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Abstract

The so-called transfer protocol framework facilitates the development of
formal highspeed communication protocol and service descriptions. It con-
tains specification modules which can be easily combined to specifications
of protocols or services. Additionally, the framework supports the formal
protocol verification. The proof, that a protocol specification implements a
service specification, can be reduced into a set of lemmata which correspond
directly to theorems offered by the framework, too.

This contribution centers on the application of the framework to perform
protocol verifications. We will introduce the tool COAST which simplifies
verifications by selecting and checking mechanically suitable framework the-
orems. To clarify the application of COAST, we will outline the verification
of the complex real-life high-speed data transfer protocol XTP.

1 Introduction

Due to the high performance demands of modern highspeed and multime-
dia applications many new data transfer protocols and protocol variants
were recently developed. Since most of these protocols are very complex,
one should support their design by formal methods (cf. [15]). In reality,
however, protocols are frequently developed without any formal support,
although standardized formal description techniques (i.e., ISO/OSI: Es-
telle [27] and Lotos [28], ITU: SDL [29]) are available. Therefore protocols
are often designed by means of incomplete and ambiguous protocol de-
scriptions. Furthermore, protocol developers often omit the development
of abstract service specifications, which describe the communication ser-
vices to be provided by the protocols. If, however, a service specification

is lacking, there is no way to check the correctness of the protocol with re-
spect to the services to be provided. Thus, design errors are often detected
in later development phases only leading to costly delays.

In practice, the application of formal techniques is mostly omitted, since
the application of formal techniques introduces additional efforts. While
some formal techniques are supported by tools (cf. [2, 3, 10, 12, 16, 26]),
either the tools cannot handle the complexity of a modern highspeed proto-
col, or subtle formal models and descriptions of protocols have to be devel-
oped in a creative manner, which is quite expensive. The transfer protocol
framework [17, 21] facilitates the development of formal specifications. Ac-
cording to program development support by libraries of reusable program
modules, a communication protocol or service is specified by instantiat-
ing and combining suitable specification modules, which are contained in
the framework. Protocol specifications consist of modules each modelling
a single protocol mechanism (e.g., sequence numbering of protocol data
units, repeat requests, credit granting; cf. [7]). Service specifications are
combined from modules which describe single service constraints (e.g., no
corruptions of transmitted data, correct order of delivered data, liveness
of the service). Thus, the protocol developer does not need to create a
protocol or service specification from scratch. Instead, one uses modules of
the framework and concentrates only on suitable parameter instantiations
and on the combination of different modules. By this method, the logi-
cal structure of a protocol or service is modelled quite directly. Thus, the
framework supports the understanding of the cooperation of the various
system modules.

The development of separate service and protocol specifications also fa-
cilitates the protocol verification which proves that a protocol actually pro-
vides a service. The protocol verification may be performed either me-
chanically based on reachability analysis (e.g., state space exploration [25],
model checking [5, 6, 11, 14, 19]) or by symbolical logical reasoning. Since
most, practically relevant highspeed protocols exceed the limitations of au-
tomated tools, these protocols can only be verified logically affording a high
work-load. The verification, however, can be significantly facilitated by the
framework taking into consideration that both the service and the protocol
specifications are combined from existing framework modules. The frame-
work contains theorems each stating that a service constraint is fulfilled by
a protocol subsystem which is combined from certain protocol mechanisms.
Since for each possible pair of a service constraint and a protocol subsystem
the framework contains an already proven theorem, one can accomplish a



protocol verification by identifying a suitable protocol subsystem as well as
a theorem for each constraint of the service specification. By this method
even complex highspeed transfer protocols like XTP can be verified eas-
ily [23]. Moreover, this verification method supports the understanding
of a protocol, since the logical relations between service constraints and
protocol subsystems are emphasized.

