
The International Journal of Web Services Research is indexed or listed in the following: ABI/Inform; ACM Digital Library; Bacon’s Media
Directory; Burrelle’s Media Directory; Cabell’s Directories; Compendex (Elsevier Engineering Index); CSA Illumina; Current Contents®/
Engineering, Computing, & Technology; DBLP; DEST Register of Refereed Journals; Gale Directory of Publications & Broadcast Media;
GetCited; Google Scholar; INSPEC; Journal Citation Reports/Science Edition; JournalTOCs; Library & Information Science Abstracts
(LISA); MediaFinder; Norwegian Social Science Data Services (NSD); PubList.com; Science Citation Index Expanded (SciSearch®);
SCOPUS; The Index of Information Systems Journals; The Standard Periodical Directory; Thomson Reuters; Ulrich’s Periodicals
Directory; Web of Science

Special Issue on New Techniques of Services Computing

Guest Editorial Preface

v	 Jia Zhang, , Carnegie Mellon University, Mountain View, CA, USA
	 Hanhua Chen, , Huazhong University of Science and Technology, Wuhan, China

Research Articles

1	 Internet of Things Service Provisioning Platform for Cross-Application Cooperation
	 Shuai Zhao, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China

	 Bo Cheng, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China

	 Le Yu, China Mobile Communications Corporation, Beijing, China

	 Shou-lu Hou, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China

	 Yang Zhang, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China

	 Jun-liang Chen, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications,
Beijing, China

23	 An Automatic Recovery Mechanism for Cloud Service Composition
	 Wenrui Li, School of Mathematics & Information Technology, Nanjing Xiaozhuang University, Nanjing, China & State Key Laboratory of

Software Engineering, Wuhan University, Wuhan, China

	 Yan Cheng, College of Computer and Information, Hohai University, Nanjing, China

	 Pengcheng Zhang, College of Computer and Information, Hohai University, Nanjing, China

	 Hareton Leung, Department of Computing, Hong Kong Polytechnic University, Hong Kong, China

40	 A Model-Based Toolchain to Verify Spatial Behavior of Cyber-Physical Systems
	 Peter Herrmann, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

	 Jan Olaf Blech, RMIT University, Melbourne, Australia

	 Fenglin Han, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

	 Heinz Schmidt, RMIT University, Melbourne, Australia

53	 On Measuring Cloud-Based Push Services
	 Wei Chen, Nanjing University of Posts and Telecommunications, Nanjing, China

	 Shiwen Zhou, Nanjing University of Posts and Telecommunications, Nanjing, China

	 Yajuan Tang, Shantou University, Shantou, China

	 Le Yu, Nanjing University of Posts and Telecommunications, Nanjing, China & The Hong Kong Polytechnical University, Hong Kong, China

69	 A Novel Freeway Traffic Speed Estimation Model with Massive Cellular Signaling Data
	 Tongyu Zhu, State Key Lab of Software Development Environment, Beihang University, Beijing, China

	 Zhixin Song, State Key Lab of Software Development Environment, Beihang University, Beijing, China

	 Dongdong Wu, Beijing Transportation Information Center, Beijing, China

	 Jianjun Yu, Computer Network Information Center, Chinese Academy of Sciences, Beijing, China

Copyright
The International Journal of Web Services Research (IJWSR) (ISSN 1545-7362; eISSN 1546-5004), Copyright © 2016 IGI Global. All
rights, including translation into other languages reserved by the publisher. No part of this journal may be reproduced or used in any form
or by any means without written permission from the publisher, except for noncommercial, educational use including classroom teaching
purposes. Product or company names used in this journal are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark. The views expressed in this
journal are those of the authors but not necessarily of IGI Global.

Volume 13 • Issue 1 • January-March-2016 • ISSN: 1545-7362 • eISSN: 1546-5004
An official publication of the Information Resources Management Association

International Journal of Web Services Research

Table of Contents

DOI: 10.4018/IJWSR.2016010103

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research
Volume 13 • Issue 1 • January-March 2016

A Model-Based Toolchain to Verify Spatial
Behavior of Cyber-Physical Systems
Peter Herrmann, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

Jan Olaf Blech, RMIT University, Melbourne, Australia

Fenglin Han, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

Heinz Schmidt, RMIT University, Melbourne, Australia

ABSTRACT

A method preserving cyber-physical systems to operate safely in a joint physical space is presented.
It comprises the model-based development of the control software and simulators for the continuous
physical environment as well as proving the models for spatial and real-time properties. The
corresponding toolchain is based on the model-based engineering tool Reactive Blocks and the
spatial model checker BeSpaceD. The real-time constraints to be kept by the controller are proven
using the model checker UPPAAL.

