
In Proceedings of the 7th International Conference on TelecommunicationSystems | Modelling and Analysis, pages 531-541, ATSMA, IFIP, 1999Tool-supported formal veri�cation of highspeedtransfer protocol designsPeter Herrmanny, Olaf Dr�ogehorn�, Walter Geisselhardt�, Heiko Krummyy Universit�at Dortmund, Email: fherrmannjkrummg@ls4.cs.uni-dortmund.de� Universit�at{GH Duisburg, Email: fdroegejgdg@uni-duisburg.deAbstractThe so-called transfer protocol framework facilitates the development offormal highspeed communication protocol and service descriptions. It con-tains speci�cation modules which can be easily combined to speci�cationsof protocols or services. Additionally, the framework supports the formalprotocol veri�cation. The proof, that a protocol speci�cation implements aservice speci�cation, can be reduced into a set of lemmata which corresponddirectly to theorems o�ered by the framework, too.This contribution centers on the application of the framework to performprotocol veri�cations. We will introduce the tool COAST which simpli�esveri�cations by selecting and checking mechanically suitable framework the-orems. To clarify the application of COAST, we will outline the veri�cationof the complex real-life high-speed data transfer protocol XTP.1 IntroductionDue to the high performance demands of modern highspeed and multime-dia applications many new data transfer protocols and protocol variantswere recently developed. Since most of these protocols are very complex,one should support their design by formal methods (cf. [15]). In reality,however, protocols are frequently developed without any formal support,although standardized formal description techniques (i.e., ISO/OSI: Es-telle [27] and Lotos [28], ITU: SDL [29]) are available. Therefore protocolsare often designed by means of incomplete and ambiguous protocol de-scriptions. Furthermore, protocol developers often omit the developmentof abstract service speci�cations, which describe the communication ser-vices to be provided by the protocols. If, however, a service speci�cation
is lacking, there is no way to check the correctness of the protocol with re-spect to the services to be provided. Thus, design errors are often detectedin later development phases only leading to costly delays.In practice, the application of formal techniques is mostly omitted, sincethe application of formal techniques introduces additional e�orts. Whilesome formal techniques are supported by tools (cf. [2, 3, 10, 12, 16, 26]),either the tools cannot handle the complexity of a modern highspeed proto-col, or subtle formal models and descriptions of protocols have to be devel-oped in a creative manner, which is quite expensive. The transfer protocolframework [17, 21] facilitates the development of formal speci�cations. Ac-cording to program development support by libraries of reusable programmodules, a communication protocol or service is speci�ed by instantiat-ing and combining suitable speci�cation modules, which are contained inthe framework. Protocol speci�cations consist of modules each modellinga single protocol mechanism (e.g., sequence numbering of protocol dataunits, repeat requests, credit granting; cf. [7]). Service speci�cations arecombined from modules which describe single service constraints (e.g., nocorruptions of transmitted data, correct order of delivered data, livenessof the service). Thus, the protocol developer does not need to create aprotocol or service speci�cation from scratch. Instead, one uses modules ofthe framework and concentrates only on suitable parameter instantiationsand on the combination of di�erent modules. By this method, the logi-cal structure of a protocol or service is modelled quite directly. Thus, theframework supports the understanding of the cooperation of the varioussystem modules.The development of separate service and protocol speci�cations also fa-cilitates the protocol veri�cation which proves that a protocol actually pro-vides a service. The protocol veri�cation may be performed either me-chanically based on reachability analysis (e.g., state space exploration [25],model checking [5, 6, 11, 14, 19]) or by symbolical logical reasoning. Sincemost practically relevant highspeed protocols exceed the limitations of au-tomated tools, these protocols can only be veri�ed logically a�ording a highwork-load. The veri�cation, however, can be signi�cantly facilitated by theframework taking into consideration that both the service and the protocolspeci�cations are combined from existing framework modules. The frame-work contains theorems each stating that a service constraint is ful�lled bya protocol subsystem which is combined from certain protocol mechanisms.Since for each possible pair of a service constraint and a protocol subsystemthe framework contains an already proven theorem, one can accomplish a1