After selecting suitable theorems for the verification that a protocol spec-
ification fulfills a service specification, the protocol developer performs two
or three checks for each theorem. First, one examines if the protocol sub-
system quoted in a theorem is a subsystem of the protocol specification. In
particular, one checks that each of the specification modules, which form
the protocol subsystem, is also contained in the protocol specification. The
second check corresponds to the proof of a condition which assures that
specification modules of the service constraint and the protocol mecha-
nisms are instantiated consistently. The third check is only performed if
a theorem is used to prove service constraints which state liveness proper-
ties (cf. [1]). By this check one guarantees that the protocol specification
does not contain specification modules spoiling the liveness property. In all
protocol verifications, performed up to now, these checks were very easy.

Since in a protocol proof usually a large number of theorems has to be
arranged (fi. 85 in the verification of XTP), tool-support for the selection
and checking of the theorems is of interest. The tool COAST (Consistency
of a specification in ¢TLA+) [8] performs this task. The input files of
COAST are a service and a protocol specification both modelling an in-
stantiation and a combination of specification modules of the framework.
According to the input specifications, COAST selects suitable theorems
from a database of all framework theorems and performs mechanically the
first and (in proofs of liveness properties) the third check. The second
check, however, cannot be automized since a logical formula has to be
proven. Therefore COAST translates the formula into the syntax of a fron-
tend tool [13] for the theorem prover OTTER [35]. OTTER tries to verify
the formula by deduction which, due to the simplicity of this proof, can
be usually performed without any interactive user support. If COAST can
select and check (with the aid of OTTER) a framework theorem for each
module of the service specification, the protocol verification succeeds.

The transfer protocol framework approach applies the modular specifi-
cation technique ¢TLA (compositional TLA) [20, 36] which is based on
Leslie Lamport’s TLA (Temporal Logic of Actions) [33]. The specification
modules of the framework are ¢cTLA modules which contain generic pa-

rameters. Under the instantiation of these parameters the ¢TLA modules
model process instances which are composed to service or protocol speci-
fications. Similarly to LOTOS [28] and to [30], the processes interact via
synchronous joint actions.

In the sequel we outline ¢cTLA and the framework concisely. Thereafter,
we describe the functionality and the structure of COAST. Moreover, the
application of COAST will be clarified by outlining the verification of the
protocol example XTP.

2 c¢TLA

In ¢TLA, specification modules describe processes. A process is modelled
by a state transition system. As an example we refer to the definition of
the process C'in Fig. 1. This process specifies the service constraint that,
except for phantoms, all delivered data units are transmitted between the
users of a service without corruptions.

The syntax of ¢TLA is oriented at programming languages like Mod-
ula 2. The process header consists of the keyword PROCESS, the process
name C, and optionally the list of generic parameters. In our example the
generic parameter usd models the set of data units which can be transfered

PROCESS C ( usd : Any ) ! usd : set of user data transfered

IMPORT Symbols;
BODY
VARIABLES

buf : SUBSET(key X usd);
INIT = buf = 0;
ACTIONS
Rq (krq : key; d : usd) 2
! Transmission of user data d with sequence no. krq
buf’ = buf U {(krq,d)} ;
In (krq : key; d : usd) £
! Delivery of user data d with sequence number krq

! Buffer of all data units ever sent

( krq = "notsent" V V e € usd = ((krq,e) ¢ buf) V
(krq,d) € buf ) A
buf’ = buf ;

