
User-Defined Telecooperation Services

Volker Gruhn, Peter Herrmann, and Heiko Krumm
Universität Dortmund, Fachbereich Informatik, D-44221 Dortmund
fgruhn@ls10jherrmann@ls4jkrumm@ls4g.cs.uni-dortmund.de

Abstract

A user-defined telecooperation service (UTS) provides
service elements for application-specific communication
and cooperation processes as well as integrated means for
the service definition, adaption, and management. It sup-
ports user groups with particular communication, cooper-
ation, and coordination needs which may change over time
and which may be that special, that the service maintenance
can be carried out only by the users themselves in an eco-
nomic and satisfactory way. The users may be organized in
various open and closed groups. They dispose of personal
computing equipment connected via wide-area telecommu-
nication networks. The users participate only from time to
time. Therefore, there is a partial and varying accessibility
of users and user sites. Interactions are mainly based on
asynchronous communication operations. The cooperation
and coordination functions have to consider unreachable
users.

Thus, there is a looser coupling of users than in typical
groupware systems which concentrate on the support of di-
rect user interactions. Due to the loose coupling and the
integration of mechanisms for the handling of unreachable
addressees, however, UTS elements have a more detailed
process structure than groupware interactions. Indeed, UTS
elements may even perform cooperation processes with pro-
cess and information schemes which can be compared with
those supported by business process management systems.
Nevertheless, in contrast to business processes, UTS ele-
ments are defined and managed by the users on their own,
and the set of supported service elements will evolve dur-
ing service operation time. For instance, UTSs may support
special interest groups (e.g., software user groups or the
members of an automobile club), teleworking, or interac-
tive journals with direct reader-writer interactions. The set
and lay-out of the service elements may follow the needs of
a user community with growing experience.

A major problem of the service element definition by
users is the mastering of concurrency. Due to their dis-
tributed execution, service elements will mostly define con-
current control flows for the sake of performance, while the

design of concurrent behaviours may overtax non-experts.
The problem is tackled by restrictions of control flow defi-
nitions accompanied by the provision of suitable basic co-
ordination operations encapsulating necessary concurrent
activities.

The paper introduces the notion of UTS. Fields of appli-
cation are addressed. Moreover, we describe the principles
of the service element definitions and outline the architec-
ture of a supporting system.

Key Words: Telecooperation service, value-added ser-
vice, service elements, user interaction, user groups.

1. Introduction

Value-added services are services which provide benefit
to their users which go beyond the simple exchange of data.
Typically, telecommunication providers try to set up value-
added services in order to create traffic on their telecom-
munication infrastructure. The basic idea of a value-added
service is to generate additional benefits by providing the
right information to the right people at the right time. The
basic assumption of our approach to user-defined, telecoop-
eration services (UTS) as natural extension of value-added
services is as follows:

� The broad availability of telecommunication services
for a large set of users creates requests for many value-
added services. These cannot be build in a central way
by a large telecommunication company. This would
neither be economical (because small user groups do
not have the communication potential, the telecommu-
nication providers are looking for), nor would it deliver
solutions in due time. Thus, users should be able to de-
fine telecooperation services themselves. This means,
predefined patterns of cooperation services must be de-
fined, must be made acessible to end-users, and must
be composable in an easy way. Only then, end users
will be able to define their services on their own.

� User-defined telecooperation services change as fre-
quently as communication and coordination needs of

the participating people change. Thus, easy modifica-
tion of these services is a key success factor for these
services.

Starting from these assumptions we conclude that user-
defined telecooperation services are value-added services
which can be assembled easily (e.g. by and for a set of
users, who have a particular communication interest in a
given context) and which can be modified by their users
without much administration effort. Examples of such ser-
vices are:

� Teleworking and its administration: A set of people
working from their home offices have certain synchro-
nisation and communication needs.They have to ex-
change documents at certain points of time. They have
to organize virtual (or personal) meetings, they have
to agree on agendas for these meetings and they have
to exchange minutes. All this can be supported by a
UTS which supports the exchange of the information
needed and which controls the flow of documents and
information between the teleworkers involved. Other
participants involved in this service (and taking benefit
from it) are group leaders who can control progress by
checking certain types of documents at certain points
of time (to some extent even automatically), project
managers who are supporting in the organization of
meetings and budget controllers who can be supplied
with budget relevant information as budget spent com-
pared to work progress and similar information. All
this is based on the UTS “teleworking and its admin-
istration” which sets up a context in which certain
types of information are gathered, made accessible to
certain users and actively forwarded to certain other
users. This service does not only exemplify what a
UTS looks like, it also illustrates that services are sub-
ject to change and have to be adapted to specific situ-
ations (after a while the budget controller may ask for
additional information, work report formats have to be
adapted to the standards of a particular company and
so on).