Keywords
BeSpaceD, Model-Based System Engineering, Reactive Blocks, Real-Time Properties, Spatial Behavior
Modeling and Verification

1. INTRODUCTION

In safety critical domains like aviation, automotive and robotics, autonomous cyber-physical systems
interact with each other in the same physical space. To avoid damage and injuries, the control software
of the systems has to guarantee spatiotemporal properties like collision avoidance or the cooperation
of several units that carry a heavy workpiece together. A popular way for the creation of functionally
correct and safe system software is the application of integrated modeling and verification tools like
MATLAB/Simulink (Tyagi, 2012). Our contribution is the combination of such a tool with efficient
provers allowing to verify that the coordinated behavior of multiple controlled cyber-physical systems
fulfills relevant spatial safety properties. We introduce a toolchain combining the model-based
engineering tool-set Reactive Blocks1 (Kraemer, Slåtten, & Herrmann, 2009) with the verification

40

International Journal of Web Services Research
Volume 13 • Issue 1 • January-March 2016

41

tool BeSpaceD (Blech & Schmidt, 2013). In particular, we use a development workflow starting
with the collection of requirements for a cyber-physical system and its architecture followed by the
steps listed below:

1. 	 Spatiotemporal properties of components are described in the input language of BeSpaceD;
2. 	 A model of the system controller is created in Reactive Blocks. We compose it with a simulator model

of the continuous system parts which is created using the BeSpaceD model developed in step 1;
3. 	 The built-in model checker of Reactive Blocks is used to check the combined controller and

simulator model for general design errors (Kraemer, Slåtten, & Herrmann, 2009);
4. 	 If the checks in step 3 are passed, the software model is transformed to the input language of

BeSpaceD;
5. 	 Assuming certain maximum reaction times of the discrete controller, it is verified with BeSpaceD

that the model resulting from the transformation in step 3 fulfills the spatiotemporal properties
defined in step 1;

6. 	 The model checker UPPAAL (Bengtsson, et al., 1996) is applied to prove that the real-time
properties assumed in the proofs of step 5 are indeed kept by the Reactive Blocks model created
in step 2 (Han & Herrmann, 2013), (Han, Herrmann, & Le, 2013);

7. 	 By using the code generator from Reactive Blocks (Kraemer & Herrmann, 2007), (Kraemer,
Herrmann, & Bræk, 2006) executable Java code of the controller and, if desired, of the simulator of
the continuous behavior is created. The generated code can be deployed on the system components
running the control software of the embedded system.

Our approach has to guarantee that a model developed with Reactive Blocks indeed fulfills the
desired safety properties if the verifications in steps 5 and 6 succeed. Formally, that proof is merely
trivial: Be S the logical formula corresponding to a system model in Reactive Blocks according to
(Kraemer & Herrmann, 2010), P the conjoined spatial behavioral properties to be fulfilled by S, and
R(t) a statement describing that the controller always guarantees a maximum reaction time t. Using
BeSpaceD, we verify in step 5 that the system fulfills the safety properties if t is kept, i.e., S ∧ R(t)
⇒ P. In step 6, we prove with UPPAAL that the system guarantees the maximum reaction time, i.e.,
S ⇒ R(t). It is evident that the combination of the two proofs implies S ⇒ P such that the Reactive
Blocks model created in step 2 effectively fulfills the spatial properties defined in step 1.

Further, we have to argue whether our model is indeed a correct abstraction of the real physical
system in which the generated code of the controller shall be used. In particular, it is important
to understand if and under which conditions the real system may violate P even if the two proof
steps succeed. Preserving safety properties throughout refinement and reuse of verification results
achieved on abstract models has been studied in the past, e.g., (Loiseaux, Graf, Sifakis, Bouajjani,
& Bensalem, 1995) and is especially important in the context of model checking. When regarding
space, we distinguish here between the following:

•	 Overapproximation of spatial behavior: For instance, the size of a spatial area occupied by
a unit can be extended for proving the absence of collisions. This enables us to reuse previous
spatial proofs if the sizes of a physical model do not exceed the overapproximated ones taken
as a basis in the former proof;

•	 Underapproximation of spatial behavior: Just as the overapproximations, we can, for example,
underapproximate sensor ranges that allow the detection of other units, such that established
properties can be reused in later development stages;

International Journal of Web Services Research
Volume 13 • Issue 1 • January-March 2016

42

•	 Overapproximation of maximum reaction times: The BeSpaceD verifications in step 5 are
valid if we assume greater or equal reaction times than those guaranteed by the controller, the
sensors and actuators in the worst case.

1.1. Guiding Example: Moving Robot
We intend to protect maintenance personnel in a factory hall against collisions with a fast moving
robot transporting goods. The layout of the scenario is depicted in Figure 1. The robot has a size of
up to 2 x 2 meters and moves on a straight line in the center of the room covering a distance of 100
m. Since it reaches a speed of up to 10 m/s, a collision with a human may lead to fatal injuries. The
hall is equipped with sensors observing if a human approaches the robot and we shall design a safety
controller which may stop the robot in due time. The robot can be operated in three different modes
depending on its distance to humans in the hall:

•	 Normal mode: If no human is closer than 25 m to the robot, the robot increases its speed with
an acceleration of 5 m/s2 until reaching 10 m/s. After 87 m, the speed of the robot is reduced
with an acceleration of -5 m/s2 until it amounts to 1 m/s which is kept until the robot reaches the
buffer stop at the endpoint;

•	 Amber mode: If a human is detected in a distance of less than 25 m but more than 10 m, the
robot is slowed down with an acceleration of -10 m/s2 until reaching a speed of 2 m/s (resp. 1
m/s if more than 87 m are passed);

•	 Red mode: If the distance between the robot and a human is less than 10 m, the robot is stopped
with an acceleration of -15 m/s2.

For the mode changes, we assume a latency of 500 ms at maximum reflecting that there will
be communication delays between the physical components as well as processing times of the robot
controller. Of course, the main spatial proof task is to find out if the selected behavior of the safety
control ensures that the robot is sufficiently slow or already stopped when a human reaches it. An
aggravating fact is that the sensor may detect humans only if they are in the hall but that the face side
is only 10 m and the long side 14 m from the path of the robot.