protocol veri�cation by identifying a suitable protocol subsystem as well asa theorem for each constraint of the service speci�cation. By this methodeven complex highspeed transfer protocols like XTP can be veri�ed eas-ily [23]. Moreover, this veri�cation method supports the understandingof a protocol, since the logical relations between service constraints andprotocol subsystems are emphasized.After selecting suitable theorems for the veri�cation that a protocol spec-i�cation ful�lls a service speci�cation, the protocol developer performs twoor three checks for each theorem. First, one examines if the protocol sub-system quoted in a theorem is a subsystem of the protocol speci�cation. Inparticular, one checks that each of the speci�cation modules, which formthe protocol subsystem, is also contained in the protocol speci�cation. Thesecond check corresponds to the proof of a condition which assures thatspeci�cation modules of the service constraint and the protocol mecha-nisms are instantiated consistently. The third check is only performed ifa theorem is used to prove service constraints which state liveness proper-ties (cf. [1]). By this check one guarantees that the protocol speci�cationdoes not contain speci�cation modules spoiling the liveness property. In allprotocol veri�cations, performed up to now, these checks were very easy.Since in a protocol proof usually a large number of theorems has to bearranged (�. 85 in the veri�cation of XTP), tool-support for the selectionand checking of the theorems is of interest. The tool COAST (Consistencyof a speci�cation in cTLA+) [8] performs this task. The input �les ofCOAST are a service and a protocol speci�cation both modelling an in-stantiation and a combination of speci�cation modules of the framework.According to the input speci�cations, COAST selects suitable theoremsfrom a database of all framework theorems and performs mechanically the�rst and (in proofs of liveness properties) the third check. The secondcheck, however, cannot be automized since a logical formula has to beproven. Therefore COAST translates the formula into the syntax of a fron-tend tool [13] for the theorem prover OTTER [35]. OTTER tries to verifythe formula by deduction which, due to the simplicity of this proof, canbe usually performed without any interactive user support. If COAST canselect and check (with the aid of OTTER) a framework theorem for eachmodule of the service speci�cation, the protocol veri�cation succeeds.The transfer protocol framework approach applies the modular speci�-cation technique cTLA (compositional TLA) [20, 36] which is based onLeslie Lamport's TLA (Temporal Logic of Actions) [33]. The speci�cationmodules of the framework are cTLA modules which contain generic pa-
rameters. Under the instantiation of these parameters the cTLA modulesmodel process instances which are composed to service or protocol speci-�cations. Similarly to LOTOS [28] and to [30], the processes interact viasynchronous joint actions.In the sequel we outline cTLA and the framework concisely. Thereafter,we describe the functionality and the structure of COAST. Moreover, theapplication of COAST will be clari�ed by outlining the veri�cation of theprotocol example XTP.2 cTLAIn cTLA, speci�cation modules describe processes. A process is modelledby a state transition system. As an example we refer to the de�nition ofthe process C in Fig. 1. This process speci�es the service constraint that,except for phantoms, all delivered data units are transmitted between theusers of a service without corruptions.The syntax of cTLA is oriented at programming languages like Mod-ula 2. The process header consists of the keyword PROCESS, the processname C, and optionally the list of generic parameters. In our example thegeneric parameter usd models the set of data units which can be transferedPROCESS C ( usd : Any ) ! usd : set of user data transferedIMPORT Symbols;BODYVARIABLESbuf : SUBSET(key � usd); ! Buffer of all data units ever sentINIT �= buf = ;;ACTIONSRq (krq : key; d : usd) �=! Transmission of user data d with sequence no. krqbuf 0 = buf [ {(krq,d)} ;In (krq : key; d : usd) �=! Delivery of user data d with sequence number krq( krq = "notsent" _ 8 e 2 usd :: ((krq,e) =2 buf) _(krq,d) 2 buf ) ^buf 0 = buf ;END Figure 1: Safety process C2



