
serves as enabling condition of a transformation rule. A second object
configuration pattern defines the result.

e Libraries of scenarios and rewrite rules are supplied in addition to class
libraries. They support the comfortable integration of known threat
scenarios and countermeasures.

Moreover a set of interesting perspectives supplements the advantages of
our approach. So, general modeling conceptions as they are defined in se-
curity certification standards (e.g., Common Criteria [20] and ITSEC [14])
can directly be supported by means of corresponding class libraries. Like-
wise, one can represent incident notes, vulnerability notes, and advisories
by object pattern and rewrite rule libraries thus enabling their automated
tool-assisted consideration during the analysis of special systems. Further-
more we study the introduction of a more abstract model layer which serves
for the representation of abstract security policies. Finally we should men-
tion that object-oriented system models can also be utilized to support the
second major task in the provision of secure systems, namely the proper
operation and management of the security services. With respect to this,
[26] reports on an approach for the model-based management of firewall
configurations. The approach can be extended to the general management
of security services. It can share tool functions and system models with our
approach. Therefore management functions may efficiently reuse analysis
information. An integration of both approaches can result in a technique
for the analysis-based design of management procedures.

In the sequel we firstly give a short overview of related work, in particular
of other security analysis approaches. Thereafter we concentrate on the
principles of our new approach and successively enter into the different
phases of object-oriented security analysis. For each phase we discuss its
objectives and functions. We outline the corresponding modeling and tool
support. Moreover we elucidate the application by means of the example
of the small enterprise IT system proposed in [31].



2 Security Analysis

Evaluating the assets of computer systems, data, and networks, determin-
ing the risks of malicious attacks on these assets, as well as suggesting
suitable countermeasures against the attacks form an important field of re-
search since the early seventies. Baskerville delineates three generations of
security analysis methods [3]. The first generation are methods based on
checklists. Here, a system is scrutinized for the existence of every conceiv-
able countermeasure by means of a checklist. If a countermeasure is not
available, its necessity is examined by means of a risk analysis where the
risk for an asset is calculated from the asset’s value and the likelihood of
a successful attack (e.g. [13]). Examples of the checklist-based method are
SAFE [22], the Computer Security Handbook [19], and AFIPS [5]. Tools
based on this method comprise [2, 6, 8, 17, 18, 30, 33]. The main drawback
of this generation is the informal and non-structured way of analysis which
is hardly scalable to more complex computer systems.

This weakness is addressed by the second generation of security analysis
methods which is called mechanistic engineering method [3]. This method
focus on identifying and solving detailed function system requirements fa-
cilitating the reduction of a complex system analysis into easier manageable
system requirement examinations. In particular, system assets, threats on
the assets, and countermeasures against these threats are identified and
evaluated consecutively. Thereafter a risk analysis is performed depend-
ing on which suitable countermeasures are selected and implemented. This
method was introduced by Parker [28] and Fisher [16]. A well-known tool
is CRAMM (e.g., [11]) provided by the UK Government. Here, in a first
step examiners scrutinize a computer system for its assets by means of
structured checklist-based interviews with the system owners. Based on
the results CRAMM develops further questionnaires for determining the
threats on the assets which have to be filled by interviewing the system
owners, too. In a third step, the existing countermeasures of a system
are delineated by further checklists. Based on the results, CRAMM finally
suggests suitable countermeasures. Other tools based on mechanistic engi-
neering are RISKPAC [12], BDSS [27], and CBISA [15]. While these tools
are useful even for very complex systems, the complexity of the analysis
process urges for expensive security expert teams performing the examina-
tions. Moreover, due to the isolation of the security-based system analysis
from the functional design process, each major system modification calls
for a complete new security analysis.