END

Figure 1: Safety process C



between two service users. The keyword IMPORT refers to the inclusion
of other modules (i.e., Symbols) which contain definitions of data types,
functions, and constants. The state space of a process is modelled by vari-
ables which are declared in the section VARIABLES. In our example process
C buf, which describes a set of pairs of a sequence number' and an user
data unit, is the only variable. In buf all data units are stored which
were ever sent by the transmitting service user. A predicate headed by
the construct INIT models the set of initial states. In C, only the state,
where buf corresponds to the empty set, is initial. The state transitions
are modelled by actions which are defined in the section ACTIONS. An ac-
tion models a set of transitions. It is a predicate about a pair of an actual
state and a next state. The actual state is referenced by variables (fi. buf).
The next state is referenced by so-called primed variables (fi. buf’). A
pair of an actual and a next state, the variables of which fulfill the pred-
icate, is a state transition of the action. Action definitions can contain
data parameters. In our example the action Rq corresponds to the submis-
sion of data units. For instance, Rq(2,"data") describes the submission
of the data unit "data" and the assignment of the sequence number 2 to
this data unit. The variable buf in the next state contains the pairs of
buf in the actual state and additionally the pair (2,"data"). The ac-
tion In models the delivery of a data unit d with the sequence number
krq. A data unit may be delivered only if it is either a phantom message
(krq = "notsent" V V e € usd :: ((krq,e) ¢ buf)) or if the deliv-
ered data is not corrupted during the transmission ((krq,d) € buf). In
addition to the actions defined in the section ACTIONS, a ¢TLA process may
also perform the so-called stuttering step, the execution of which does not
change the process state.

With respect to separate safety and liveness properties (cf. [1]), the pro-
cess C' models only safety properties. Thus, C tolerates state sequences,
where after a finite number of state changes only stuttering steps are per-
formed (i.e., the process is suddenly terminated). To rule out such state
sequences, process actions can be attributed with fairness assumptions. Af-
ter the action definition section of a process, one adds description constructs
of the form WF: Inj; or SF: In;. The WF construct expresses that an ac-
tion (i.e., In) has to be executed weak fairly. A weak fair action must be
performed eventually if it would otherwise be continuously be enabled for
an infinite period of time. By the SF construct an action is declared to

TThe data type key, which specifies the set of available sequence numbers, is declared
in process Symbols.

be strong fair. It has even to be performed, if it is disabled from time to
time. Weak fair and strong fair actions were introduced in [1]. In contrast
to direct liveness properties, these fairness assumptions guarantee not to be
contradictory to the safety properties of a process. Therefore, in TLA [33]
and cTLA liveness properties are generally modelled by weak and strong
fair actions. Moreover, the processes of the transfer protocol framework
either model safety properties or liveness properties only.

In ¢TLA, processes are combined to systems similarly to Lotos [28]. The
processes interact via synchronous joint actions. The transfer of data be-
tween processes is modelled by action parameters. The variables of a pro-
cess are private and therefore cannot be accessed by other processes. Like
a process, the system is modelled by a state transition system as well. The
vector of the process variables forms the system states. The system tran-
sitions are described by system actions. In a system action a subset, of the
processes execute simultaneously a joint action while the other processes
perform a stuttering step.

The process XTPService in Fig. 2 is a typical example of a ¢TLA sys-
tem composed from processes. The processes combined to the system are

PROCESS XTPService (XTPCap : Nat) ! XTPCap : capacity of the service
PROCESSES
C : Corruptions (Byte,{ (k,k) | k € Byte })
! No Corruptions of data are allowed
Cap : Capacity (XTPCap) ! Buffersize in number of SDUs

Id : SDUId
! Assignment of unambiguous sequence numbers
G : Gaps (0); ! No Gaps in transfered data stream
LIn : LiveIn (...); ! Data units are delivered lively
ACTIONS

Rq (krq : key; d : Byte) 2

! Transmission of user data d with seq. no. krq
Id.Rq (krq) A C.Rq (krq, d) A Cap.Rq (krq) A
G.stutter A LIn.stutter A ...;

fIn (krq : key; d : Byte) .3

nIn (krq : key; d : Byte) cees

> 1>

END

Figure 2: Service specification XTPService



declared in the section PROCESSES. For instance, the process C (cf. Fig. 1)
is an instance of the process type Corruptions with the parameter setting
(Byte,{ (k,k) | k € Byte }). In the section ACTIONS of the system de-
scription the system actions are declared by conjunctions of process actions
and stuttering steps. In the example X TPService, the local process actions
Rq of the processes Id, C, and Cap are coupled to the system action Rq,
while the processes R, G, and LIn participate in Rq by stuttering steps?®.