between two service users. The keyword IMPORT refers to the inclusionof other modules (i.e., Symbols) which contain de�nitions of data types,functions, and constants. The state space of a process is modelled by vari-ables which are declared in the section VARIABLES. In our example processC buf, which describes a set of pairs of a sequence number1 and an userdata unit, is the only variable. In buf all data units are stored whichwere ever sent by the transmitting service user. A predicate headed bythe construct INIT models the set of initial states. In C, only the state,where buf corresponds to the empty set, is initial. The state transitionsare modelled by actions which are de�ned in the section ACTIONS. An ac-tion models a set of transitions. It is a predicate about a pair of an actualstate and a next state. The actual state is referenced by variables (�. buf).The next state is referenced by so-called primed variables (�. buf'). Apair of an actual and a next state, the variables of which ful�ll the pred-icate, is a state transition of the action. Action de�nitions can containdata parameters. In our example the action Rq corresponds to the submis-sion of data units. For instance, Rq(2,"data") describes the submissionof the data unit "data" and the assignment of the sequence number 2 tothis data unit. The variable buf in the next state contains the pairs ofbuf in the actual state and additionally the pair (2,"data"). The ac-tion In models the delivery of a data unit d with the sequence numberkrq. A data unit may be delivered only if it is either a phantom message(krq = "notsent" _ 8 e 2 usd :: ((krq,e) =2 buf)) or if the deliv-ered data is not corrupted during the transmission ((krq,d) 2 buf). Inaddition to the actions de�ned in the section ACTIONS, a cTLA process mayalso perform the so-called stuttering step, the execution of which does notchange the process state.With respect to separate safety and liveness properties (cf. [1]), the pro-cess C models only safety properties. Thus, C tolerates state sequences,where after a �nite number of state changes only stuttering steps are per-formed (i.e., the process is suddenly terminated). To rule out such statesequences, process actions can be attributed with fairness assumptions. Af-ter the action de�nition section of a process, one adds description constructsof the form WF: In; or SF: In;. The WF construct expresses that an ac-tion (i.e., In) has to be executed weak fairly. A weak fair action must beperformed eventually if it would otherwise be continuously be enabled foran in�nite period of time. By the SF construct an action is declared to1The data type key, which speci�es the set of available sequence numbers, is declaredin process Symbols.

be strong fair. It has even to be performed, if it is disabled from time totime. Weak fair and strong fair actions were introduced in [1]. In contrastto direct liveness properties, these fairness assumptions guarantee not to becontradictory to the safety properties of a process. Therefore, in TLA [33]and cTLA liveness properties are generally modelled by weak and strongfair actions. Moreover, the processes of the transfer protocol frameworkeither model safety properties or liveness properties only.In cTLA, processes are combined to systems similarly to Lotos [28]. Theprocesses interact via synchronous joint actions. The transfer of data be-tween processes is modelled by action parameters. The variables of a pro-cess are private and therefore cannot be accessed by other processes. Likea process, the system is modelled by a state transition system as well. Thevector of the process variables forms the system states. The system tran-sitions are described by system actions. In a system action a subset of theprocesses execute simultaneously a joint action while the other processesperform a stuttering step.The process XTPService in Fig. 2 is a typical example of a cTLA sys-tem composed from processes. The processes combined to the system arePROCESS XTPService (XTPCap : Nat) ! XTPCap : capacity of the servicePROCESSES: : :;C : Corruptions (Byte,{ (k,k) | k 2 Byte })! No Corruptions of data are allowedCap : Capacity (XTPCap) ! Buffersize in number of SDUsId : SDUId! Assignment of unambiguous sequence numbersG : Gaps (0); ! No Gaps in transfered data streamLIn : LiveIn (: : :); ! Data units are delivered lively: : :;ACTIONSRq (krq : key; d : Byte) �=! Transmission of user data d with seq. no. krqId.Rq (krq) ^ C.Rq (krq, d) ^ Cap.Rq (krq) ^G.stutter ^ LIn.stutter ^ : : :;fIn (krq : key; d : Byte) �= ...;nIn (krq : key; d : Byte) �= ...;END Figure 2: Service speci�cation XTPService3