The third generation of so-called logical transformational systems intends
to overcome these shortcomings by introducing abstract modeling of sys-
tems and security-related requirements. An abstract model forms the basis
for the introduction of suitable problem-solutions which are elaborated by
model modifications. Finally, the abstract solutions are refined to imple-
mentable countermeasures. The extension SSADM of the tool CRAMM [9]
is an early solution of this idea. Here, abstract specifications of a system, its
problems, the security requirements, and possible technical options are de-
veloped in parallel to the CRAMM interviews. The reviewing process and
the creation of questionnaires are guided by the specifications. Another
approach is Baskerville’s logical control design method [2] where relevant
assets of a system and the threats to them are modeled in a process-like
way and collected in a dictionary. Depending on the threats for each pro-
cess cross-references to special processes modeling countermeasures are set
which are guiding the system implementation. More recent approaches con-
centrate on formal modeling of processes and requirements. For instance,
Kienzle and Wulf propose the use of hierarchical organized trees which are
called Methodically Organized Argument Trees (MOAT) as a method to as-
sess security of computer systems [21]. In a first step security requirements
are defined which form MOAT roots. In subsequent steps the leaves of a
MOAT describing unjustified assumptions are refined resp. decomposed
into subgoals or alternatives. Thereafter the leaves are justified either by
formal verification or by informal plausibility checks according to the risk
for the modeled requirement. A similar method is the harmonizer approach
of Leiwo and Zheng [25]. Here, the security requirements of a company are
modeled formally by tuples each stating a pair of organization elements, a
communication between the elements, rules for the messages via the chan-
nel, an algorithm protecting the messages, and parameters governing the
algorithm. Moreover, the system contains so-called harmonization func-
tions which create, delete, or modify a tuple depending on the existing set
of tuples. The security analysis is performed by iterative application of
harmonization functions on an initial set of requirement tuples.

A major drawback of these approaches is that they root in abstract re-
quirement descriptions. Thus they support the development of secure sys-
tems but are hardly suitable to the analysis of existing systems. This weak-
ness is addressed by the Risk Data Repository (RDR) approach of Kwok
and Longley [24] which centers on supporting security officers to maintain
existing systems. The RDR consists of various domains describing relevant
elements of a computer system, mappings between domains, and counter-



measure diagrams. An existent system is modeled by parameterizing RDR
entries based on a hypertext system [23]. Thereafter the countermeasure
diagrams are used to delineate threats on systems elements and to suggest
suitable countermeasures.

Our approach of object-oriented security analysis can be classified as a
third generation system since it applies abstract modeling, model-based
analysis, and logical transformation. While the existing approaches are
based on classical data base and information system techniques like dic-
tionaries, data repositories, relation tables, and decision trees, we apply
explicit object-oriented modeling and enhanced object-oriented techniques.
The tool support adopts the conceptions of typical object-oriented design
tools which are well-established in the field of computer-aided software engi-
neering and support the comfortable interactive design of graphical model
definitions (c.f. e.g., the Argo tool [32]). In fact, our tool reuses open-
source modules of the Argo project. While we did not find references to
other object-oriented security analysis approaches, we have to mention, that
the general idea of using object-oriented modeling and graphical system di-
agrams is not new. Particularly the concluding remarks of [23] end with
the statement “The object-oriented paradigm will be more suitable for the
security models of large organizations”.

3 System identification

UML-based object-oriented modeling [4] is performed in a series of steps.
Under utilization of UML class diagrams, at first the modular structure of a
system is modeled by design of a hierarchy of classes and links between the
classes like associations, aggregations, or inheritance. These models form
the basis for specifying objects and object relations which are described by
UML object diagrams. Objects are instantiated from the classes and the
relations between objects comply with the class links. In subsequent steps,
the system behavior, i.e., the internal objects behavior and the interactions
between objects are modeled using mainly UML state chart, sequence, and
collaboration diagrams. Since a security analysis focuses mainly on the
structure of a system, our approach concentrates on describing the system
classes, objects, and their links.

In order to facilitate the description of systems, we already provide a set
of classes describing relevant system parts (i.e., the UML class diagram in
Fig. 1). A basic class Asset reflects that every part of a computer system is
a potential asset itself. From Asset currently four subclasses are inherited
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Figure 1: UML class diagram of basic system classes

describing computer networks, stations, data, and applications. Associ-
ations between these classes state their relations. A station stores data,
executes applications, and is connected with a network while an application
accesses data and cooperates with other applications. From these subclasses
more specialized subclasses are inherited. For instance, database clients and
servers may be described by the classes DB-Client-SW and DB-Server-SW
which are inherited from Application. Since class links are inherited due to
the inheritance relation, these two classes can be linked by the association
cooperates with. Moreover, one can use multiple inheritance for definition of
subclasses which own properties of various classes. For instance, the class
DB-Server models a database server consisting of both, the data storage
and the server software. Therefore this class inherits the classes Application
and Data.

A system to be analyzed is modeled by objects instantiated from these
classes and object relations based on the class associations. As an example
we use a computer system typically used by small enterprises as delineated
in [31]. The system consists of a small number of PC-Clients, a PC-Server,
and a printer which are connected by an ethernet LAN. The PC-Server
also has a direct link to the Internet. The business functions of this system
include various database related actions like the storage and processing of
customer sales, administration, and financial affairs. The communication
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Figure 2: UML object diagram of a small enterprise subsystem

related functions consist of local client server cooperation as well as internet,
access. In particular, the system provides a company web server used by
customers for e-commerce.

