
India-Norway Workshop on Web Concepts and Technologies, Trondheim, Norway, October 3rd, 2011

End-user Composition of Web-based Services:
The “Plus Alpha” Approach

Rune Sætre
Computer and Information Science (IDI), NTNU

E-mail: satre@idi.ntnu.no
Mohammad Ullah Khan and Peter Herrmann

Telematics (ITEM), NTNU
Norwegian University of Science and Technology (NTNU)

NO-7491 Trondheim, Norway

Abstract—The Web is truly becoming ubiquitous now that more and more people own a mobile device with a
web browser. Many users want to exploit the fact that they can be online practically 24 hours a day, and they have
ideas about what services they need. However, most of the users are not proficient in any programming language,
so they are depending on a relatively small number of software engineers to help them create the desired services.
This is slowing down the potential progress, and creating a need for better ways to involve users in their own
service development. In this paper, we first present a method for end user-based service composition which is
developed in the UbiCompForAll project. Thereafter, we investigate the effect of making a small incremental
(plus alpha) improvement to an existing scenario. As a showcase, we use the “Doctor’s appointment” scenario to
illustrate how end users can be involved in the creation of web-based services for themselves. The plus alpha
scenario clarifies that newly achieved service compositions can significantly profit from previous ones by reusing
existing building blocks.

1. Introduction

There are two ways to create new web-based services.
One is by building something new from the bottom up,
and the other is by building something on top of the
existing web technologies.

“Plus alpha” is a phrase that has been used for many
years in Japan1. The connotation of the term is related
to incremental creativity. When you come up with a
new idea, you are basically rehashing an old idea, ”plus
alpha”. Some Japan scholars see the plus alpha concept
as a way of understanding how Japanese artists and
engineers work, refining the wheel instead of inventing
it. We believe that big improvements can be made in
current web services just by applying the plus alpha
approach in a principled manner.

The world of cell-phones and mobile WiFi-devices is
changing rapidly, and modern phones now have the
same computational power as a desktop computer had
only a few years ago. Many small programs and services
are being made to harness this power in order to save
the users from difficult or boring tasks. For example, the
address book application on the phone can remember
all the phone numbers for the user, so he or she can

1http://everything2.com/title/plus+alpha

call someone just by typing (or saying) their name, or
perhaps just by clicking on the correct portrait picture.

The background for this paper is the UbiCompForAll
project which is following up on many of the ideas
proposed in the SIMS project [2]. The main project goal
of UbiCompForAll is to create a methodology for end-
user composition of services [3]. One important aspect
is the development of a quite simple notation [10] that
is better suited for non-experts than, e.g., UML (see
Figure 3) which is used in SIMS.

In general, people who are not familiar with Infor-
mation and Communication Technology (ICT) will not
be willing and able to create new services from scratch,
but it seems possible that they can create personalized
services by composition from already existing service
building blocks. Here, it is of course relevant to lay out
the interfaces of these building blocks in a way that
their composition with others is quite simple. Another
crucial factor is to enable the reuse of building blocks
for various service compositions. This allows the end-
users (composers) to get a better understanding of both
the functionality of a building block and the best way to
compose it with other ones. In this paper, we describe a
typical case of this “plus alpha”-based reuse of building
blocks by showing how the elements of an already com-
posed service can be utilized to create another similar

http://everything2.com/title/plus+alpha


service.
In the following, we present an overall description

of the UbiCompForAll project and some related work
in Section 2. Section 3 explains the UbiCompForAll
methodology, including the end-user notation and how
the syntax relates to the underlying meta-model and
to the tools involved. Section 4 explains the doctor’s
appointment scenario that creates the baseline for the
“plus alpha” scenario. Section 5 focuses on how the
plus alpha approach can help. By extending the doctor’s
appointment scenario we highlight how several parts of
a service composition can be re-used in another setting.
Section 6 provides the results. Finally, Section 7 discusses
the current state of affairs and concludes the paper by
outlining the future work.

2. Background

2.1. UbiCompForAll

The scenarios in this paper are taken from a project
called UbiCompForAll — Ubiquitous service Compo-
sition For All users2. End-user service composition is
a research area where end users develop or modify
software artifacts by combining existing services. The
user can define the execution behavior of those services
through

• a trigger to start the composed service,
• a sequence of steps to be performed,
• a set of information settings.