declared in the section PROCESSES. For instance, the process C (cf. Fig. 1)is an instance of the process type Corruptions with the parameter setting(Byte,{ (k,k) | k 2 Byte }). In the section ACTIONS of the system de-scription the system actions are declared by conjunctions of process actionsand stuttering steps. In the example XTPService, the local process actionsRq of the processes Id, C, and Cap are coupled to the system action Rq,while the processes R, G, and LIn participate in Rq by stuttering steps2.cTLA supports the superposition (cf. [4, 30]) which is a special kind ofcompositionality. The superposition guarantees that a property ful�lled bya process or a subsystem is also a property of each system which containsthis process or subsystem. It is essential for the concept of the transferprotocol framework, and, in particular, for the reduction of the protocolveri�cation into subsystem implications. In cTLA, the superposition isguaranteed since the composition of processes to systems corresponds to theconsistent logical conjunction of processes. With respect to safety proper-ties, the processes are not contradictory due to the private process variables.With regard to liveness properties, composed systems are also not contra-dictory, since in cTLA only so-called conditional fairness assumptions areused. In contrast to [1], the WF and SF constructs require that a processaction has to be performed only, if it is enabled locally as well as it is toler-ated by the joint actions of the process environment. Conditional fairnessstatements are su�cient for the expression of absolute liveness propertiesif they are joined with the assumption that fair actions are not too oftenblocked by the environment of a process. This assumption is called anenvironment condition. Its proof is an integral part of the application ofliveness theorems.3 Transfer Protocol FrameworkThe transfer protocol framework consists of speci�cation modules and oftheorems. The speci�cation modules are modelled by cTLA process typede�nitions. They describe service constraints, protocol mechanisms, andconstraints of a basic transfer medium which is used by the protocol mech-anisms. The speci�cation modules are structured into three layers: the Ser-vice Contraints (SCs) model single properties of a communication service.As pointed out in the upper part of Fig. 3, one can develop service speci-�cations by composing SC instances. Protocol speci�cations are described2Stuttering steps are described by the pseudo action name stutter.
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the three layers service, abstract protocol, and protocol, the theorems aredivided into two groups. The SC theorems contribute to proofs that anabstract protocol ful�lls a service. They guarantee that abstract protocolsubsystems, modelled by APMs and AMCs, implement single SCs. TheAPM theorems are used to prove that a protocol ful�lls an abstract proto-col. They state implications between a protocol subsystem combined fromFAPMs and AMCs and an APM.Fig. 4 refers to an SC theorem stating that an abstract protocol sub-system Sys implies the SC LiveIn. Among other APMs and AMCs, Syscontains the APMs SLiveMRq and RLiveMRq. This implication is onlyvalid if the parameter condition Pars is true. It ensures that the actual pa-THEOREM LiveInLET Pars �= mla = { (p,q) | skey[spci[p] ] = skey[spci[q] ] ^stack[spci[p] ] = stack[spci[q] ] ^stcre[spci[p] ] = stcre[spci[q] ] ^p 2 encpdu ^ q 2 encpdu } ^ : : :;Sys �= SLiveMRq (pdu, pci, usd, encpdu, spci, skey, sack,snak, scre, stack, stcre, skk, skn, skm,usdsize, usdsplit, mcr, rcc) ^RLiveARq (pdu, pci, usd, encpdu, spci, skey, sack,snak, scre, stack, stcre, skk, skn, skm,usdsize, rcu, rcc, ma, mr, mo) ^: : : ^ CCLiveIn;EnvCond �=8 krq,p,kd : Enabled(SLiveMRq.fMRq(krq,p,kd)) )(krq,p,kd) 2 Sys.efMRq ^8 p,kd : Enabled(RLiveARq.fARq(p,kd)) )(p,kd) 2 Sys.efARq ^ : : :;IN Pars ^ Sys ^ 2 EnvCond ) LiveIn (usd, 0, tg, c, {});CORRESPONDS WITHProcess �= SBufferKey (pdu, pci, usd, : : :);Process �= SBufferUsd (pdu, pci, usd, skk, : : :);: : :;END Figure 4: SC theorem to prove the SC LiveIn