The specification of the small enterprise computer system was developed
using the graphical drag-and-drop functions of the ARGO-based tool. Fig. 2
is a screenshot outlining the object diagram of an example subsystem kept
small for the sake of simplicity. It contains a PC-server and a PC-Client
which are modeled by the objects Server and Client. These objects are in-
stantiated from descendants of class Station. The ethernet LAN connecting
the two stations is specified by an object LAN of the class Network. The
subsystem also contains a database system consisting of the set of data as
well as the server and client applications. These elements are specified by
the objects DB (class Data Base), DBServerApp (class DB-Server-SW), and
DBClientApp (class DB-Client-SW). The associations ezecutes and stores
link the elements to particular stations while their internal relations are

modeled by the associations cooperates and accesses. Moreover, the inter-
net access of the server is specified as well. Besides the object Internet of
class Network the subsystem description contains a remote Internet Sta-
tion INetServer and a WWW-Server WebServer. Furthermore, the client
executes a WebBrowser which cooperates directly with the remote WWW-
Server.

4 Valuation of assets

After modeling relevant system parts, the protection requirements for these
assets have to be determined. Two different methods to evaluate an asset
for its degree of protection are common. At first, one can decide the costs
to repair an asset attacked successfully. At second, one can define secu-
rity levels depending on the extent of damage by an attack. For instance,
in [7] four security levels mazimum, high, moderate, and low are defined.
The level mazimum shall be assigned to an asset if its failure “leads to
total collapse of the institution or has serious consequences for large part
of the society or industry”. Failures of assets rated to level high lead to
malfunctioning of central areas of the attacked institution which results in
a considerable disruption of the institution itself or third parties. The use
of the security level moderate is recommended if the damage causes nor-
mal disruption while attacks on assets of level low result only in a minor
disruption of an institution. Moreover, for each security level [7] outlines
recommendations with regard to the general aspects of data secrecy, cor-
rectness of information, and downtime of systems. Our security analysis
approach currently uses these four security levels.

Nevertheless, the assignment of a single valuation to an asset is not suf-
ficient since the degree of damage depends on the kind of attack (cf. [24]).
For instance, if an enterprise secures crucial data by a capable back-up sys-
tem but fails to store them encrypted, the removal from the data is only
of minor harm since they can easily be restored. Wiretapping, however,
may cause significant damage since the thief has no problem to interpret
the information contained in the data. Therefore, like [7] our approach uses
separate security levels for the confidentiality, integrity, and availability of
an asset.

In the object-oriented system model, security levels are assigned by ini-
tializing object attributes. As sketched in Fig. 3, the basic class Asset con-
tains three attributes confidentiality, integrity, and awvailability each speci-
fying a security level. The possible values of the attributes are mazimum,



Asset
confidentiality : {maximum,high,moderate,low,no}
integrity : {maximum,high,moderate,low,no}
availability : {maximum,high,moderate,low,no}

setConfidentiality (v : {maximum,high,moderate,low,no}): void
setIntegrity (v : {maximum,high,moderate,low,no}): void
setAvailability (v : {maximum,high,moderate,low,no}): void
getConfidentiality (): {maximum,high,moderate,low,no}
getntegrity (): {maximum,high,moderate,low,no}
getAvailability (): {maximum,high,moderate,low,no}

Figure 3: Security level related attributes and methods of basic class Asset

high, moderate, and low stating the selected security level while the value
no is assigned if no protection requirement is intended. Besides these at-
tributes, Asset contains methods for writing and reading them. Since the
class is an ancestor of all other system element classes, the attributes and
methods are available in every object modeling a system asset.

In the subsystem of the small enterprise example (cf. Fig. 2) we evaluated
the station Server which stores and maintains the relevant business data as
crucial hardware component of the company. As a major damage of this
system causes significant disruption, we rate the security level high to the
three security aspects confidentiality, integrity, and availability. In contrast,
the Client and the LAN are less important for the enterprise. Thus, they
are assigned with the level moderate. The Internet and the remote internet
host are not, evaluated in this analysis and therefore rated with the level
no. Since the data base DB is assumed to be important for the enterprise,
we evaluated the three security aspects each with the level high. The data
base client and server applications as well as the web browser are standard
software products which can be restored easily. Since, moreover, it is only
available as machine code, its confidentiality and availability levels are rated
low. With respect to integrity, however, these assets are more vulnerable.
For instance, a virus infection may threat significant system parts as the
server or the data base and also customer computers. Thus, the integrity
of these systems are rated with the security level high.