UbiCompForAll provides a methodology that can be
applied in various application domains and that can be
supported on several different run-time platforms.

The composition tool being developed will allow non-
experts (without programming experience) to compose
their own services. The hypothesis is that a visual for-
malism and tools can be developed to support the end
users in composing (their own and other’s) services.
It will be shown that service composition can be sup-
ported by generic solutions in the form of methods and
middleware that significantly reduce the complexity of
developing these new composite services.

After a paper-prototyping phase and a comprehen-
sive state-of-the-art survey, an intuitive notation and
approach for end-user composition were selected [10]. In
the following prototyping phase, a runtime demonstra-
tion system will use the open source Android cell phone
architecture to prove the validity of our approach.

Since most of the users in the UbiCompForAll scenar-
ios do not have the necessary computer skills to program
the solutions without some help, we must provide a
framework that lowers the threshold enough for these
ordinary end users. In particular, we offer a set of service
building blocks that each may realize quite complex

2http://ubicompforall.org/

functionality, but that offers comprehensible interfaces
that facilitates their composition with other blocks into
a personalized service.

2.2. Related Work

This paper describes a natural step on the way to-
wards an integration of the social, mobile and semantic
webs, better known as the ubiquitous web [7].

There has already been much research on the mod-
elling of business processes, and the Web Services Business
Process Execution Language, version 2.0 (BPEL, for short)
can be used to execute composed services. Two exten-
sions to BPEL are especially relevant to our work. The
first extension is called BPEL4People3 and it provides a
standardized way to model human-performed activities
in the composed business processes [1]. This is useful
to us since the UbiCompForAll scenarios also needs
modelling of the end users in the compositions.

Another extension to BPEL that is relevant to our
work is the “BPEL for Semantic Web Services” (BPEL-
4SWS) [9]. BPEL-4SWS enables activities to be described
in a flexible manner, based on ontological descriptions
of service requesters and providers. Earlier, the ser-
vices and the user’s goals had to be explicitly linked
to specific activities with the Web Service Description
Language (WSDL). This new loose semantic coupling
between activities and goals is similar to the way that
Android services are started, through the “intent and
filter” mechanisms for starting new activities, services or
broadcast receivers4.

A recent approach that goes even further in simplify-
ing the descriptions of available web services is the work
by Xiao et al. [11]. The authors assigned single keywords
from their ontology to one thousand services during a
three week experiment. In cases where multiple similar
services are available, ranking can be used to choose
among them [4].

Like with most graphical domain specific languages,
the semantics of many common domains/scenarios can
be captured and understood even by users without any
previous experience. Hauser [5] and Holmes et al. [6]
use model-to-code transformations to demonstrate that
graphical scenario-compositions can be mapped to ex-
ecutable BPEL4People code. In our case, the created
BPEL web service could then be executed directly by
an application on the Android prototype devices.

3. Methods

The proposed methodology/framework in UbiComp-
ForAll describes a step-by-step procedure that can be
used both by the end users, to create their own service

3http://xml.coverpages.org/bpel4people.html
4http://developer.android.com/guide/topics/intents/

http://ubicompforall.org/
http://xml.coverpages.org/bpel4people.html
http://developer.android.com/guide/topics/intents/


Fig. 1. The basic syntax of the Simple Language for composition. The
arrows will be hidden from the end users.

compositions, and by the service developers, to develop
the actual service-parts (building blocks). A tool is also
provided to aid the users at the various steps.

The syntax of the end-user notation is described
in Section 3.1, with two simple example compositions
shown in Figures 5 and 6. It is necessary to have a
user-friendly and intuitive notation when composing the
compositions. In Section 3.2, the syntax is described ac-
cording to the underlying meta-model. The tools that are
needed to create our own composition tool are described
in Section 3.3, and our simple ontology is introduced in
Section 3.4.

3.1. Syntax and the End-user Notation

The term “end user” means both the composers and the
other users that have access to a composed service made
by a composer. They are not expected to have much
programming experience, but they can use a PC or a
hand-held mobile device. This set of end users require an
intuitive notation for service composition and for editing
of such example compositions.

Fig. 2. A more concrete example showing the syntax of the SimpleLan-
guage. When CalendarAlert, Then SendSMS(Appointment.Description)
and SendEmail(Appointment.Description).