1.2. Synopsis
Steps 1 and 2 of the workflow, in particular, the engineering of controllers with Reactive Blocks will
be outlined in Section 2. In Section 3, step 5, i.e., the proof of spatial properties with BeSpaceD, is
discussed followed by an introduction of step 4, the coupling between Reactive Blocks and BeSpaceD,
in Section 4. The use of UPPAAL to verify real-time properties in step 6 is described in Section 5.
The paper is concluded with a discussion of related work and a conclusion.

Figure 1. Layout of the moving robot

International Journal of Web Services Research
Volume 13 • Issue 1 • January-March 2016

43

2. MODELING CONTROLLERS AND CONTINUOUS BEHAVIOR

The input of BeSpaceD can be either direct logical terms or a Scala program generating the terms.
For the moving robot example, we started the workflow with a Scala program modeling the spatial
behavior of the robot and the human. Here, for instance the speed that the robot shall carry in the
normal mode can be described by the code snippet shown in Algorithm 1.

For step 2, we apply the engineering tool Reactive Blocks (Kraemer, Slåtten, & Herrmann, 2009)
that allows the model-based development of reactive systems all the way from abstract behavioral
specifications to executable code. It enables to specify subfunctions of an application in separate
models that we call building blocks. Using synchronous coupling, building blocks can be further
composed to system models. An advantage of this proceeding is that a functionality recurring in
several applications is specified once as a building block that can be reused in various models
(Kraemer & Herrmann, 2009). The behavior of a building block is specified as a UML 2 activity
while its behavioral interface is described by a so-called External State Machine (ESM) (Kraemer &
Herrmann, 2009). Reactive Blocks uses a formal semantics (Kraemer & Herrmann, 2010) such that
in step 3 of our workflow the activities can be model checked for design properties, e.g., compliance
of an activity with the ESM of its building block (Kraemer, Slåtten, & Herrmann, 2009). System
models can be automatically transformed to executable Java code (Kraemer & Herrmann, 2007),
(Kraemer, Herrmann, & Bræk, 2006) which corresponds to step 7 of the workflow.

Figure 2 depicts a UML activity modeling the behavior of a building block. Similarly to Petri
nets, behavior is expressed as tokens passing via the edges of a graph towards its vertices which
may be flow control units like forks duplicating tokens or timers as well as operations containing
Java methods (e.g., computeMode). Further, an activity may contain call behavior actions like Timer
Periodic 2 referring to other building blocks. The interaction of the activity describing the behavior
of a building block B with the one including a call behavior action referring to B, is modeled by pins
and parameter nodes. The parameter nodes are described as little squares at the edges of the activity,
e.g., new1 in Figure 2, while the pins are similar symbols at the edges of the call behavior actions
(e.g., tick in Timer Periodic 2). The pins at a call behavior action of a building block are identical to
the parameter nodes of its activity.

In Reactive Blocks, we follow run-to-completion semantics modeling that tokens flow via several
edges and nodes in a single atomic step, a so-called activity step, until they have to wait for other
behaviors like receiving an event from another station or a timeout (Kraemer & Herrmann, 2010).
An activity step may encompass several activities since the “hop” of a token between two activities
via pins and parameter nodes is carried out synchronously.

The UML activity in Figure 2 models the behavior of the building block ControlTwoElements that
we use to specify the safety controller in our example. It is a feedback controller that polls the sensors
of the the robot as well as the human and uses the sensor data to compute the correct control mode of
the robot. The activity is initiated by two simultaneously arriving data tokens via the parameter nodes
new1 and new2 containing location information about the robot and the human at system start. The
corresponding time, location and speed data is defined by the Java class TSOB which is the type of

if (mode == 3) { // normal
 if (d <= 870) {
 if (speed < 10) {
 speed += 0.0005 * timeraster; } }
 else {
 if (speed > 1) {
 speed -= 0.0005 * timeraster; } } }

Algorithm 1. Code snippet

International Journal of Web Services Research
Volume 13 • Issue 1 • January-March 2016

44

both parameter nodes. In the same activity step, the two data tokens are stored in the variables tsob1
and tsob2 and the two tokens are joined to one passing operation getPollingInterval. This operation
refers to a Java method that reads out a parameter of the building block which describes the time
interval between two polls of the sensors (5 ms in the example). Thereafter, the token is forwarded
starting the building block Timer Periodic 2 that will periodically issue timeouts according to the
value of the parameter.

A timeout is modeled by a token arriving through pin tick of block Timer Periodic 2 that is
duplicated in the succeeding fork and outputted via the parameter nodes call1 and call2. Assuming
that the drivers of the sensors rest in the same physical component as the controller, we can model
that the sensor data arrives still in the same activity step through the pins get1 and get2. The data
units are stored in the variables tsob1 and tsob2 followed by a join towards a flow breaker. That is a
timer without a waiting time which sole purpose is to separate two activity steps.

In a new activity step, the token leaves the flow breaker and causes the execution of the Java
method computeMode which takes the sensor data from the variables tsob1 and tsob2 and computes
in which of the modes normal, amber or red the robot has to operate. The mode values are typified
by integer values that are outputted via parameter node sendMode.