� Automobile clubs: A completely different UTS is a
UTS for the communication within an automobile club
(as ADAC in Germany). The members of such a club
usually do not communicate with each other directly.
There is a periodic magazine which provides some in-
formation to the members, but there is not much fur-
ther information exchange. A UTS which allows mem-
bers of such a club to build special interest groups (for
whatever subject they like) may be considered useful
by the members (because they have theopportunity
to get in touch with their co-members) and it may be
useful for the club itself, because it may contribute to
community building.

� Interactive journals: The UTS “interactive journals”
provides all services needed for subscribing and ac-
cessing an electronic journal. In addition, this service
provides support for submitting articles, letters to the
editor, advertisement and call-for-papers to the journal.
The service, moreover, asks the readers whether or not
they agree to record which articles where accessed by
them. If they agree they are allowed to access the list
of all readers of these articles. Based on these lists
discussion groups can be set up and an exchange of
related information can be stimulated.

The notion of UTS as introduced by these examples has
relationships to different areas. These related areas are:

� Groupware, business process management, telecoop-
eration systems: The purpose of a UTS is to provide
support for the communication and coordination of
people in the context of a certain problem domains.
This obviously relates to groupware systems which
provide reactive support for common work [4], to busi-
ness process modeling systems and workflow manage-
ment systems which allow to describe business process
and to use the process models to drive real processes
forward [6]. Workflow management systems are par-
ticularly suited for highly-structured and routine-based
business processes [21]. Telecooperation systems in
general provide support for people located at various
sites, but usually do not allow for the flexible defini-
tion of communication and coordination functionali-
ties needed. Thus, UTS are related to groupware sys-
tems and workflow management systems by provid-
ing reactive and proactive communication and coordi-
nation support and by allowing user participation in
the definition of this support. They are related to tele-
cooperation systems by focusing on support for dis-
tributed workgroups. One of the most important and
most recent requirement for workflow management
systems is the support of distributed business processes
[7]. The current approaches to handle distributed pro-
cesses in the context of workflow management have
to cope with typical distribution problems [14], which
also have to be considered in the context of UTS. Some
new approaches combine groupware functionality and
workflow management functionality. In [20] it is de-
scribed how multimedia-based communication is com-
bined with business processes defined in terms of state
transition diagrams. In this approach, strict process
parts (for certain types of communciation) can be com-
bined with flexible communication and coordination
support for other process parts. The projectItemwhich
provides support for so-called complementary models
focus also on this flexibility of communication and co-
ordination [15].

� Modeling of distributed systems: UTS support dis-
tributed processes. UTS consist of service elements
which are composed to build UTS. UTS are open sys-
tems (in the sense of ISO/OSI), whose implementation
can be adapted dynamically to configurations of dis-
tributed networks. The flexible configuration and co-
ordination of autonomous and interoperable software
systems is subject to research in the recent years. An
overview about languages for defining systems of this
type and ways in which they may interoperate is given
in [3, 22]. Moreover, the definition and the opera-
tion of UTS relates to distributed algorithms needed
for communication and coordination control [16, 17].

In section 2 we discuss the example of building and sup-
porting a software user group as an example of a UTS. We
also discuss how such a UTS may be changed. Section 3
describes what a UTS definition looks like. In section 4 we
explain the idea to compose complete UTS from service el-
ements, thus allowing for an easy structuring of UTS. We
discuss how new service elements can be defined. Section
5 gives a survey about UTS operation. It sketches the ba-
sic supportive service elements needed for UTS operation.
Section 6 describes our experience in implementing a UTS
platform. Finally, section 7 sums up our approach and con-
cludes with an overview about the future implementation of
UTS.

2. Software user group as an UTS example

In this section we discuss one UTS in more detail. This
UTS is called “Software user group”. It is meant to support
the communication between different users of the same soft-
ware and the communication between software users and
the software provider. In our investigation of the basic func-
tionality of such a service (compare to [8] for certain parts
of it), we identified the following functional requirements:

� Release announcements: New software releases are
announced. It is explained which new features are re-
alized, how these can be put into operation and how
they can be used.