Several different styles of notations have been tested:
UML notation, flow-based notation5, notations used in
different related tools and approaches like Microsoft Vi-
sual Programming Language, Lego Mindstorms, Scratch,
Matlab Simulink, Quartz Composer, Yahoo Pipes etc.
Based on this research, we want to make a notation that
is intuitive for end users. The main idea is that certain
tasks should be performed whenever certain conditions
are met. This results in the simple notation syntax shown
in Figures 1 and 2.

Figures 2, 5 and 6 present fragments of a composition
for the doctors’s appointment scenario (Sections 4 and 5).
A scheduler event is generated one hour before the
appointment and the user(s) are notified through SMS
and email. In order to send the SMS, the phone number
of the user and the (dynamic) message text to send
are needed. These are represented by the properties
’Phone#’ and ’Message’ respectively. The actual value of
the ’message’ text can be provided by a text wrapper
which uses the departure time from the bus-query as a
part of the text message sent to the user.

3.2. Meta-model Description

A meta-model has been developed to describe the
concepts that are required to represent the end-user
compositions [10]. These concepts and the relationships
between them are provided in Figure 3. The composition
tool (Section 3.3) uses the end-user notation and this

5http://en.wikipedia.org/wiki/Flow-based programming

http://en.wikipedia.org/wiki/Flow-based_programming


Fig. 3. Simple Language meta-model. The related boxes in Fig 1 are colored as follows: green for trigger/conditions, red for steps, and yellow
for InformationObjects/Queries/DataProviders.

meta-model to let the end users create their own service
composition.

The composition unit is called a Task and consists
of Steps to be performed and a Trigger which must be
satisfied to initiate the execution of the task. A Trigger
may be a collection of predefined conditions. In addition,
the Task may consist of a number of Queries. A Step
represents what is done by an single service unit, and a
sequence of Steps makes up the whole Task. In addition,
some of the Steps may require extra information from
the outside. It is the job of the InformationObjects to
hold such external information, which will be provided
by Query services.

In addition to the Trigger for the whole Task, an
individual Step can also be dependent on one or more
predefined conditions. Such a Step is called a Condition-
alStep, and the common term for Triggers, Conditions,
Steps and InformationObjects are Building Blocks.

The PropertyReferences are a way of connecting the
individual building blocks. The evaluation of conditions
and the execution of the Steps often require the val-
ues of certain properties. These values can be set at
the composition time or at the run time. The concept
InformationObject is introduced in order to hold such
values of particular properties. Such properties can be

set by Steps and retrieved by property Queries. When
the value of a particular property reference depends on
other properties, the PropertyReferences can be used to
make those references.

3.3. Tools and Technology

A composition tool was developed to make it possible
for end users without much programming experience to
compose their own services. The tools and technologies
that are used to create the composition tool are the Google
Web Toolkit, the Window-Builder and Java for Android.
Here, we explain how they are used to implement both
the composition and the run-time systems.

The Google Web Toolkit (GWT)6 is a development
toolkit for building and optimizing complex browser-
based applications. It provides a Java to JavaScript cross
compiler, which enables writing the application in a
statically compiled and strongly typed language like
Java.

The composition tool has to work both on PCs and
on mobile phones. We target end users with limited or
no ICT knowledge, so the composition tool needs to be
easy to use and easy to install. We therefore decided

6http://code.google.com/webtoolkit/

http://code.google.com/webtoolkit/


to make a composition tool that runs in a web browser.
The web-based tool enables easy communication be-
tween the device and a server (if needed, when used
in on-line mode), but it can also be used to create
compositions while off-line. GWT is well suited to build
such a composition tool. Recently, Google has also made
WindowBuilder7 compatible with GWT, and this makes
the tool development task easier. Since WindowBuilder
helps designing the GUI, much of the programming can
be done visually.

3.4. Ontology

The concepts in our ontology (see Figure 4) consists of
classes representing different entities relevant to scenar-
ios involving travelling, like in the Doctor’s appointment
scenario described in Section 4. To simplify the end
user’s service-composition task, we are developing an
ontology for the relevant domains.

The ontology can be integrated with the service com-
position tool (described in Section 3.3) so that the ser-
vice composer (an end-user) can benefit from semantic
guiding during the service composition. The run-time
platform can also use the ontology to make automatic
decisions, for example when automatically selecting be-
tween multiple alternative services.