In Figure 3, we point out the ESM of building block ControlTwoElements. The markings2 at
the edges of the state machine refer to the parameter nodes and model which parameter nodes are
passed by tokens in a certain activity step. For instance, in the activity step leading from the initial
node of the ESM to state active, tokens pass through both parameter nodes new1 and new2. In state
active, a transition may be executed which leads towards ESM state computing. It models the polling
of sensor data and refers to the parameter nodes call1 and call2 followed by an immediate reaction
via get1 and get2. In state computing, a transition consisting of a flow via parameter node sendMode
is allowed reflecting the transmission of new control modes. This transition sets the ESM back to
state active. By the symbol / in the transition markings one expresses if a transition is triggered by
the activity in a building block or by its environment.

The overall system consists of twelve building blocks and, due to the similarity with Java, we
profitted from the Scala code created in step 1 of the workflow. For instance, the code snippet shown
above was copied and pasted into an operation of building block ContinuousStepRobot that specifies
the robot behavior in the Reactive Blocks model.

Figure 2. UML activity of building block ControlTwoElements

International Journal of Web Services Research
Volume 13 • Issue 1 • January-March 2016

45

3. PROVING SPATIAL PROPERTIES WITH BeSpaceD

We implemented BeSpaceD (Blech & Schmidt, 2013), a tool for checking spatial behavior of cyber-
physical systems, in the programming language Scala. The description language of BeSpaceD allows
to define abstract datatypes that indicate spatial availability, interaction or occupation in areas in a
coordinate system for time intervals or timepoints. As mentioned above, we can also use Scala code
to generate BeSpaceD specifications. The language allows to specify physical system behavior on
various abstraction levels reaching from simple models regarding only distinct availability areas at
certain time intervals or timepoints to complete behavioral models. In particular, we can describe
the space covered by a system at a certain timepoint in form of rectangles and other shapes. Further,
we can constrain the coordination of different systems by allowing interaction only if their locations
are within a certain distance. To give a look and feel, the code segment shown in Algorithm 2 points
out an extract of the moving robot behavior.

Figure 3. The RTESM (ESM) of building block ControlTwoElements

AND(AND (AND (
 IMPLIES (TimeStamp (410),
 OccupyBox (160, 139, 182, 161)),
 IMPLIES (TimeStamp (411),
 OccupyBox (161, 139, 183, 161))),
 IMPLIES (TimeStamp (412),
 OccupyBox (161, 139, 183, 161))),
 IMPLIES (TimeStamp (413),
 OccupyBox (162, 139, 184, 161)));

Algorithm 2. An extract of the moving robot behavior

International Journal of Web Services Research
Volume 13 • Issue 1 • January-March 2016

46

The logical formula expresses that the robot covers a rectangle defined by the corner points (160
x 139) and (182 x 161) at the timepoint 410 which describe coordinates in the hall in decimeters. At
the next timepoint the robot moved a decimeter to the right covering the box between (161 x 139)
and (183 x 161) etc.

Spatial verification with BeSpaceD can be difficult, if moving objects show excessive non-
deterministic behavior since that multiplies the scenarios to be checked. In the example, we are able to
specify the robot behavior exactly and use it for verification purposes. The human, however, can freely
change speed and direction showing a high degree of non-deterministic behavior. Two solutions exist
to cope with non-determinism: We can describe the non-deterministic behavior in a more abstract way,
such that the number of verification scenarios is reduced. For instance, we can express the behavior
of humans by rectangles describing all places, they may have reached at a certain timepoint. This
may have the disadvantage, that scenarios are too coarse-grained, so that important safety properties
cannot be verified even if they hold in reality, e.g., the rectangles modeling the possible position of
a human will gradually grow until they cover the whole factory hall. Alternatively, we can select a
set of worst-case scenarios and check only those. For a given case study, however, we have to argue
why the chosen set of worst-case scenarios is indeed sufficient. No general solution exists so far for
the automatic selection of worst-case scenarios.

For the most important proof of step 5 in our workflow, i.e., the robot runs only very slowly or
already stands when it is reached by a human, we chose the second solution. Due to the basic laws of
kinematics, we could restrict us to two worst-case scenarios, i.e., running from the door on the face
side of the room (see Figure 1) against the moving direction of the robot, resp. entering the room
through the door on the long side and running in a right angle towards its path. In these scenarios, we
considered both, the highest possible approximation speed between robot and human and the situations
in which the human is closest to the robot when the sensor detects an approximation. Since the robot
needs 12.6 s for the overall run if it is in normal mode and we assume 5 ms between two timepoints,
its behavior can be described by altogether 2520 timepoints. To be sure that by discretizing the robot
behavior we did not overlook unsafe situations, we overapproximated the rectangle of the robot and
assumed that it covers 2.2 x 2.2 m. As the human may enter the room any time, we created for each
of the two scenarios 2520 variants such that the human may start its run at any of the timepoints
defining the current robot location.

In the verification process, specifications realizing a verification scenario are given in the
BeSpaceD language and are broken down to expressions containing geometrical information. Yet
another automatic transformation breaks these geometric expressions down to representations that are
suitable for solving algorithms and special solvers like SMT3 and SAT4. Further, we use a simpler and
faster hashset-based implementation for a subclass of SAT problems that checks possible collisions
between two entities, each one defined by multiple points in space and time. The overall 5040 runs
of the two scenarios could be proven by this refined prover within five minutes on a standard PC.

For the human, we assumed a maximum speed of 10 m/s causing a relative speed of up to 20 m/s
if the user enters the room from the face side. In spite of that and a distance of only 9.8 m between
the door and the final position of the robot, this scenario was verified as safe for all starting points of
the human since the robot already stands at the time of impact. The reason for that is that the robot
is either sufficiently far from the human when the latter enters the room such that the controller has
enough time to react, or it is already slowing down approaching its final point such that the breaking
distance is shorter.