c¢TLA supports the superposition (cf. [4, 30]) which is a special kind of
compositionality. The superposition guarantees that a property fulfilled by
a process or a subsystem is also a property of each system which contains
this process or subsystem. It is essential for the concept of the transfer
protocol framework, and, in particular, for the reduction of the protocol
verification into subsystem implications. In ¢TLA, the superposition is
guaranteed since the composition of processes to systems corresponds to the
consistent logical conjunction of processes. With respect to safety proper-
ties, the processes are not contradictory due to the private process variables.
With regard to liveness properties, composed systems are also not contra-
dictory, since in ¢TLA only so-called conditional fairness assumptions are
used. In contrast to [1], the WF and SF constructs require that a process
action has to be performed only, if it is enabled locally as well as it is toler-
ated by the joint actions of the process environment. Conditional fairness
statements are sufficient for the expression of absolute liveness properties
if they are joined with the assumption that fair actions are not too often
blocked by the environment of a process. This assumption is called an
environment condition. Its proof is an integral part of the application of
liveness theorems.

3 Transfer Protocol Framework

The transfer protocol framework consists of specification modules and of
theorems. The specification modules are modelled by ¢TLA process type
definitions. They describe service constraints, protocol mechanisms, and
constraints of a basic transfer medium which is used by the protocol mech-
anisms. The specification modules are structured into three layers: the Ser-
vice Contraints (SCs) model single properties of a communication service.
As pointed out in the upper part of Fig. 3, one can develop service speci-
fications by composing SC instances. Protocol specifications are described

2Stuttering steps are described by the pseudo action name stutter.
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Figure 3: Structures of a service and a protocol specification

according to the well known scenario shown in the lower part of Fig. 3. Like
SCs, the Abstract Medium Constraints (AMCs) model properties of the ba-
sic transfer medium. The protocol instances are composed from protocol
mechanisms. To simplify the protocol verification, the framework provides
two different groups of specification modules to describe protocol mecha-
nisms. The Abstract Protocol Mechanisms (APMs) specify abstractions
of real protocol mechanisms. They model only the essential functions of
the protocol mechanisms, but do not attach importance to details of an
efficient implementation. In contrast, the Finite Abstract Protocol Mecha-
nisms (FAPMs) model real protocol mechanisms in a quite direct manner.
A real data transfer protocol is specified by composing appropriate FAPMs
and AMCs. By the composition of APMs and AMCs, one creates a more
abstract protocol which is used as an intermediate model in order to de-
compose the verification into two phases.

The framework theorems correspond to logical implications between
cTLA systems. Due to the structuring of the specification modules into



the three layers service, abstract protocol, and protocol, the theorems are
divided into two groups. The SC theorems contribute to proofs that an
abstract protocol fulfills a service. They guarantee that abstract protocol
subsystems, modelled by APMs and AMCs, implement single SCs. The
APM theorems are used to prove that a protocol fulfills an abstract proto-
col. They state implications between a protocol subsystem combined from
FAPMs and AMCs and an APM.

Fig. 4 refers to an SC theorem stating that an abstract protocol sub-
system Sys implies the SC Liveln. Among other APMs and AMCs, Sys
contains the APMs SLiveMRq and RLiveMRq. This implication is only
valid if the parameter condition Pars is true. It ensures that the actual pa-