� Customer care: From time to time the software users
are interviewed in order to find out whether or not they
are satisfied with the actual software releases. The re-
sults of these interviews (which can be carried out elec-
tronically by providing a form which is filled out by a
user) are fed back into the product management.

� Organisation of user group meetings: User groups
meet from time to time in order to exchange their
experiences and in order to build alliances needed
for putting some pressure onto the software supplier.

These meetings help to improve the relationship be-
tween customer and the software used, it supports
cross-selling (at least, if the software may be purchased
as a set of components), and it helps to identify new de-
velopment directions. The organization of these meet-
ings depends on the subjects of interest, on the poten-
tial number of participants and on social events spon-
sored by the software supplier. The organization of
such a meeting (inluding meetings of subgroups and
setting up of subgroups) can be supported easily by
asking the potential participants about their interests
and requirements and by supporting their direct con-
tact in advance.

� Problem tracking: Software bugs have to be reported
to the software supplier. The software supplier has to
check whether these bugs are accepted as bugs (of clas-
sified as new requirements), whether they have to be
fixed immediately (in case of severe bugs) or whether
they can be fixed in the context of a forthcoming patch.
The result of this classification is forwarded to the cus-
tomer who reported the problem. Within the UTS, cus-
tomers can edit their problem reports by using a WWW
interface. The incoming problem reports are fed into
the appropriate processes at the supplier site.

� Workaround discussion: Users are provided with
means to explain their way to use the software. This
may concern the overall context as well as the use
of certain workarounds needed for getting along with
bugs or missing functionality.

� Customer subgroups: Customers are supported in
building subgroups of the overall user group. A sub-
group may, for example, be built by a set of customers
who have certain requirements in common. Based on
this commonality, they may decide to order a new com-
ponent.

A UTS fulfilling these functional requirements is a rea-
sonable starting point for the communication between a
software supplier and his customers. In using this ser-
vice certain requests for extending it were raised. One of
these requests concerns the management of so-called red-
flag bugs. A red-flag bug is a severe bug which demands
that all users are informed about it. The idea is to avoid that
this bug results in further problems at customer sites. By
actively informing customers about it (instead of just letting
them access the list if bugs identified), the UTS is modified.
Other modifications of the UTS Software user group con-
cern the way to communicate with experienced users who
themselves reach an expert status. Once such customers are
available and willing to function as an expert for certain
parts of the software, parts of the communication may be
redirected towards the experts. This modification is not due

to an unexpected change of circumstances, but it is service
immanent. Once service participants get more knowledge-
able, their role in the service is updated and comunication
links may be modified.

3. Service Definition

A user-defined telecooperation service UTS is provided
to users cooperating and communicating in the broader con-
text of a common area of interest. During operation, there
may exist several concurrent cooperation processes which
correspond to specific tasks. The processes are managed
and controlled by the users themselves. The processes
progress due to local actions of users and user-based appli-
cation software operation. The telecooperation service con-
tributes to the processes only indirectly. It provides for tele-
cooperation service elements and for supportive services.
The telecooperation service elements support the interac-
tion of users and correspond to specific patterns of com-
munication and coordination between users. The support-
ive services provide for global directory and storage capa-
bilities. They are maintained by the provider in a reliable
and permanent way. Moreover, there are several software
components on the users’ sites contributing to the opera-
tion of the telecooperation services. The service elements
are executed locally by components providing for the man-
machine-interface, for the local control, and for the com-
munication with the service provider and other users. Ad-
ditionally, there is a local object store acting as interface
between telecooperation service elements and local applica-
tions. Finally, tools support the definition and modification
of services.

Figure 1 depicts this basic structure of a UTS system. It
emphasizes that the direct scope of a telecooperation service
is restricted to the support of communication and coordina-
tion. All problem-oriented computations and decisions are
under the control and responsibility of users and the effects
of the telecooperation service elements are limited to the
service interface and the local object store.

The set of users of a service can be structured into dif-
ferent groups and subgroups inaccordance with special
roles, capabilities, and interests. Users may enter and leave
services dynamically. Also their group memberships may
change in the course of time. Furthermore, there may
be only temporary connections between users and service.
Since users may be temporarily unreachable and may ac-
cess the service via arbitrary data network access points,
only users can initiate the establishment of connections to
a service. Moreover, services have to concentrate on the
support of asynchronous telecooperation interactions.