rameters of the process instances of Sys and of LiveIn are consistent witheach other. Furthermore, the whole abstract protocol has to ful�ll the in-variant condition EnvCond, which states that the fair actions in Sys are notblocked too often by processes of the abstract protocol speci�cation. Thus,it is guaranteed that the conditional fairness assumptions of the actions inSys ful�ll the liveness property to be modelled by LiveIn. EnvCond hasto be checked only if the SC to be ful�lled models a liveness property. Toenable a mechanized check of EnvCond by COAST, all processes of theframework, which do not violate the environment condition of a theorem,are listed in the section CORRESPONDS WITH.Actually, the framework consists of 133 speci�cation modules (28 SCs,44 APMs, 14 AMCs, and 47 FAPMs) and 165 theorems (31 SC theoremsand 134 APM theorems).4 COASTThe selection and arrangement of suitable framework theorems to performprotocol veri�cations is supported by the tool COAST (Consistency of aspeci�cation in cTLA+) [8]. The input �les of COAST are speci�cationsof a more detailed system (e.g., a protocol speci�cation) and of a moreabstract system (e.g., a service speci�cation) which both are modelled bycTLA process compositions (cf. Fig. 2). Furthermore, COAST has accessto a database containing theorems in the syntax described in Fig. 4. Byselecting theorems from the database and checking that the speci�cationsare composed and parametrized according to the conditions of the theo-rem, COAST veri�es that the detailed speci�cation implies the abstractspeci�cation. This is equivalent to proving that the detailed system cor-rectly implements the abstract system in the sense, that the detailed systemcontains all of the mandatory properties of the abstract system.Due to the subdivision of the framework theorems into three layers thetool has to be applied twice to perform a complete protocol proof. In onestep one checks that an abstract protocol ful�lls a service. The protocoldeveloper provides the abstract protocol speci�cation as the detailed sys-tem, the service speci�cation as the abstract system, and the database of allSC theorems to COAST. In the other step COAST proves that a protocolful�lls the abstract protocol. In this case the protocol forms the detailedsystem and the abstract protocol acts as the abstract system. COAST usesthe database of the APM theorems.COAST performs a protocol proof sequentially in four steps (cf. Fig. 5).5
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Figure 5: Elements of the tool COASTIf a check cannot be completed successfully, the tool terminates and reportsan error message.In the �rst check suitable theorems are selected from the database. Asexplained in Sec. 3, a theorem guarantees that the subsystem Sys of thedetailed system implies a process of the abstract system. COAST identi�esa theorem for each process of the abstract system. The theorem has tocontain the process on the right side of the implication. Thereafter, the toolchecks if the processes of the subsystem Sys in the theorem are containedin the detailed system. If COAST cannot �nd a suitable theorem for eachprocess of the coarse-grained speci�cation, the proof will be aborted.If the process on the right side of a theorem models a liveness prop-erty, COAST checks in a second step whether the detailed system containsprocesses which might spoil the liveness of the subsystem Sys and there-fore violate the invariant condition EnvCond of the theorem. This task issimple since all processes of the framework, which are compatible to Sys,are listed in the section CORRESPONDS WITH of the theorem (cf. Fig. 4).