THEOREM LiveIn

LET Pars = mla — { (p,q) | skeylspcilpl 1 = skeylspcilql 1 A
stack[spci[p] ] = stack[spcilql 1 A
stcre[spcilp] ] = stcrelspcilql 1 A
p € encpdu A q € encpdu } A ...;
Sys 2 SLiveMRq (pdu, pci, usd, encpdu, spci, skey, sack,
snak, scre, stack, stcre, skk, skn, skm,
usdsize, usdsplit, mcr, rcc) A
RLiveARq (pdu, pci, usd, encpdu, spci, skey, sack,
snak, scre, stack, stcre, skk, skn, skm,
usdsize, rcu, rcc, ma, mr, mo) A
N CCLiveIn;
EnvCond 2
V krq,p,kd : Enabled(SLiveMRq.fMRq(krq,p,kd)) =
(krq,p,kd) € Sys.efypq A
V p,kd : Enabled(RLiveARq.fARq(p,kd)) =
(p,kd) € Sys.efppq N -3

IN Pars A Sys A O EnvCond = LivelIn (usd, 0, tg, c, {});
CORRESPONDS WITH
Process SBufferKey (pdu, pci, usd, ...);

SBufferUsd (pdu, pci, usd, skk, ...);

e 1>

Process

END

Figure 4: SC theorem to prove the SC Liveln

rameters of the process instances of Sys and of Liveln are consistent with
each other. Furthermore, the whole abstract protocol has to fulfill the in-
variant condition EnvCond, which states that the fair actions in Sys are not
blocked too often by processes of the abstract protocol specification. Thus,
it is guaranteed that the conditional fairness assumptions of the actions in
Sys fulfill the liveness property to be modelled by Liveln. FEnvCond has
to be checked only if the SC to be fulfilled models a liveness property. To
enable a mechanized check of EnvCond by COAST, all processes of the
framework, which do not violate the environment condition of a theorem,
are listed in the section CORRESPONDS WITH.

Actually, the framework consists of 133 specification modules (28 SCs,
44 APMs, 14 AMCs, and 47 FAPMs) and 165 theorems (31 SC theorems
and 134 APM theorems).

4 COAST

The selection and arrangement of suitable framework theorems to perform
protocol verifications is supported by the tool COAST (Cousistency of a
specification in ¢TLA™) [8]. The input files of COAST are specifications
of a more detailed system (e.g., a protocol specification) and of a more
abstract system (e.g., a service specification) which both are modelled by
cTLA process compositions (cf. Fig. 2). Furthermore, COAST has access
to a database containing theorems in the syntax described in Fig. 4. By
selecting theorems from the database and checking that the specifications
are composed and parametrized according to the conditions of the theo-
rem, COAST verifies that the detailed specification implies the abstract
specification. This is equivalent to proving that the detailed system cor-
rectly implements the abstract system in the sense, that the detailed system
contains all of the mandatory properties of the abstract system.

Due to the subdivision of the framework theorems into three layers the
tool has to be applied twice to perform a complete protocol proof. In one
step one checks that an abstract protocol fulfills a service. The protocol
developer provides the abstract protocol specification as the detailed sys-
tem, the service specification as the abstract system, and the database of all
SC theorems to COAST. In the other step COAST proves that a protocol
fulfills the abstract protocol. In this case the protocol forms the detailed
system and the abstract protocol acts as the abstract system. COAST uses
the database of the APM theorems.

COAST performs a protocol proof sequentially in four steps (cf. Fig. 5).



Output of proof results

Error messages
Warnings
i - -~ -~ -~ -~ - °-"°7T°"°" °"°"T°"°"T°T°"T7T97"T°"T°"T°T7T7T°7"T7T°"°"1" """ " T TTTTTT T TTTTTTTTTTT~-~-~™-<% ]
1
| : COAST
1 Checking | :
! all protocol )
. . 1
! mechanisms Checking 1
! liveness 1
i conditions \ Checking :
1
i parameter :
1 .
i consistency \ Exporting :
! formulas to 1
! OTTER 1
| :
I o e e o o e e e e e 1
Detailed Abstract Theorem
specification specification
incTLA incTLA database

Figure 5: Elements of the tool COAST

If a check cannot be completed successfully, the tool terminates and reports
an error message.