5 Identification of weaknesses and threats

The preceding two phases have identified the system with respect to its
direct constituents, their values and their relations. Now we want to com-

plement the system model by representations of the existing threats since
organizational shortcomings, human failures, technical failures, deliberate
acts, and force majeur may have negative impacts on assets of the sys-
tem. We have to consider that persons and groups of persons — so-called
principals — exist who can influence the system. In particular, besides of
users, asset owners, and administrators there are attackers who originate
deliberate act based threats.

The object-oriented modeling reflects that by means of two object class
hierarchies. Subclasses of class Principal correspond to the different types of
persons, subclasses of Threat represent the relevant types of shortcomings,
failures, attacks, and incidents. Moreover associations between principals
and assets are introduced modeling e.g., that an owner owns an asset, that
a user accesses a resource, or that an attacker misuses an application.

In that setting the threat identification shall result in an augmentation
of the system model by threat objects, principal objects, and associations
which model relevant threats. In general not all threats are relevant to
all assets of a system. Rather a threat is relevant only if a weakness exists
which provides for a suitable point of attack. Therefore threat identification
coincides with weakness identification and we can utilize the observation
that weaknesses correspond to the occurrence of certain subsystems within
the system. In the simplest case already the existence of one object of a
certain type implies a weakness, e.g., the occurrence of an open network
comes along with direct eavesdropping opportunities for network based at-
tackers. In the more complex cases some possible interrelations between
different objects of a subsystem form the weaknesses, e.g., a network-based
attacker may misuse a network in order to gain control over a station. He
then may misuse this station for an integrity attack on data stored in a
connected asset.

To enable tool-assisted automated threat identification we represent
weaknesses by those object configuration patterns which apply to the corre-
sponding subsystem configurations. The patterns are represented by object
instance diagrams. With respect to our example, Fig. 4 depicts a pattern
where one principal has a misuse station association with a station. The
station executes an application which cooperates with another application
installed on a second station. The pattern implies the weakness that the
principal who misuses the first station may also misuse the second sta-
tion since he may find a way to gain control on the second station via the
two cooperating applications. The scenario which directly represents the
resulting misuse association between the principal and the second station
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again can be represented by means of an object configuration pattern. The
pattern is shown in Fig. 4. We note that both patterns form a pair in the
sense that the first pattern triggers the detection of a threat and the second
pattern documents a possible effect of this threat. Moreover we note that
the second pattern can contain subsystems which can contribute to further
threats. So, in the example of Fig. 5 we find the principal now misusing
the second station directly. If for instance an application on this station
cooperates with a further application on a third station, again the pattern
of Fig. 4 can apply. In that way threat identification and effect documen-
tation can be performed repeatedly in order to grasp all indirect threats,
too.
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The procedure of repeatedly identifying triggering pattern occurrences
in a model and transforming the model in accordance with result patterns,
can be implemented by means of a graph transformation system (cf. [1]).
A transformation system is defined by a set of transformation rules. Each
rule consists of a pattern pair, i.e., a triggering pattern and a result pat-
tern. Moreover a rule can be augmented by an application condition and
by effect functions. The application condition refers to properties of the
input pattern occurrence. It guards the transformation which can only be
applied if the condition is evaluated to true. The effect functions define
how attribute values in the resulting pattern occurrence depend on values
of the input pattern occurrence. In that way one can represent even subtle
triggering configurations and result augmentations.

Applying these principles we developed libraries of transformation rule
collections which correspond with the different types of threats. Further-
more the analysis tool implements functions for the inclusion of transfor-
mation rule collections and for the repeated application of the rules. Thus,



after inclusion of the necessary transformation rules the tool automatically
looks for possible rule applications and - under execution of the transforma-
tions - augments the model by threat representations. Fig. 6 exemplifies the
augmentation. It depicts an intermediate state of the threat analysis of the
small enterprise system shown in Fig. 2. The analysis has detected some
threats which may be originated by company internal attackers or mali-
cious internet users. Fig. 6 documents that attackers may misuse the LAN,
the client station and client-side applications. These misuses cause various
confidentiality, integrity, and availability threats on the client and server
data resp. applications. For instance, the asset DB of the small enterprise
subsystem is vulnerable to an eavesdropping attack from an internet-based
intruder.