The problem in the other scenario is that the robot may be in full speed while the human enters
the room from the side in a distance as close as 13.8 m. Indeed, if the human enters the room when
the robot is about 9.5 m before the point of impact, it can be reached before having completely
stopped. Simulating this case with the program generated from Reactive Blocks, we found out that
the maximum speed of the robot at the time of impact is at most 0.625 m/s. It has to be decided if
the risk of such an encounter, which is unlikely since the speed of 10 m/s can only be reached by

International Journal of Web Services Research
Volume 13 • Issue 1 • January-March 2016

47

few athletes and depending on the physics of the robot might not cause severe injuries as the robot is
nearly standing at the time of impact, can be beard or if the control software resp. the environment
have to be changed.

4. COMPOSING REACTIVE BLOCKS AND BeSpaceD

In our first experiment (Han, Blech, Herrmann, & Schmidt, 2014), we used simulator runs to achieve
step 4 of the workflow coupling Reactive Blocks with BeSpaceD: The Reactive Blocks model of the
simulator was amended by operations writing the positions of robot and human at each time point
as an IMPLIES statement into files that formed the input for BeSpaceD. An apparent disadvantage
of this coupling method is that the need to perform simulator runs for all scenarios can be rather
time-consuming. So, assuming 12.6 seconds for the run of each of the altogether 5040 variants to be
checked in the two scenarios (see Section 3), the simulator has to be executed nearly 18 hours just to
generate the BeSpaceD input data. Further, by this kind of integration we limit ourselves to purely
scenario-based proofs in BeSpaceD which does not live up to the capabilities of this tool.

As a consequence, we need a design time-based coupling between the two tools not necessitating
simulator runs at all. The basic idea is to exploit the ability of BeSpaceD to use Scala files as input
and to copy the Java code that in a Reactive Blocks model realizes the controller and simulator,
directly into the corresponding Scala files. As already discussed in Section 2, compiling Java into
Scala is merely trivial since the syntaxes of the operations in both languages are identical and only
the variable declarations have to be adjusted by the transformation tool.

The main problem of an automatic transformation from Reactive Blocks to BeSpaceD is to
find out where the relevant code segments reside in an arbitrary Reactive Blocks model. To solve
this, we utilize the property mentioned in Section 2 that Reactive Blocks models can be composed
from reusable building blocks (Kraemer & Herrmann, 2009). We created a new library of building
blocks for the domain of cyber-physical systems. That does not only help to create the controller
and simulator models in step 2 of our workflow but can also be used as starting point for graphical
pattern detection in order to find code segments to be transformed to BeSpaceD. Up to now, the library
contains building blocks for several types of controllers, a block ContinuousStep to create various
simulators, and TimeStampOccupyBoxManager managing the instances of type TSOB containing
spatiotemporal information that can directly be handled by BeSpaceD.

The transformation tool searches a Reactive Blocks model for the occurrence of these blocks.
This is basically achieved in three steps:

1. 	 An instance of block TimeStampOccupyBoxManager contains the interval between two time
points as a parameter that can be directly used in the Scala input file of BeSpaceD to compute
the intervals between two timepoints;

2. 	 The movement and speed of a physical unit depending on its current execution mode (e.g., normal,
amber or red in the robot system) are computed by an operation in the direct environment of
block ContinuousStep that can be retrieved by the transformation tool and copied into the Scala
program;

3. 	 The execution mode of a unit is computed in a certain operation of its controller block. For
example, in building block ControlTwoElements (see Figure 2) that is operation computeMode,
the content of which is also copied into the Scala program.

The first and second transformation steps are carried out for each physical component of the
system and the third one for each controller component used.

Of course, to guarantee the correctness of the transformations, the composition of the building
blocks has to fulfill certain properties: For instance, the interval between two simulator steps has to be in

International Journal of Web Services Research
Volume 13 • Issue 1 • January-March 2016

48

accordance with the parameter defined in block TimeStepOccupyBoxManager. Otherwise, BeSpaceD
would possibly use a wrong assignment between time stamps and positions of the geographical
objects. Further, an operation mode computed in a controller block must be directly forwarded to block
ContinuousStep. This is analyzed by the transformation tool using graph transformation techniques
(Han & Herrmann, 2012).

5. VERIFYING REAL-TIME PROPERTIES

To achieve step 6 of our workflow, we extend the interface descriptions by using Real-Time ESMs
(RTESMs) (Han & Herrmann, 2013), (Han, Herrmann, & Le, 2013) that allow to specify that a
building block may only rest in an RTESM state for a maximum period of time before a transition
has to be fired. RTESMs extend the ESMs with time variables, so-called clocks, as well as a set
of labels expressing clock reset, state invariants and guard conditions. In the RTESM of building
block ControlTwoElements in Figure 3, the state invariants are marked in black and the clock resets
in red. Moreover, one can annotate the various vertices of an activity by worst case execution time
attributes (Han & Herrmann, 2013). For instance, in the activity of block ControlTwoElements we
assigned 290 ms to operation computeMode (see annotation in Figure 2). For some activity vertices,
we further assume certain default delays, e.g., 2 ms for writing and reading variables as well as for
the start of a new activity step.