In the first check suitable theorems are selected from the database. As
explained in Sec. 3, a theorem guarantees that the subsystem Sys of the
detailed system implies a process of the abstract system. COAST identifies
a theorem for each process of the abstract system. The theorem has to
contain the process on the right side of the implication. Thereafter, the tool
checks if the processes of the subsystem Sys in the theorem are contained
in the detailed system. If COAST cannot find a suitable theorem for each
process of the coarse-grained specification, the proof will be aborted.

If the process on the right side of a theorem models a liveness prop-
erty, COAST checks in a second step whether the detailed system contains
processes which might spoil the liveness of the subsystem Sys and there-
fore violate the invariant condition EnvCond of the theorem. This task is
simple since all processes of the framework, which are compatible to Sys,
are listed in the section CORRESPONDS WITH of the theorem (cf. Fig. 4).

Thus, COAST checks if the detailed system contains processes which are
not, contained in this list. If not all processes are compatible, the theorem is
rejected and COAST jumps back to the first step selecting a new theorem
from the database.

The last two steps deal with the consistency of the actual parameters of
the processes. The framework assumes that actual parameters of different
process instances are represented by syntactically equal terms, which sub-
stitute equally named formal process type parameters. The tool checks this
condition in the third step. If it detects syntactically different parameter
settings, it adds corresponding proof obligations to the fourth step.

Finally, the fourth step is devoted to the proof of the condition Pars of the
theorem. Pars ensures the logical consistency of the parameter settings and
is represented by a first-order logic formula. COAST translates Pars (and
possibly the additional obligations of the third step) into the input syntax
of a frontend tool [13] for the automated theorem prover OTTER [35]. If
OTTER verifies Pars and the additional obligations, the protocol verifica-
tion is completed successfully. If OTTER fails to perform a proof, the user
of COAST has to decide if the formula is false or if the proof was too dif-
ficult or too extensive to be proved without interactive support. Then one
can structure the proof and supply additional lemmas to OTTER. Since,
however, Pars is very simple in the most theorems, OTTER can usually
prove these formulas without any further support.

5 Example

For clarification we will outline the proof of the Xpress Transfer Proto-
col XTP [37, 38]. To support the data transfer requirements of different
distributed applications, XTP consists of a broad spectrum of protocol
functions (cf. [7, 31]) which are mostly asynchronous to each other. Thus,
various combinations of protocol functions are possible. The Transfer Pro-
tocol Framework supports this modularity directly. In [23] we introduced
the formal specification and verification of XTP. There, the proofs were
carried out manually by application of suitable framework theorems. Al-
together we needed only three weeks for the specification and verification.
However, by application of COAST we can reduce the verification time
further.

As outlined in [23], we design a service specification, an abstract protocol
specification, and a protocol specification by parametrizing and composing
framework processes, first. The service specification XTPService is listed



PROCESS XTPProtocolAbs
PROCESSES
! APMs : Protocol mechanisms with infinite variables
SBK : SBufferKey ! Protocol mechanism modelling the handling of
! sequence numbers in the transmitter entity
(XTPpdu, ! format of the XTP pdu (modelled by a
! cTLA record)
XTPpci, ! format of the XTP protocol control
! information
Byte !
LD
SBU : SBufferUsd ! Protocol mechanism modelling the store of

XTP provides bytewise data transfer

! data in the transmitter entity
(XTPpdu, ! format of the XTP pdu (modelled by a
! ¢TLA record)
Byte ! XTP provides bytewise data transfer

LD
ACTIONS
Rq (krq : key; d : usd) £
! Transmission of user data d with sequence number krq to the
! service provider
SBK.Rq (krq,d) A RBK.stutter A SBU.Rq (krq,d) A

RBU.stutter A RG.stutter A RR.stutter A
RD.stutter A RP.stutter A ...