Graph rewriting is also used to assess the likelihood of misusing or at-
tacking assets. In order to add attributes to association links, the UML
offers special association classes which are linked to associations by a spe-
cial link attribute (cf. [4]). We introduce the association class Threat which
can be linked to associations describing threats on assets. Class Misuse
is a descendant of Threat and is linked to associations stating a misuse of
a system part. Both classes contain an attribute likelihood describing the
probability of an attack on or misuse of an asset using the five values maz-
imum, high, moderate, low, and no. Some likelihoods of threats have to be
assessed manually by the analyst. Others, however, can be calculated by
the tool. For instance, the probability of an attack on an asset protected by
a safeguard depends on the level of protection (introduced below in Sec. 7)
provided by the safeguard.

6 Risk assessment

According to Courtney [13] a risk to an asset depends on the valuation of the
asset and the likelihood of an attack on it. In our approach this corresponds
to the security level of the asset (cf. Sec. 4) and the level of likelihood of
a malicious attack (cf. Sec. 5). A risk to an asset is modeled by an object
of the class Risk. As delineated in Fig. 7, this class contains an attribute
value describing the risk level as well as methods for providing the access to
this attribute. For the sake of simplicity we use the values mazimum, high,
moderate, low, and no for describing risk values, too. Risk is associated
with three classes. The first class is Asset modeling the assessed asset. A
second class is the association class Threat which describes the threat on
the asset and the third class Misuse specifies the kind of misuse the threat is

Confidentiality Risk
Risk
value : {maximum,high,moderate,low,no} Integrity Risk
setValue (v : {maximum,high,moderate,low,no}): void
getValue (): {maximum,high,moderate,low,no}
Availability Risk
Asset Threat Misuse

Principal

Figure 7: UML class diagram of the class Risk and its links

based on. Since the risk values may differ depending on the kind of threats,
three subclasses Confidentiality Risk, Integrity Risk, and Awvailability Risk
are inherited from Risk.

In a first assessment step our tool adds instances of the risk subclasses
to the system description by graph rewriting. If, for instance, a pattern of
an asset object, a threat object instantiated from a descendant of Confi-
dentiality Threat, a malicious principal, and a misuse object are linked, an
instance of Confidentiality Risk is created and associations to the pattern
objects are generated. Thereafter the tool determines the risk value based
on the security level and the likelihoods of the threat and misuse objects.

Overall likelihood of attack
Security level || maximum | high | moderate | low | no
maximum maximum | maximum | high moderate | no
high maximum | high moderate | low no
moderate high moderate | low low no
low moderate | low low no no
no no no no no no

Table 1: Matrix for calculating risk values



At first, the overall likelihood of attack is calculated as the minimum of the
threat and misuse likelihoods. This reflects that an intruder must be able
to misuse a system part for an attack as well as to attack the asset after
gaining access to the system part. Afterwards, the risk level is calculated
from the overall likelihood and the security level of the asset according
to the matrix outlined in Tab. 1. Risk objects with the value no are re-
moved. Finally, the security analyst examines the risk objects and deletes
the objects if the risks are considered acceptable. The tool supports also
strategies to remove risk objects automatically. For instance, the analyst
may request the tool to remove any confidentiality risk if the risk level is
not, higher than moderate and the risk is based on eavesdropping attacks
on data. Strategy depending discards are performed by graph rewriting as
well. If all risk objects are deleted after the assessment and examination
process, the security analysis is finished as the risk to the assets is assumed
acceptable and the system is considered as sufficiently secure.

In our subsystem example the object DB modeling a data base is linked
with three confidentiality risk objects since the model contains an object
of class Favesdrop Threat and three misuse objects. The station Server
can be misused for an attack on DB either by direct access, by abusing
a cooperating application, or by remote access from the LAN or Internet.
The confidentiality security level of DB is high (cf. Sec. 4). The likelihood
of eavesdropping is considered mazimum since data is not protected by an
authentication system and therefore is vulnerable to every station user. Due
to a certain amount of trust in the employees and visitors of the enterprise
the likelihood of misusing the server directly is considered moderate. Since
the data base retrieval software, however, enables the transmission of data
to Client which due to its internet access is an easier hostage, the likelihood
of misuse by a cooperating application is assumed as high. Due to the
internet connection the chance of a remote station misuse is also rated
high. Thus, two confidentiality risk objects are assigned to the risk level
high and one to the level moderate. As the high risk of eavesdropping
essential business data is not acceptable, the analysis has to be continued.