Thus, COAST checks if the detailed system contains processes which arenot contained in this list. If not all processes are compatible, the theorem isrejected and COAST jumps back to the �rst step selecting a new theoremfrom the database.The last two steps deal with the consistency of the actual parameters ofthe processes. The framework assumes that actual parameters of di�erentprocess instances are represented by syntactically equal terms, which sub-stitute equally named formal process type parameters. The tool checks thiscondition in the third step. If it detects syntactically di�erent parametersettings, it adds corresponding proof obligations to the fourth step.Finally, the fourth step is devoted to the proof of the condition Pars of thetheorem. Pars ensures the logical consistency of the parameter settings andis represented by a �rst-order logic formula. COAST translates Pars (andpossibly the additional obligations of the third step) into the input syntaxof a frontend tool [13] for the automated theorem prover OTTER [35]. IfOTTER veri�es Pars and the additional obligations, the protocol veri�ca-tion is completed successfully. If OTTER fails to perform a proof, the userof COAST has to decide if the formula is false or if the proof was too dif-�cult or too extensive to be proved without interactive support. Then onecan structure the proof and supply additional lemmas to OTTER. Since,however, Pars is very simple in the most theorems, OTTER can usuallyprove these formulas without any further support.5 ExampleFor clari�cation we will outline the proof of the Xpress Transfer Proto-col XTP [37, 38]. To support the data transfer requirements of di�erentdistributed applications, XTP consists of a broad spectrum of protocolfunctions (cf. [7, 31]) which are mostly asynchronous to each other. Thus,various combinations of protocol functions are possible. The Transfer Pro-tocol Framework supports this modularity directly. In [23] we introducedthe formal speci�cation and veri�cation of XTP. There, the proofs werecarried out manually by application of suitable framework theorems. Al-together we needed only three weeks for the speci�cation and veri�cation.However, by application of COAST we can reduce the veri�cation timefurther.As outlined in [23], we design a service speci�cation, an abstract protocolspeci�cation, and a protocol speci�cation by parametrizing and composingframework processes, �rst. The service speci�cation XTPService is listed6



PROCESS XTPProtocolAbsPROCESSES! APMs : Protocol mechanisms with infinite variablesSBK : SBufferKey ! Protocol mechanism modelling the handling of! sequence numbers in the transmitter entity(XTPpdu, ! format of the XTP pdu (modelled by a! cTLA record)XTPpci, ! format of the XTP protocol control! informationByte, ! XTP provides bytewise data transfer: : :);SBU : SBufferUsd ! Protocol mechanism modelling the store of! data in the transmitter entity(XTPpdu, ! format of the XTP pdu (modelled by a! cTLA record)Byte, ! XTP provides bytewise data transfer: : :);: : :;ACTIONSRq (krq : key; d : usd) �=! Transmission of user data d with sequence number krq to the! service providerSBK.Rq (krq,d) ^ RBK.stutter ^ SBU.Rq (krq,d) ^RBU.stutter ^ RG.stutter ^ RR.stutter ^RD.stutter ^ RP.stutter ^ : : :;: : :;ENDFigure 6: Parametrized Abstract Protocol Speci�cation XTPProtocolAbsin Fig. 2. SCs of the framework (eg., SDUId, Corruptions, Gaps, LiveIn)are instantiated and composed according to the desired properties of theservice. Since, for example, the service does not tolerate gaps in the streamof delivered data, the speci�cation contains the process instance G of theSC Gaps. The process parameter tg of Gaps, which describes the maxi-mum number of gaps in the stream of delivered data, is set to 0. Thus,gaps are not tolerated at all. The protocol speci�cation XTPProtocol iscomposed from FAPMs, which model the protocol mechanisms of XTP,and AMCs describing the constraints of the basic service. In Fig. 6 theabstract protocol speci�cation XTPProtocolAbs is sketched. It models theprotocol mechanisms of XTP in a more abstract way than XTPProtocol
and is composed from APMs (eg., SLiveMRq) and AMCs.Below, we sketch the proof that XTPProtocolAbs ful�lls XTPService.COAST is provided with these speci�cations and the database of the SCtheorems. For instance the theorems listed in Figs. 4 and 7 are containedin this database.COAST performs the four proof steps outlined in Sec. 4. First, it selectsthe �rst process of the service speci�cation. In the example, this is the SCCorruptions guaranteeing that corrupted data will not be delivered to theservice user. In order to prove this SC, COAST selects the theorem listed inFig. 7 from the database. In the �rst step COAST checks that all processesof the subsystem Sys are also contained in the speci�cation XTPProtoco-lAbs. Since that is true, the tool completes this step successfully (outputTHEOREM CorruptionsLET Pars �= mtc �{(p,q) | q =2 encpdu _( skey[spci[p] ] = skey[spci[q] ] ^8 n 2 skey[spci[p] ] :(susd[p,n],susd[q,n]) 2 tc) ) } ^8 l,m 2 usd 8 n 2 {0, ..., usdsize[l] - 1}:(usdsplit[l,n],usdsplit[m,n]) 2 tc ) (l,m) 2 tc;Sys �=SBufferKey (pdu, pci, usd, encpdu, spci, skey, skk, skn,skm, usdsize, mb) ^SBufferUsd (pdu, usd, susd, skk, skn, usdsize,usdsplit) ^RBufferKey (pdu, pci, usd, encpdu, spci, skey, skk, skn,skm, usdsize, rcu, rcc) ^RBufferUsd (pdu, usd, susd, skk, skn, usdsize,usdsplit) ^MSDUId ^MCorruptions (pdu, mtc) ^MPhantoms (pdu,encpdu) ^CCCorruptions;IN Pars ^ Sys ) Corruptions(usd, tc)CORRESPONDS WITH: : :;END Figure 7: SC theorem to prove the SC Corruptions7