As explained in (Han & Herrmann, 2013), (Han, Herrmann, & Le, 2013), the RTESM and the
activity of a building block are automatically transformed to Timed Automata (Alur & Dill, 1990)
in which the real-time annotations introduced above are considered. Thus, one can use the model
checker UPPAAL (Bengtsson, et al., 1996) to prove timed properties expressed in Timed-CTL (TCTL)
(Laroussinie, Markey, & Schnoebelen, 2004) and to verify whether the activity indeed fulfills the
RTESM of its block. The TCTL formulas are also automatically generated.

The approach is highlighted with our moving robot example. Table 1 describes the minimum resp.
maximum execution times that we assume for the various tasks of the control cycle in our example.
The sum of the worst case execution times (wcet) of all four steps is exactly the 500 ms assumed in
the BeSpaceD proof in Section 3. The transition from state active to state computing in the RTESM
models the fetching of sensor data which includes the time between two polling calls. We expect that
this task is handled within 15 to 20 ms which is expressed by clock c1 in the RTESM enforcing that
the transition is executed within this time interval. For the latency in state computing, we assume
between 265 and 310 ms which corresponds to the sum of the image processing time in the controller
and the communication delay towards the robot controller. It is modeled by means of clock c2. In a
similar way, we defined the RTESMs of the other building blocks forming our example system. The
operation computeMode in the activity of block ControlTwoElements (Figure 2) is annotated with
a wcet of 290 ms since it contains the code to process the execution mode from the sensor inputs.
Likewise, we annotated the other activities by suitable wcet attributes.

A critical element for the proof that building block ControlTwoElements fulfills its RTESM, is
the flow breaker ahead of operation computeMode. During the execution of the activity step leading

Table 1. Maximum and minimum execution times of different tasks of the robot control system

Component Min. Time Max. Time

Time to fetch sensor data including polling delay 15 ms 20 ms

Processing time recognition unit 250 ms 290 ms

Communication time recognition unit to robot 15 ms 20 ms

Internal robot processing time and actuator reaction 150 ms 170 ms

International Journal of Web Services Research
Volume 13 • Issue 1 • January-March 2016

49

towards the flow breaker, other activity steps may be added to the execution queue such that they
are carried out earlier than the one leaving the flow breaker. Considering the time guarantees of the
environment as defined in the RTESM and the wcets of the other activity steps, the waiting time
until the activity step being triggered from the flow breaker is at most 8 ms. Thus, together with the
wcet of 290 ms defined for operation computeMode, the building block will stay at most 298 ms in
its RTESM state computing which is lower than the 310 ms guaranteed by the RTESM.

The Timed Automaton transformed from the RTESM of block ControlTwoElements is depicted
in Figure 4. For the communication between a Timed Automaton representing an RTESM and the
one of the activities of its building block resp. its environment, we use synchronization channels (e.g.,
new1). Here, RTESM transitions with multiple parameters are expressed by interleaving (e.g., from
state _initial to active in Figure 4). UPPAAL can now use the Timed Automata to prove whether the
real-time properties are fulfilled. For instance, the proof discussed above is carried out by checking
if the Timed Automaton of the RTESM receives signal sendMode from the one modeling the activity
within 310 ms guaranteeing that the state invariant of this state is fulfilled. This corresponds to proving
the TCTL formula A[] (external.computing imply c2≤310). Altogether, we executed 22 UPPAAL
proofs which were completed within some milliseconds each. This is due to a relatively small number
of states in all Timed Automata effectively exploiting the compositional structure of the Reactive
Blocks models (see Kraemer et al., 2009).

6. RELATED WORK

Work relevant to this paper has been done in areas such as formal logic and process algebras, hybrid-
systems, robotics and formal methods for component-based software engineering.

Duration Calculus (Chaochen, Hoare, & Ravn, 1991) and timed Durational Action Timed
Automata (Guellati, Kitouni, & Saidouni, 2012) are two types of modal formalisms for time-critical
systems. They are especially used for analyzing parallel behavior of systems featuring actions with an
elapsing non-atomic time duration. Complementing classical modeling approaches, for the specification
of system models comprising spatial behavioral information, a process algebra-like formalism was
introduced in (Caires & Cardelli, 2003), (Caires & Cardelli, 2004). Here, disjoint logical spaces
are represented in terms of expressions by bracketing structures and carry or exchange concurrent
process representations. For additional results on spatial interpretations see, e.g., (Hirschkoff, Lozes,
& Sangiorgi, 2003). Many aspects of spatial logic are in general undecidable. A quantifier-free rational
fragment of ambient logic (corresponding to regular language constraints), however, was shown to
be decidable in (Dal Zilio, Lugiez, & Meyssonnier, 2004). Special modal logics for spatiotemporal

Figure 4. Timed automata of RTESM for block ControlTwoElement

International Journal of Web Services Research
Volume 13 • Issue 1 • January-March 2016

50

reasoning go back to the seventies. The Region Connection Calculus (RCC) (Bennett, Cohn, Wolter,
& Zakharyaschev, 2002) includes spatial predicates of separation (e.g, regions do not share points
at all, points on the boundary of regions are shared, proper overlap of regions, or proper inclusion).
Moreover, (Bennett, Cohn, Wolter, & Zakharyaschev, 2002) features an overview of the relation of
these logics to various Kripke-style modal logics, reductions of RCC-style fragments to a minimal
number of topological predicates, their relationship to interval-temporal logics and decidability.