7 Countermeasure introduction

After risk assessment the security analysis proceeds to the selection of suit-
able countermeasures in order to reduce the risk of attacks against relevant
assets. In our approach safeguards are modeled by objects of the class
Countermeasure (cf. Fig. 8). This class contains attributes to describe the
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Authentication System

setCosts (v : {maximum,high,moderate,low,no}): void <

Password System

Smard Card System

Biometric System

costs = low
confidentiality = moderate
integrity = moderate
availability = moderate

costs = moderate
confidentiality = high
integrity = high
availability = high

costs = maximum
confidentiality = maximum
integrity = maximum
availability = maximum

Figure 8: UML class diagram of the class Countermeasure and some de-
scendants

cost of deploying the countermeasure and the levels of protection the safe-
guard provides with respect to confidentiality, integrity, and availability.
Like other class attributes, they use the values maximum, high, moderate,
low, and mo. An association protects links countermeasure objects to the
protected asset. Countermeasure is an ancestor of several classes describing
specific safeguards like a password authentication system. Using multiple
inheritance these classes are also descendants of subclasses of Asset like
Application or Data. Moreover, the cost and protection level attributes are
already assigned with initial values.

The tool provides graph rewriting rules in order to suggest countermea-
sures against threats. At first, for each safeguard which is appropriate
against a threat the corresponding object is created and linked to the pro-
tected asset. Thereafter the tool compares the safeguards with respect to
their degrees of protection and their costs. All countermeasures are dis-
carded the protect values of which are lower than the risk levels of the
asset. If no countermeasures remain, the corresponding asset cannot be



guarded accordingly. If there are more than one countermeasure left, the
least expensive is selected and the others are removed. As countermeasures
are also descendants of the class Asset, they own Attributes describing their
confidentiality, integrity, and availability related security levels (cf. Sec. 4).
In a third step these attributes are initialized in dependence on the risk
levels, protection values, and the security levels of the protected asset.

After selecting countermeasures, the extended system has to be analyzed
as well since a safeguard itself may be a target of a malicious attack which
consequently leads to a severe risk of the protected asset, too. Therefore a
further iteration of the security analysis will be performed (cf. Sec. 5).

In our example subsystem the risk of an eavesdropping attack on the
data base DB was calculated as high. A suitable countermeasure is the in-
troduction of an access control system and an authentication system. The
authentication system secures that a principal is the person he pretends to
be. The access control system limits the access on data or applications only
to a certain group of persons. As possible authentication systems the tool
suggests a password system, a smart card based system, and a biometric
authentication system. The password system offers only moderate protec-
tion since passwords can be cracked quite easily. In contrast, a smart card
based system with PINs (and possibly TANs) can hardly be deceived and
therefore is rated high. Finally, suitable biometric systems offer mazimum
protection. At first, the tool deletes the password system since its pro-
tection with respect to confidentiality is lower than the confidentiality risk
level of the asset DB. Thereafter the smart card based system is selected
since it is cheaper than the biometric system. Likewise, for access control
a discretionary access control system is chosen. Fig. 9 outlines the ex-
tended subsystem containing the authentication and access control systems
together with associated data files. Finally, the security levels of the four
new components are selected. Since they protect a data base of security
level high, their own security levels are also rated with high.

8 Conclusion

The preceding description of our approach and in particular the example
used there applies to medium grain system models. They represent the
major building blocks and asset aggregations of distributed information
systems. The size of the model grains reflects the needs of the practical
security analysis of current systems which consist of relatively large com-
ponents. In fact many future information systems will be composed from
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Figure 9: Small enterprise subsystem with authentication and access control
systems

so-called software components as they are supported by component models
and application server platforms (e.g., CORBA 3 [29]). The software com-
ponents are of different size, many of them will be of significantly smaller
size than current major building blocks. The components will be supplied
by different vendors and be offered on an open component market. The
information systems will employ a dynamically changing set of software
components and various relevant interrelations between components exist.
With respect to those software component based systems therefore the care-
ful security analysis has to be based on more fine-grained models. They



have to model the system structure as well as the information flow and
access control properties in more detail. Moreover they have to deal with
new types of countermeasures like policy enforcement modules, component,
wrappers, and component security information services. Currently we are
extending our approach into this direction. First examples show that com-
ponent systems correspond to highly structured and very extensive models.
Therefore we investigate the introduction of abstraction layers into our ap-
proach. We expect that the resulting combination of object-orientation,
tool-assistance, and subsystem abstraction will contribute to the practi-
cal feasibility of careful security analysis procedures for future application
server based applications.
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