Besides of the user structure, the set of service elements
contributes to the definition of a telecooperation service and
the service elements may also be subjects of dynamic mod-

 schemes, service

service provider

management

scope of
user-defined
telecooperation
services

 objects, class
- global store:
 groups, services)
- directory (users,
supportive services

 configuration)
(accounting, security,

control

data telecommunication network

local

tools:
- presen-
 tation
- service
 defi-
 nition

local
object
store

MMI

commu-
nication

local
 applications

user

telecooperation service elements

Figure 1. System structure

ifications. Service elements can be added and removed.
Moreover, the scheme of a service element may be rede-
fined changing the behaviour of the service element and the
structure of its messages. Besides of these global modifi-
cations, there may be local service modifications on behalf
of single users. A user can adapt the local presentation and
handling of service interface events and their related mes-
sages to his special needs and preferences.

A service element is defined by its scheme which con-
sists of a behaviour description and message schemes. The
behaviour description defines the control and data flow of
a service element execution in terms of those events which
occur at the interface between service and user. As well-
known from traditional telecommunication services there
are user-initiated service interface events which stimulate
the service (requests and responses) and service-initiated
events (indications and confirmations). Each interface event
transfers a message between service and user where the
messages are object containers for two sorts of objects. User
data objects support the communication between users only,
i.e., users are the only sources, sinks, and interpreters of
these objects and the values of the objects does neither influ-
ence the execution of service elements nor the behaviour of
users. With respect to this, coordination parameter objects
are used. The service implementation as well as users can
create parameter objects which may influence the control
flow of service element executions as well as they may rep-
resent user-relevant coordination information. The message
schemes introduce the different message types and define
their composition from user data and coordination parame-
ter objects. Additionally message schemes contain presen-

tation information. They describe the layout of messages
and define static data (e.g., comments explaining the role of
parameters).

4. Service Element Definition

Since most users are not computer professionals, the de-
sign of user-defined services may overtax the users. Refer-
ring to this we concentrate on two main problems. Firstly,
users may overreach the service functionality. Secondly, the
design of distributed service element behaviours may fail
due to the particular complexity of concurrency. With re-
spect to the first problem, we limit the scope of services to
communication and coordination. Additionally, a service
is composed from service elements and users can structure
the service development accordingly. With respect to the
second problem we restrict the concurrency in the control
flow of service elements. The control flow of service ele-
ments, as it is has to be designed by users, is structured in
accordance with few easy-to-understand principles. Since
these restrictions can prevent efficient concurrent coordina-
tion solutions, we introduce particular building blocks for
service elements which encapsulate predefined distributed
functionality. Thus, the behaviour description of a service
element scheme mainly defines a sequential control flow
where the controlled operations correspond to basic com-
munication and coordination activities, to modular building
blocks encapsulating more complex activities, and toaccess
operations to supportive services.

4.1. Control Flow

Basically the control flow of service elements is sequen-
tial or composed from sequential phases. Within a sequen-
tial phase three of the well-known control constructs of se-
quential programming can occur, the sequence, the alterna-
tion, and the case selection. There are no constructs sup-
porting loops and jumps in order to prevent complex flow
structures.

With respect to distribution, concurrency, and more com-
plex control schemes following principles hold:

� Sequential control at initiator’s site: Each service el-
ement execution is started by one request event. The
request event starts a sequential flow of control which
is managed locally at the site of the requesting user.
Besides of the global supportive services the execution
can access the object store which is local to this site.

� Sequential migration: The flow of control (and its
management) can move to one other user’s site in or-
der to access the local object store there and to release
the ressources from the former site’s service element
execution management.

� Subelements: Within a service element, the flow of
control can request the execution of another service el-
ement. Recursive requests and migrating control flows
are forbidden in subelements in order to prevent com-
plex structures.

� Independent concurrent phases: The control flow may
fork to concurrent phases which later on have to be
joined again to one sequential flow at the same site
under following restrictions: The phases themselves
are sequential. Besides of one phase, which stays at
the initiating site, all other phases migrate implicitly to
other sites and stay there until termination.

The flow control constructs as well as the operations are
represented by icons. On this basis, the behaviour of service
elements is defined similar to program flow diagrams by
means of a special graphical editor.