The area of hybrid systems has seen the development of different tools for reasoning and
verification. SpaceEx (Frehse, et al., 379-395) allows the modeling of continuous hybrid systems
based on hybrid automata. It can be used for computing overapproximations of the space occupied
by an object moving in time and space. In addition, it is possible to model spatial behavior in more
general purpose-oriented verification tools in Hybrid systems, e.g., (Platzer & Quesel, 2008). Formal
methods have also been widely used for safety property analysis in safety-critical systems (Slåtten,
Herrmann, & Kraemer, 2013). E.g., in (Németh & Bartha, 2009), the authors use a CTL-subset for
the verification of a safety procedure called primary-to-secondary leaking (PRISE) that is discussed
by means of a model of a nuclear power plant.

7. CONCLUSION

We introduced a tool chain for the formal-based engineering of controllers for embedded systems
that have to fulfill certain spatial behavioral properties. The models are created with Reactive Blocks
while the verification is carried out with BeSpaceD and UPPAAL. In particular, we developed a
capable and highly automatic transformation mechanism between Reactive Blocks and BeSpaceD.
Further, we created a library of reusable building blocks supporting the pattern matching used by this
tool coupling. The building blocks of this library help also to create new Reactive Blocks models.
In the adapted model of the example four of the overall twelve building blocks were copied from
this library while further two were taken from another library of Reactive Blocks. Confirming our
experience described in (Kraemer & Herrmann, 2009), the new model could be created in about a
third of the time needed for the first one presented in (Han, Blech, Herrmann, & Schmidt, 2014)
for which the library did not exist yet. Except for the reason, that we needed only to develop six of
the twelve blocks, we profited also from the interface layout of the blocks which provided a good
guidance for the planning of the control and information flows in the model.

Besides extending the analysis tool of Reactive Blocks (Kraemer, Slåtten, & Herrmann, 2009) to
carry out the property proofs discussed in Section 4, in the future, we plan to investigate additional
specification mechanisms, i.e., spatial behavioral types following (Blech & Schmidt, 2013) for spatial
verification aiming at storing, composing and reusing verification results. Moreover, we are interested
in further optimizations and parallelization of the verification process using cloud and grid technology
to speed up the analysis process of BeSpaceD and the model checkers. For instance, it should not
be a problem to parallelize the BeSpaceD runs of the 5040 variants that we had to verify for the two
worst-case scenarios. As an application domain for our work, we see the emerging field of Wireless
Sensor Networks (WSNs). In particular, it seems highly interesting and practically relevant to find
optimal correlations between spatial properties, communication channel bandwidth and signalling
strength of the WSN transmitters and our approach might be helpful to solve this problem.

International Journal of Web Services Research
Volume 13 • Issue 1 • January-March 2016

51

REFERENCES

Alur, R., & Dill, D. (1990). Automata for Modeling Real-Time Systems. Automata, Languages and Programming,
LNCS, 443, 322–335.

Bengtsson, J., Larsson, F., Pettersson, P., Yi, W., Christensen, P., & Jensen, J. et al. (1996). UPPAAL: A Tool
Suite for Validation and Verification of Real-Time Systems. Hybrid Systems III, LNCS, 1066, 232–243.

Bennett, B., Cohn, A., Wolter, F., & Zakharyaschev, M. (2002). Multi-Dimensional Modal Logic as a Framework
for Spatio-Temporal Reasoning. Applied Intelligence, 17(3), 239–251. doi:10.1023/A:1020083231504

Blech, J., & Schmidt, H. (2013). Towards Modeling and Checking the Spatial and Interaction Behavior of
Widely Distributed Systems. Improving Systems and Software Engineering Conference (ISSEC). Melbourne.

Caires, L., & Cardelli, L. (2003). A Spatial Logic for Concurrency (Part I). Information and Computation,
186(2), 194–235. doi:10.1016/S0890-5401(03)00137-8

Caires, L., & Cardelli, L. (2004). A Spatial Logic for Concurrency (Part II). Theoretical Computer Science,
322(3), 517–565. doi:10.1016/j.tcs.2003.10.041

Chaochen, Z., Hoare, C., & Ravn, A. (1991). A Calculus of Durations. Information Processing Letters, 40(5),
269–276. doi:10.1016/0020-0190(91)90122-X

Dal Zilio, S., Lugiez, D., & Meyssonnier, C. (2004). A Logic You Can Count On. Symposium on Principles of
Programming languages. ACM.

De Moura, L., & Bjørner, N. (2008). An Efficient SMT Solver. Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), LNCS 4963, 337-340.

Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., . . . (2011). SpaceEx: Scalable Verification
of Hybrid Systems. Computer Aided Verification (CAV), LNCS 6806, 379-395.

Guellati, S., Kitouni, I., & Saidouni, D. (2012). Verification of Durational Action Timed Automata using UPPAAL.
International Journal of Computers and Applications, 56(11), 33–41. doi:10.5120/8938-3077

Han, F., Blech, J., Herrmann, P., & Schmidt, H. (2014). Towards Verifying Safety Properties of Real-Time
Probability Systems. Electronic Proceedings in Theoretical Computer Science.

Han, F., & Herrmann, P. (2012). Remedy of Mixed Initiative Conflicts in Model-based System Engineering.
Electronic Communications of the EASST, 47.