4. The Doctor’s appointment Scenario

Summary: Ove (47) creates a service to help his aging
mother Oda (75) get to her doctor’s appointments. It
keeps track of the appointments, reminding her when
its time to go, it helps her find her way to the doctor’s
office, and it lets him keep track of her progress and
alerts him of problems.

4.1. Scenario Construction

Scenario:
1) Ove creates a composition for his mother entering

her next appointment to the doctor. The service
has access to the bus schedule and calculates the
time she has to leave the house based on the
appointment.

2) The service sends an SMS and sounds an alert
on Oda’s phone three times: one day before, one
hour before and exactly when she should leave her
house.

3) When Oda is on her way, the service keeps track
of her location using her cell phone, and has a
route with schedule specifying where she should
be at what time relative to the bus and appointment
times. The cell phone shows a short message about
the bus to take and its time of departure. Alerts

7http://code.google.com/javadevtools/wbpro/

are sent to Ove if Oda deviates from the expected
schedule. All events are logged so that Ove can
access and monitor them from his computer and
phone.

4) Oda does well: She catches the bus, gets off at
the desired stop, and start walking towards the
doctor’s center. However, she meets an old friend
on the way and forgets about the appointment
while talking. The system detects her delay through
insufficient progress in her position and alerts her
about the appointment again. She ultimately makes
it to the doctor in time.

5) Oda receives similar support on her way back
home too.

4.2. Analysis

With Doctor’s appointment and the other UbiComp-
ForAll scenarios in mind, some important distinctions
between design-time (composition) and run-time (exe-
cution) should be made:

At design time (See Figure 5):
• The composer will create application compositions

by using the service building blocks like appoint-
ment handling and the sending of SMS resp. emails
(see Fig. 2).

• The composition is created in a activity-like fashion.
This means that tasks are created (see Section 3.2)
which execute a particular block or perform a partic-
ular sequence of steps only when a certain condition
holds. For instance, the location tracking of Oda
will only be started after she has left the house.
Such conditions are dynamic in nature so that the
evaluated result may depend on some information
obtained at run time. Thus, the composer has to be
aware already on design time that deviations of the
planned course of events may occur.

• Ontologies may be used to discover certain building
blocks that can help solving specific problems. An
ontology can also aid in gluing together building
blocks that should be executed in a specific se-
quence, based on the expected input and output
from each building block. Further, they may help to
lay out solutions to catch unintended behavior due
to not foreseen deviations in the course of events.

At run time:
• The composed scenarios are selected based on the

conditions evaluated at run time.
• The run time platform should take care of the fact

that the user’s needs may change, e.g., the user may
re-compose the application at run time. This can be
complicated since in many scenarios synchroniza-
tion and real time issues may occur.

• Ontologies can be used in identifying and selecting
from alternative scenarios and services that serves

http://code.google.com/javadevtools/wbpro/


Fig. 4. Simple places and transportation ontology

Fig. 5. Example composition for the doctor’s appointment scenario

the same composition and the same building block,
respectively.

5. The Doctor’s appointment plus alpha sce-
nario

With the “Doctor’s appointment application” in place,
Ove is now re-assured that Oda is doing good on her
own. He knows that he will be notified when something
is not according to the plan, so he can focus more on
his other tasks. One day he hears about a doctor that
is highly recommended because of his experience with

cases like Oda’s. Ove wants more support than he gets
from Oda’s current doctor, whose office is quite far away,
so he would like Oda to change her doctor.

This is an example of a goal-driven query, where
someone is looking for a new doctor. In Norway, every
citizen is assigned one specific doctor that should always
be the first contact-point no matter what kind of illness
the patient is facing. Every citizen is allowed to change
their primary doctor twice per year, but the most popular
doctors are fully booked and not available for new
patients most of the time. The government provides a



list8 with all the doctors and the number of available
free patient-slots for each doctor. The list is updated
continuously, but new patients are only welcomed at
random times. Usually, these new openings appear a
few minutes after seven in the morning, but only after
around twenty old patients have moved away from a
doctor. However, there are also many small updates to
the list during the day, and sometimes only one new slot
is made available.

Unfortunately, there is no public initiative to provide a
waiting list system for the popular doctors, so it is up to
the frustrated patients to watch the list carefully every
day. And when the desired doctor suddenly becomes
available, they have to make their move very quickly,
before someone else fills up the slots again.