4.2. Interaction Operations

Besides of the flow control constructs, operations occur
as nodes in a service element behaviour description dia-
gram. There are access operations to supportive services
and interaction operations. The interaction operations can
be structured into three classes, communication, synchro-
nisation, and coordination operations. While the commu-
nication and synchronisation operations basically have rel-
atively simple execution schemes (e.g., one-way message
transfer in the case of an unconfirmed communication), co-
ordination operations mostly correspond to more complex
distributed algorithms (e.g., distributed snapshot, cf. [17]).
Common to all interaction operations are following aspects:

� Adressing and partner selection: There may be one or
more peers of an interaction and we introduce a set of
suitable addressing modes. Thus, e.g., a message may
be sent to one specific receiver, to all members of a
group of receivers, to exactly one member of a receiver
group where this member has to be selected in accor-
dance with specific criteria, to a subgroup of a receiver
group where the subgroup has to have a minimal car-
dinality, or to the majority of a group. With respect to
the selection mode we have to mention that it implic-
itly refers to the coordination operation of distributed
selection.

� Temporary reachability of partners: Users may be tem-
porarily not connected with the service and unreach-
able for an unknown period of time. Thus, interactions
may be pending (e.g., messages wait for receipt, mes-
sage senders wait for confirmations from unreachable
receivers) and retard the progress of a service element.
Furthermore, lots of pending but meanwhile irrelevant
interactions may be queued for unreachable partners.

The definition of a service element attributes invoca-
tions of interaction operations by finite time-out values
and default reactions in order to assure progress. The
default reaction will also create a notification which is
queued for the unreachable user and will inform him
about the missed interaction. On the other hand,each
user can define maximum life times for receive queue
entries to prevent resource overflow.

Communication operations provide for the unconfirmed
and the confirmed message transfer and are available in all
combinations of the modes described above. For instance,
if a user wants to transfer a binding order to exactly one
member of a group, he may request a service element which
mainly contains a confirmed message transfer under the se-
lection addressing mode. Referring to our example (cf. sec-
tion 2) a software user group may select and charge a rep-
resentative (e.g., a person who will prepare the annual user
group meeting) in this way.

Synchronisation operations coordinate the temporal
progress of user activities. The realtime synchronisation op-
eration supports timer based delay periods. In continuation
of the last example (selection of a representative) a delayed
inquiry can be established by realtime synchronisation and
may ask for results of the representatives work.

The token operation forms a logical ring of addressees
and transfers a token message in order to activate a user
group and to serialize their actions. For instance, the rep-
resentative might prepare a first proposal of the meeting
schedule and send a circular letter with request for com-
ments to the persons of the executive board of the software
user group.

Finally, the lock operations support the fair allocation
and deallocation of global lock objects. There are binary
locks as well as counters which support the waiting for
global conditions. Thus, our software user group may be
in contract with the software supplier with respect to a fixed
number of testing licenses, and the access to a license can
be managed by means of a counter lock.

Coordination operations support the exchange of control
information between users which enable them to coordinate
their activities mutually inaccordance with more complex
patterns. With respect to following coordination operations
we assume that the user activities manipulate the state of
those objects which are local to the users:

� The snapshot operation sends requests for state copies
and collects the replies. Moreover, it controls an im-
plicit request propagation in order to ensure the con-
sistency of snapshots. For instance, a snapshot which
is established in the course of a free discussion phase
will document a state of the opinion-forming process
which is consistent in the sense that each opinion of
the state is contained together with all of its influenc-

ing arguments.

� The synchronisation point operations support the ar-
rangement of synchronisation points, the agreeing
users are assumed to create local state copies. The re-
set operation supports the negotiaton of a binding re-
set point. As an example, by means of these opera-
tions the users of the software users group may realize
a backtracking search of variants in order to improve
the schedule of their annual meeting.

� The atomicity operation supports the user-based exe-
cution of a global two-phase commit process which
ensures the atomicity of distributed activities. In our
example scenario a subset of software users may con-
clude a quantity discount agreement with a software
supplier.

Additionally there is the voting coordination operation
which distributes questionaires, collects replies and evalu-
ates their voting control parameters. In this way, our soft-
ware user group may coordinate the conditions of their next
annual meeting.

4.3. Supportive Services

Besides of the local object stores of the user sites there
are following global supportive services which are main-
tained by the service provider:

� The user directory manages user groups, users, ac-
counting, and security attributes of users.

� The service element directory manages the definitions
of service elements including the behaviour descrip-
tions and related message schemes.

� The service control store maintains state descriptors
of service element executions and special control ob-
jects (i.e., locks, snapshot and synchronisation point
descriptors).