Han, F., & Herrmann, P. (2013). Modeling Real-Time System Performance with Respect to Scheduling Analysis.
Proceedings of the 6th IEEE International Conference on Ubi-Media Computing (pp. 663-671). IEEE Computer.
doi:10.1109/ICAwST.2013.6765522

Han, F., Herrmann, P., & Le, H. (2013). Modeling and Verifying Real-Time Properties of Reactive Systems.
18th International Conference on Engineering of Complex Computer Systems (ICECCS) (pp. 14-23). IEEE
Computer. doi:10.1109/ICECCS.2013.13

Hirschkoff, D., Lozes, É., & Sangiorgi, D. (2003). Minimality Results for the Spatial Logics. Foundations of
Software Technology and Theoretical Computer Science, LNCS 2914.

Kraemer, F., & Herrmann, P. (2007). Transforming Collaborative Service Specifications into Efficiently
Executable State Machines. Electronic Communications of the EASST, 7.

Kraemer, F., & Herrmann, P. (2009). Automated Encapsulation of UML Activities for Incremental Development
and Verification. Model Driven Engineering Languages and Systems (MoDELS), LNCS 5795, 571–585.

Kraemer, F., & Herrmann, P. (2010). Reactive Semantics for Distributed UML Activities. Joint WG6.1
International Conference (FMOODS) and WG6.1 International Conference (FORTE), LNCS 6117 (pp. 17-31).

Kraemer, F., Herrmann, P., & Bræk, R. (2006). Aligning UML 2.0 State Machines and Temporal Logic for the
Efficient Execution of Services. Proceedings of the 8th International Symposium on Distributed Objects and
Applications (DOA06), LNCS 4276 (pp. 1613-1632). Springer-Verlag. doi:10.1007/11914952_41

International Journal of Web Services Research
Volume 13 • Issue 1 • January-March 2016

52

Kraemer, F., Slåtten, V., & Herrmann, P. (2009). Tool Support for the Rapid Composition, Analysis and
Implementation of Reactive Services. Journal of Systems and Software, 82(12), 2068–2080. doi:10.1016/j.
jss.2009.06.057

Laroussinie, F., Markey, N., & Schnoebelen, P. (2004). Model Checking Timed Automata with One or Two
Clocks. Concurrency Theory (CONCUR), LNCS, 3170, 387–401.

Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S., & Probst, D. (1995). Property Preserving
Abstractions for the Verification of Concurrent Systems. Formal Methods in System Design, 6(1), 1–35.
doi:10.1007/BF01384313

Németh, E., & Bartha, T. (2009). Formal Verification of Safety Functions by Reinterpretation of Functional
Block Based Specifications. Formal Methods for Industrial Critical Systems, LNCS 5596, 199–214.

Platzer, A., & Quesel, J. (2008). KeYmaera: A Hybrid Theorem Prover for Hybrid Systems (System Description).
Automated Reasoning, LNCS 5195, 171–178.

Slåtten, V., Herrmann, P., & Kraemer, F. (2013). Model-Driven Engineering of Reliable Fault-Tolerant Systems
- A State-of-the-Art Survey. Advances in Computers, 91, 119–205. doi:10.1016/B978-0-12-408089-8.00004-5

Tyagi, A. K. (2012). MATLAB and Simulink for Engineers. Oxford University Press.

ENDNOTES

1	 Until recently, Reactive Blocks was named Arctis.
2	 Ignore for the moment the black and red real-time extensions in the markings.
3	 We implemented a transformation to Z3 (De Moura & Bjørner, 2008).
4	 We implemented a transformation to Sat4j: http://www.sat4j.org/.

Please recommend this publication to your librarian
For a convenient easy-to-use library recommendation form, please visit:
http://www.igi-global.com/IJWSR

Volume 13 • Issue 1 • January-March 2016 • ISSN: 1545-7362 • eISSN: 1546-5004
An official publication of the Information Resources Management Association

All inquiries regarding IJWSR should be directed to the attention of:
Liang-Jie Zhang, Editor-in-Chief • IJWSR@igi-global.com

All manuscript submissions to IJWSR should be sent through the online submission system:
http://www.igi-global.com/authorseditors/titlesubmission/newproject.aspx

Business grid • Business process integration and management using Web services • Case studies for Web
services • Communication applications using Web services • Composite Web service creation and enabling
infrastructures • Dynamic invocation mechanisms for Web services • E-commerce applications using Web
services • Frameworks for building Web service applications • Grid-based Web services applications (e.g. OGSA)
• Interactive TV applications using Web services • Mathematic foundations for service oriented computing •
Multimedia applications using Web services • Quality of service for Web services • Resource management for
Web services • Semantic services computing • SOAP enhancements • Solution management for Web services
• UDDI enhancements • Web services architecture • Web services discovery • Web services modeling • Web
services performance • Web services security

Coverage and major topics
The topics of interest in this journal include, but are not limited to:

Web Services are among the most important emerging technologies in the e-business, computer software and
communication industries. The Web Services technologies will redefine the way that companies do business
and exchange information in twenty-first century. They will enhance business efficiency by enabling dynamic
provisioning of resources from a pool of distributed resources. Due to the importance of the field, there is
a significant amount of ongoing research in the areas. In a parallel effort, standardization organizations are
actively developing standards for Web Services. The Web Services are creating what will become one of the
most significant industries of the new century. The International Journal of Web Services Research (IJWSR)
is designed to be a valuable resource providing leading technologies, development, ideas, and trends to an
international readership of researchers and engineers in the field of Web Services.

Mission

Ideas for Special Theme Issues may be submitted to the Editor(s)-in-Chief

International Journal of Web Services Research

Call for Articles