Ove has been watching the official vacancy list for
doctors for several weeks now, but there has been no
openings except a single one that he missed, because
someone took it before he could talk to Oda and make
the change. He is getting very tired of remembering to
check the internet page every day, and he does not want
to miss another opportunity, so he would like to get
an automatic reminder as soon as the doctor becomes
available again.

Ove does not have the necessary programming skills
to make such a waiting-list service on his own, so he
starts looking for other similar services. Failing to find
any, he decides to give the UbiComposer composition tool
another try.

5.1. Scenario Construction

Ove likes the procedure of the Doctor’s appointment
scenario, which notifies him when Oda is out of sched-
ule. The notification is done by sending an SMS to Ove’s
mobile phone. In addition, he receives an email if his
phone is in silent mode, e.g., when he is in a meeting.
As this procedure already proved to be convenient, he
would like to use it also in the new scenario, to be
notified when Oda’s proposed new doctor has vacancies.

Following the “plus alpha” approach, Ove likes to
reuse as much as possible from the original scenario.
With help of the composition tool and its ontology, he
starts to collect building blocks to build the new scenario:

• Ove needs a way to extract the necessary informa-
tion from the vacancy home page. He recalls, that
he used an extractor to filter out bus times in the
original scenario.

• Further, he has to find a way to run the extractor
automatically every few minutes during the day but
here he can take the triggering mechanism which
notified Oda before she had to leave and simply
adapt it such that it runs every minute.

8https://tjenester.nav.no/minfastlege/innbygger

• Finally, he needs a notification mechanism to be
informed as soon as the desired doctor is able to
accept Oda on his list. As mentioned above, he has
the notification mechanism in place and it is not too
difficult to take the building blocks SendSMS and
SendEmail and to modify the corresponding task
descriptions.

Having all ingredients in place, Ove does only need to
link the extractor to the web page containing the waiting
list and to adjust it in a way that the number of free
patients for the particular doctor is sent out. Then he has
to adapt the trigger to start the extractor every minute
and to execute the notification mechanism if the number
of vacancies is larger than 0. Finally, he has to link
the triggering mechanism with the reused notification
mechanism such that an SMS and, if applicable, an email
is sent when there are new vacancies.

5.2. Analysis

It is evident that the reuse factor in this scenario is
very high. Basically, all ingredients can be directly taken
from the Doctor’s appointment scenario and just have
to be composed in another way. Thus, Ove can use the
experience he gained while creating the original scenario
seamlessly and the whole scenario can be performed
within 30 minutes.

From our experience with model-based system devel-
opment, we came to the conclusion that the reuse of
building blocks in different projects of a certain appli-
cation domain can be significant (see, e.g., [8]) and we
assume a quite similar effect also for end user composi-
tion. Of course, non-experts have a learning curve when
starting to compose services from building blocks since
the used notation and composition technique are new
to them. Nevertheless, when they have got the hang
of it, the reuse potential will make the creation of new
examples quite easy.

6. Results

The concepts presented in this paper are still being
implemented and developed further, but during this
work several building blocks have already been pro-
vided. So, even though only some preliminary results
are ready, the end users can already make their own
“plus alpha” service compositions. The existing building
blocks provide functionality for extracting information
from online resources, sending and receiving messages,
and so on. More building blocks will be published on
the UbiCompForAll project home page towards the end
of the project.

The building blocks are based on functionality pro-
vided by underlying existing services. In some cases,
appropriate services cannot be found, so the domain
adapters have to provide the missing services that they



Fig. 6. Example composition of an extractor of online tables, with a diff and message step

want to include as building blocks. For example, the
only freely available table extractor service is Google
Refine9, but since it is not made for online use, we had
to implement our own online extractor for online tables.
This new service is called ExTable, and is published on
the Web10.

The composed “plus alpha” service is potentially use-
full for all the citizens of Norway, so it was made
available as a web service as well11. In just one month
after being published, the service has already attracted
several users from all over the country.

9http://code.google.com/p/google-refine/
10http://www.idi.ntnu.no/∼satre/extable/
11http://www.idi.ntnu.no/∼satre/ubicomp/fastlegevakten/

7. Discussion and Future Work

In order to understand how the plus alpha approach
can be generalized to work in as many settings as possi-
ble, two different scenarios were analyzed. With the goal
of UbiCompForAll (to create a methodology for end-user
composition of services) in mind, we try to find sub-parts
of the composition scenarios which are similar enough
to be re-used in new settings. Some building blocks are
very general, and can therefor be used in practically any
composition. For example, extracting data from a generic
table found online is necessary for many of the scenarios
that involve some kind of information extraction.