END

Figure 6: Parametrized Abstract Protocol Specification X T'PProtocolAbs

in Fig. 2. SCs of the framework (eg., SDUId, Corruptions, Gaps, Liveln)
are instantiated and composed according to the desired properties of the
service. Since, for example, the service does not tolerate gaps in the stream
of delivered data, the specification contains the process instance G of the
SC Gaps. The process parameter tg of Gaps, which describes the maxi-
mum number of gaps in the stream of delivered data, is set to 0. Thus,
gaps are not tolerated at all. The protocol specification XTPProtocol is
composed from FAPMs, which model the protocol mechanisms of XTP,
and AMCs describing the constraints of the basic service. In Fig. 6 the
abstract protocol specification X TPProtocolAbs is sketched. It models the
protocol mechanisms of XTP in a more abstract way than XTPProtocol

and is composed from APMs (eg., SLiveMRq) and AMCs.

Below, we sketch the proof that XTPProtocolAbs fulfills X TPService.
COAST is provided with these specifications and the database of the SC
theorems. For instance the theorems listed in Figs. 4 and 7 are contained
in this database.

COAST performs the four proof steps outlined in Sec. 4. First, it selects
the first process of the service specification. In the example, this is the SC
Corruptions guaranteeing that corrupted data will not be delivered to the
service user. In order to prove this SC, COAST selects the theorem listed in
Fig. 7 from the database. In the first step COAST checks that all processes
of the subsystem Sys are also contained in the specification XTPProtoco-
[Abs. Since that is true, the tool completes this step successfully (output

THEOREM Corruptions

LET Pars= mtc -
{(p.q) | q ¢ encpdu V
( skeylspcilp]l] 1 = skey[spcilql 1 A
V n € skeyl[spcilp]l 1]
(susd[p,n],susd[q,n]) € tc) ) } A
V1,m € usd Vn € {0, ., usdsize[l] - 1}:
(usdsplit[1,n],usdsplit[m,n]) € tc = (1,m) € tc;
Sys ééSBufferKey (pdu, pci, usd, encpdu, spci, skey, skk, skn,

skm, usdsize, mb) A

SBufferUsd (pdu, usd, susd, skk, skn, usdsize,
usdsplit) A

RBufferKey (pdu, pci, usd, encpdu, spci, skey, skk, skn,
skm, usdsize, rcu, rcc) A

RBufferUsd (pdu, usd, susd, skk, skn, usdsize,
usdsplit) A

MSDUId A

MCorruptions (pdu, mtc) A

MPhantoms (pdu,encpdu) A

CCCorruptions;

IN Pars A Sys = Corruptions(usd, tc)

CORRESPONDS WITH

.y

END

Figure 7: SC theorem to prove the SC Corruptions



* START THEOREM-CHECK !!!! =*
Checking Service Element: Corruptions
- Trying the 1. Theorem for: Corruptions
TESTING Mechanisms:
— 0K
TESTING Correspondings:
— NOT NECESSARY
TESTING Parameters:
— 0K
— One or more theorems has been tested correctly for this
Service Element !!!!!

% END of CHECK !!!! *

Figure 8: Output message of COAST

TESTING Mechanisms in Fig. 8).

Since Corruptions does not, describe a liveness property, the liveness of
Sys cannot be spoiled by its environment. Thus, COAST omits the second
proof step.

In the third step COAST checks, that formal parameters in the theorem,
which contain the same name, are replaced by identical defined variables or
identical values. For example, the parameters pdu of the processes SBuffer-
Key and SBufferUsd in Sys are both replaced by the value XTPpdu (cf. 6).
COAST finished this check successfully, too (output TESTING Parameters
in Fig. 8).