� The security service provides for authentication, au-
thorization, and encryption operations and performs
the session key management.

� The global object store serves as centralized reliable
storage for user data objects.

The operations of the first four suppportive services are
accessed implicitly during the establishment of user con-
nections and the execution of interaction operations, while
write and retrieve operations of the global and local object
store occur explicitly as nodes of the behaviour diagrams of
service element definitions. Thus, one can specify the auto-
mated transfer of data between messages and object stores.

5. Service Operation

In the case of an open service we propose that a provider
establishes an initial service and communicates its descrip-
tion and network addresses to potential users (e.g., via tradi-
tional communication media, via WWW, or via future ser-
vice trader facilities). For closed services user organizations
may start the service establishment and enter into an agree-
ment with a provider. The initial service shall provide few
and easy-to-understood basic service elements which cor-
respond to the elementary communication and coordination
needs of the potential users. Moreover, each initial service
contains elements supporting the service operation and the
user-based maintenance and modification of the service def-
inition:

� The elements of the user connection management es-
tablish and release temporary connections between a
user and the service. Also, an unknown user may es-
tablish a connection in order to run his enrollment.

� The user enrollment element creates a user account and
results in initial group assignments of the new user. A
further element supports the departure of users.

� The elements of the group management support the in-
troduction, modification, and deletion of groups.

� The service element management elements support the
insertion, retrieval, and modification of service ele-
ment definitions. The definitions and the related be-
haviour and message schemes are communicated via
messages and processed locally at user’s site by the
service definition editor tool.

� While the group and service element management ele-
ments provide for the basic access to directory entries,
there is a needs for further support of service evolution.
Therefore the evolution information service elements
support the communication and agreement of service
modifications. Users can post requests and proposals
for group and service element changes. They can sup-
ply proposals under reference to requests and can ini-
tiate votings.

By means of these service elements users are assumed
to form the service in accordance with their current needs
resulting in a stepwise enhancement of the service.

In addition to the features mentioned, we already con-
sider some extensions. One deals with the explicit sup-
port of object method definitions for objects contained in
the messages and object stores of the service. Another in-
teresting extension will be based on a notion of behaviour
compatibillity and will support the subtyping of service ele-
ments in order to facilitate the service element modification.

6. Implementation

Presently there are two experimental implementations of
UTS platforms. Both are based on Java [13]. The first plat-
form was developed in 1997 [9]. It provides for user compo-
nents and a server component which are Java-applications
local to the user respectively server computers. The compo-
nents interact via Java’s remote operation call facility “Re-
mote Method Invocation (RMI)” [18]. The argument and
result objects of remote operation executions are exchanged
in object containers which utilize Java’s object serializa-
tion API. The platform provides for special user interfaces
supporting the service management, service definition, and
service operation. Their implementation is directly based
on Java’s window toolkit API “awt”. The service elements
are represented by sets of communicating finites state ma-
chines which can be adapted to user requirements by pa-
rameter settings. The free definition of new service ele-
ments is not supported. The project focussed on the fea-
sibility of UTS generally and therefore besides of the plat-
form two UTS applications were developed. They support
distributed closed user groups. A teleteaching service sup-
ports the asynchronous internet-based communication of tu-
tor and student groups. A group authoring application sup-
ports the edition of group reports. Both applications use the
same set of basic service elements:

� Two-party communication elements support data-
gram-like notifications, confirmed messages, answer-
and-question schemes, as well as the provision of pro-
posal sets and the replies of the peers’ choices.

� N-party-communication elements basically extend
two-party communication schemes by means of re-
sponder group addresses and responder selection sets.
Additionally there is the special service element “Dis-
cussion” where the initiating party manages the ses-
sion, the membership in the group of participants, and
the totally ordered forwarding of contributions.

� Cooperation elements support consensus and voting
processes. There are simple votings, where partici-
pants can agree, disagree, or abstain. Other elements
support the negotiation of appointments and the selec-
tion of subgroups, e.g., for the creation of car pools.

� Document transfer elements distribute documents,
modification notifications, and access tokens.