* START THEOREM-CHECK !!!! *Checking Service Element: Corruptions- Trying the 1. Theorem for: CorruptionsTESTING Mechanisms:! OKTESTING Correspondings:! NOT NECESSARYTESTING Parameters:! OK! One or more theorems has been tested correctly for thisService Element !!!!!: : :* END of CHECK !!!! *Figure 8: Output message of COASTTESTING Mechanisms in Fig. 8).Since Corruptions does not describe a liveness property, the liveness ofSys cannot be spoiled by its environment. Thus, COAST omits the secondproof step.In the third step COAST checks, that formal parameters in the theorem,which contain the same name, are replaced by identical de�ned variables oridentical values. For example, the parameters pdu of the processes SBu�er-Key and SBu�erUsd in Sys are both replaced by the value XTPpdu (cf. 6).COAST �nished this check successfully, too (output TESTING Parametersin Fig. 8).In the forth step the condition Pars of the theorem Corruptions ischecked. First, the formal parameters of Pars are replaced according to theinstantiations of the processes in the speci�cations XTPService and XTP-ProcotolAbs. Thereafter COAST translates the formula into the syntax ofthe OTTER frontend. Fig. 9 depicts the translation of the �rst conjunct ofPars in the theorem. In the part FORMULAS the name form Corruptions2 1is assigned to the �rst conjunct of Pars. The proof script guiding OT-TER is de�ned in the part THEOREM. OTTER shall prove the formulaform Corruptions2 1 by contradiction assuming the already proven formu-las mtc pred, etc.Likewise, COAST performs the checks for each process of XTPServiceand creates OTTER proof scripts. Finally, OTTER veri�es the formulasPars of all selected theorems by application of the proof scripts. Sincefor each process of XTPService at least one theorem was identi�ed whichpasses the checks by COAST and since the OTTER proofs succeeded, the
MODULE Corruptions2 equalFORMULASform Corruptions2 1 �= mtc � {(p,q) | q =2 encpdu _( skey[spci[p] ] = skey[spci[q] ] :(susd[p,n],susd[q,n]) 2 tc) };THEOREM Test form Corruptions2 1<1>{1}ASSUME mtc pred, q pred, p pred, encpdu pred, skey pred,spci pred, susd pred, n pred, tc predPROVE form Corruptions2 1QED BY CONTRADICTION;END Corruptions2 equalFigure 9: Part of the OTTER formula for the SC-theorem Corruptionsveri�cation that XTPProtocolAbs ful�lls XTPService is successful.COAST selected 33 theorems of the database of SC theorems whichpassed the �rst proof step. Since the abstract protocol speci�cation ofXTP is compatible to these theorems with respect to liveness properties,they passed the second step as well. The theorems passed also the thirdstep, since the actual parameters were always replaced by syntacticallyequal terms. OTTER could prove the Pars condition of 25 theorems di-rectly. Eight theorems had to be enhanced with additional data-de�nitionsin order to be proven by OTTER. By this support, OTTER could prove an-other four theorems. The remaining four OTTER theorem proofs had to besupplied by some simple intermediate lemmata. These lemmata, however,could be designed easily.For the proof that the protocol system ful�lls the abstract protocol sys-tem, COAST selected 52 theorems of the 134 theorems of the database ofAPM theorems. Due to the similarity of the protocol speci�cation XTP-Protocol and the abstract protocol speci�cation XTPProtocolAbs, COASTand OTTER performed these proofs without further support by the user.Altogether, the complete proof that the protocol speci�cation XTPProtocolful�lls XTPService could be performed within three hours.6 ConclusionWith the help of the XTP example we outlined the concept of the transferprotocol framework and, in particular, the veri�cation tool COAST. BesidesXTP and some simpler sliding window protocols, we applied the framework8
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