In the forth step the condition Pars of the theorem Corruptions is
checked. First, the formal parameters of Pars are replaced according to the
instantiations of the processes in the specifications X TPService and X TP-
ProcotolAbs. Thereafter COAST translates the formula into the syntax of
the OTTER frontend. Fig. 9 depicts the translation of the first conjunct of
Pars in the theorem. In the part FORMULAS the name form_Corruptions2-1
is assigned to the first conjunct of Pars. The proof script guiding OT-
TER is defined in the part THEOREM. OTTER shall prove the formula
form_Corruptions2_1 by contradiction assuming the already proven formu-
las mtc_pred, etc.

Likewise, COAST performs the checks for each process of XTPService
and creates OTTER, proof scripts. Finally, OTTER. verifies the formulas
Pars of all selected theorems by application of the proof scripts. Since
for each process of XTPService at least one theorem was identified which
passes the checks by COAST and since the OTTER, proofs succeeded, the

MODULE Corruptions2_equal
FORMULAS A
form Corruptions2.1 = mtc C {(p,q) | q ¢ encpdu V

( skeylspcilp] 1 = skeylspcilql 1]
(susd[p,n],susd[q,n]) € tc) };
THEOREM Test_form Corruptions2_1
<1>{1}ASSUME mtc_pred, q_pred, p_pred, encpdu_pred, skey_pred,
spci_pred, susd_pred, n_pred, tc_pred
PROVE form_Corruptions2_1
QED BY CONTRADICTION;

END Corruptions2_equal

Figure 9: Part of the OTTER formula for the SC-theorem Corruptions

verification that XTPProtocolAbs fulfills X TPService is successful.

COAST selected 33 theorems of the database of SC theorems which
passed the first proof step. Since the abstract protocol specification of
XTP is compatible to these theorems with respect to liveness properties,
they passed the second step as well. The theorems passed also the third
step, since the actual parameters were always replaced by syntactically
equal terms. OTTER could prove the Pars condition of 25 theorems di-
rectly. Eight theorems had to be enhanced with additional data-definitions
in order to be proven by OTTER. By this support, OTTER could prove an-
other four theorems. The remaining four OTTER theorem proofs had to be
supplied by some simple intermediate lemmata. These lemmata, however,
could be designed easily.

For the proof that the protocol system fulfills the abstract protocol sys-
tem, COAST selected 52 theorems of the 134 theorems of the database of
APM theorems. Due to the similarity of the protocol specification XTP-
Protocol and the abstract protocol specification XTPProtocolAbs, COAST
and OTTER performed these proofs without further support by the user.
Altogether, the complete proof that the protocol specification X TP Protocol
fulfills XTPService could be performed within three hours.

6 Conclusion

With the help of the XTP example we outlined the concept of the transfer
protocol framework and, in particular, the verification tool COAST. Besides
XTP and some simpler sliding window protocols, we applied the framework



to specify and prove the complex high-speed protocol MSP [32], too, which
could be examined also with a remarkable few expense of work (cf. [24]).
The framework can be accessed via WWW (http://ls4d-www.informatik.uni-
dortmund.de/RVS/P-TPM).

Currently, we expand the specification technique ¢cTLA in order to rise
further its acceptance in industrial protocol development projects. On the
one hand, ¢cTLA was extended to specify realtime properties and continuous
behaviour [22]. This facilitates the formal specification and verification of
distributed realtime systems. In particular, it is adapted to control systems
for hybrid chemical systems [18]. This ¢TLA expansion can be utilized,
however, for the development of communication protocols (fi. modelling
the transmission of multimedia data) as well.

On the other hand we develop a method to translate cTLA system spec-
ifications into the hardware description language VHDL [34]. By design
compilers (fi. Synopsis) VHDL hardware module descriptions can be trans-
formed automatically into hardware circuits. In this approach we are using
cTLA as a system-level description language with the ability of proving the
specification against several constraints (the service specification) [9]. The
goal of this extension is the transformation of already proven descriptions
into hardware circuits. Thus, expensive functional testing of circuits and
simulations in order to check the correctness of the specified systems can
be saved. This work is funded by the postgraduate research programme
CINEMA of the German research foundation DFG.
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