The teleteaching application uses this basic element set
to form specific service elements supporting the distribu-
tion of lecture notes and exercises, the coordination of train-
ing sessions, the free communication between participants,
questions and replies between students and tutors, the man-
agement of examinations, and finally the creation of car

pools for the visit of examinations. Additionally, the user
management can be utilized to support the management of
students, instructors, and courses in general, as well as it
defines lecturers, tutors, and participants of courses. The
group report application is oriented at a document prepa-
ration procedure which starts with a discussion resulting
in an initial document and group structure. Several author
and referee groups are instantiated. Subdocument respon-
sibilities are defined. General guidelines, a timetable, and
milestones are negotiated. Thereafter automated reminder
messages support the in-time delivery of milestones. Sub-
documents are processed locally. Subdocument export and
import service elements facilitate the document manage-
ment, which defines global document versions by means of
distributed snapshots. Additional service elements concern
intermediate discussions and negotiations as well as the
preparation of physical meetings. Meanwhile, a medium-
size computer network management company adopted the
first platform and created an application which supports
the communication and interaction of network management
and maintenance personnel.

The current experimental UTS platform implementation
extends the functionalityof the first implementation with re-
spect to two topics [19]. Firstly, it provides for a user inter-
face which corresponds to that of a usual World Wide Web
browser supporting the presentation and retrieval of hyper-
text documents. Secondly, it supports the relatively free def-
inition and modification of service elements by users.

The implementation again is based on Java network pro-
gramming technology. The platform consists also of user
components and a server component which are Java appli-
cations local to the user and the server computers. Ideally,
we would like to replace the user components by a usual
Java enabled Web-browser which accesses the Web-pages
of UTS applications. Applets contained in the pages process
user interactions and cooperate with servlets of the corre-
sponding UTS server component. The security restrictions
of applets, however, disable the access to objects which are
local to the user outside the browser environment. There-
fore, we presently use the opposite approach. The user
component is a regular Java application which integrates the
HotJava HTML Component [10] supplying browser func-
tionality. Thus, HTML-based Web-pages of UTS applica-
tions can be used also, and users can interact with a UTS
via the well-known Web-interface.

A UTS application appears to a user by a set of Web-
pages:

� Introduction and description pages outline the UTS ap-
plication and provide for roadmaps and links.

� Whiteboard pages can disseminate short general dy-
namic informations.

� Service element selection pages offer the service ele-

ments available. The user can activate elements. The
implementing JavaBeans will migrate to the user’s site
and process the execution of the invoked service ele-
ments.

� Service element execution management pages show
the current status of service element executions rele-
vant to the user. User’s can transfer the local control to
service element executions. Moreover, they can stop,
continue, and abort executions.

� Service interaction pages are presented on behalf of
the execution of service elements. They support the
exchange of information between the service element
execution and the user. (E.g., if the execution asks for
a user message to be transfered to another user, there
will be two interaction pages, one to input the mes-
sage at the initiator’s site, another later on, when the
responding user receives the message.)

The implementation of service elements utilizes the soft-
ware component approach JavaBeans [2], in particular En-
terprise JavaBeans [5]. As new service elements can be
constructed from an arrangement of already defined service
elements, configurations of JavaBeans can form JavaBeans
again. Besides of the runtime interface, JavaBeans support
a design time interface. Application builder tools utilize the
design time interface in order to explore properties of avail-
able beans and in order to customize the beans used. Beans
can have a graphical interface which may be customized by
the application builder tool, too. In particular, builder tools
can have the character of graphical editors and we expect
that future tools will provide for very comfortable and user-
friendly bean definition functions.

Therefore, service elements are implemented by beans
and we resort on builder tools for the purpose of service
element definition and modification. Presently, we use the
BeanBox tool which is contained in the current JavaBeans
Development Kit [1]. Each of the basic elements introduced
in section 4 is implemented by a corresponding bean. The
beans are supplied with suitable graphical symbols support-
ing the editing of control and data flow graphs. In order to
define a new service element, a user activates the BeanBox,
instantiates basic service elements, and arranges their icons
in accordance with the control and data flow of the new
service element. Thus, basic service elements and control
operations (which are all implemented by beans) form the
nodes of a graph defining the new service element. More-
over, eachnode of the graph can be customized in order to
adapt its properties. The properties mainly concern the user
interface representations of the corresponding actions.

In consequence, two major parts of the user component
of the UTS platform are implemented by re-use of general
Java components: The BeanBox supports the definition and

modification of service elements and the HotJava browser
performs the over-all interaction between user and service.
Additionally, there is a local object store component which
manages local objects and their directories in order to sup-
port a gateway between local applications and UTSs.

7. Concluding Remarks

We proposed a new type of network application which
supplies a flexible and comfortable support for user com-
munities with more occasional and asynchronous cooper-
ation needs. While there already exists a stable definition
of the conception and also there are two successful imple-
mentation projects, we are planning to perform several more
extensive usage experiments in order to gain practical expe-
riences. Additionally, we will enhance the tool support and
the implementation of supportive services to facilitate ex-
periments with open and wide-spread user groups. In par-
ticular, a more user-friendly tool for the graphical service
element definition than the Java BeanBox is necessary in
order to support the service definition by non-expert users.
This tool shall provide for a very comfortable user-interface.
Furthermore, design errors should be detected by automated
analysis and property checking functions. With respect to
the supportive services, high-performance implementation
architectures focussing on distributed server systems are of
interest. Moreover, we plan the integration of security ser-
vices.

References

[1] JavaBeans Development Kit. See reference in [12].

[2] JavaBeans — Component APIs for Java. Reference in [12].

[3] P. Ciancarini and C. Hankin (eds.). Coordination Languages
and Models. InProceedings of the 1st International Confer-
ence on Coordination, Springer LNCS 1061, 1996.

[4] C.A. Ellis, S.J. Gibbs, and G.L. Rein. Groupware — Some
Issues and Experiences.Communications of the ACM,
1(34):38–58, 1991.

[5] Enterprise JavaBeans. See reference in [12].

[6] D. Georgakopoulos, M.F. Hornick, F. Manola, M.L. Brodie,
S. Heiler, F. Nayeri, and B. Hurwitz. An Extended Transac-
tion Environment for Workflows.Distributed Object Com-
puting, IEEE Data Engineering, 16(2), September 1993.

[7] G. Graw, V. Gruhn, and H. Krumm. Support of Cooperating
and Distributed Business Processes. InProceedings of the
1996 International Conference on Parallel and Distributed
Systems, ICPADS ’96, pages 22–31, Los Alamitos, Califor-
nia, June 1996. IEEE Computer Society Press.

[8] V. Gruhn and J. Urbainczyk. Software process modeling and
enactment: an experience report. To appear inProceedings
of the International Conference on Software Engineering,
Kyoto, April 1998.

[9] M. Hehn and M. Rieks. Netzbasierte Kooperationsdienste
und ihre Realisierung aus Java-Bausteinen am Beispiel eines
verteilten Autorensystems und eines verteilten Fernstudien-
systems. Diploma Thesis, University of Dortmund, FB In-
formatik, LS 4, 1997 (in German).

[10] HotJava HTML Component. See reference in [12].

[11] Java Remote Method Invocation Specification. Sun Micro-
systems, Inc., 1996.

[12] Java: Products and APIs. Available in WWW: http://java.
sun.com/products/.

[13] Java Development Kit 1.1 Platform (JDK). See reference in
[12].

[14] C.W. Loftus, E.M. Sherrat, R.J. Gautier, P.A.M. Grandi,
D.E. Price, and M.D. Tedd.Distributed Software Engineer-
ing. BCS Practitioner Series, Prentice-Hall,1995.

[15] Max Mühlhäuser. Modeling and Design of Complex Co-
operative Software. InProceedings of the 1st IEEE Con-
ference on the Engineering of Complex Systems, Ft. Laud-
erdale, November 1995.

[16] Michel Raynal. Networks and distributed computation —
concepts, tools and algorithms. North Oxford Academic,
London, 1987.

[17] Michel Raynal.Distributed algorithms and protocols. Wiley
& Sons, Chichester, 1988.

[18] Java Remote Method Invocation and Object Serialization
(RMI). See reference in [12].

[19] Arkadiusz Speemann. Nutzerdefinierte Telekooperations-
dienste implementiert auf Basis von Java-Beans. Diploma
Thesis, University of Dortmund, FB Informatik, LS 4, 1998
(in German).

[20] Koji Takeda, Kazuo Sugihara, Mitsuyuki Inaba, and Isao
Miyamoto. Modeling and simulation of Multimedia Inter-
faces and Agents for Flexible Working.IEEE MultiMedia,
3(2):40–50, 1996.

[21] B. Warboys. Reflections on the Relationship Between BPR
and Software Process Modelling. In P. Loucopoulos (ed.),
Proceedings of the 13th International Conference on the
Entity-Relationship Approach, in LNCS 881, pages 1–9, De-
cember 1994. Springer-Verlag.

[22] P. Wegner. Coordination as Constrained Interaction. In [3],
pages 28–33.