Our implementation also follows an incremental (plus
alpha) approach where the concepts and the implemen-
tation are updated based on feedback from end-user

http://code.google.com/p/google-refine/
http://www.idi.ntnu.no/~satre/extable/
http://www.idi.ntnu.no/~satre/ubicomp/fastlegevakten/


testing, performed on several different platforms with
several different scenarios. The ontology that is being
developed for places and transportation (Figure 4) can be
used in all the scenarios related to traveling. It can assist
the users in selecting appropriate services and in setting
the necessary composition parameters in the composi-
tion tool. The ontology sits in the intersection between
what the users expects and what the services can do, so it
allows users to search for services using some predefined
tags. If no services are found, the results can be expanded
to include similar services that are tagged with terms
that are close in the ontological hierarchy. The users can
be asked to judge the appropriateness of these possibly
related services.

Even for a very simple ontology like the one in Fig-
ure 4, there are some inherent challenges in creating the
right ontology. For example, one could ask why there is
no line from “Train-station” to “Building”. The answer
is that this really depends on the intended use of the
ontology. There is already much research on automatic
creation of ontologies from text. In our future research,
we will target automatic creation of ontologies, for ex-
ample for a new city or area.

Acknowledgments

This work is a part of the UbiCompForAll project,
which is funded by the Research Council of Norway.
We are thankful for their support. Special thanks to
the project members Erlend Stav, Jacqueline Floch, Lars
Thomas Boye, Jon Atle Gulla and Alfredo Pérez Fer-
nandez for their continued support, feedback through
frequent discussions, and contributions to the figures in
this paper. Finally, many thanks to the three anonymous
reviewers that helped improve the quality of the camera-
ready version of this paper. Their constructive feedback
was greatly appreciated.

References

[1] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Klopp-
mann, D. König, F. Leymann, R. Müller, G. Pfau, K. Plösser,
R. Rangaswamy, A. Rickayzen, M. Rowley, P. Schmidt, I. Trick-
ovic, A. Yiu, and M. Zeller. WS-BPEL extension for people
(BPEL4People), version 1.0. Joint white paper by Active Endpoints,
Adobe Systems, BEA Systems, IBM, Oracle, and SAP, 2007.

[2] J. Floch, C. Carrez, P. Cieslak, M. Rój, R. Sanders, and M. Shiaa.
A comprehensive engineering framework for guaranteeing com-
ponent compatibility. Journal of Systems and Software, 83(10):1759
– 1779, 2010.

[3] J. Floch, P. Herrmann, M. U. Khan, R. Sanders, E. Stav, and
R. Sætre. End-user service composition in mobile pervasive
environments. In EUD4Services 2011 workshop, Torre Canne, Italy,
June 07 2011.

[4] D. Grigori, J. C. Corrales, M. Bouzeghoub, and A. Gater. Ranking
BPEL Processes for Service Discovery. IEEE Transactions on Services
Computing, 3(3):178–192, July 2010.

[5] R. Hauser. Automatic transformation from graphical process
models to executable code. Technical report, Eidgenössische
Technische Hochschule Zürich, May 2010.

[6] T. Holmes, H. Tran, U. Zdun, and S. Dustdar. Modeling Human
Aspects of Business Processes – A View-Based, Model-Driven
Approach. In I. Schieferdecker and A. Hartman, editors, Model
Driven Architecture – Foundations and Applications, volume 5095
of Lecture Notes in Computer Science, chapter 17, pages 246–261.
Springer, Berlin / Heidelberg, 2008.

[7] A. Hotho and G. Stumme. Towards the ubiquitous Web. Semantic
Web, 1(1):117–119, 2010.

[8] F. A. Kraemer and P. Herrmann. Automated Encapsulation of
UML Activities for Incremental Development and Verification. In
Proc. of the 12th Int. Conf. on Model Driven Engineering, Languages
and Systems (Models), volume 5795 of LNCS, pages 571–585, 2009.

[9] J. Nitzsche and B. Norton. Ontology-Based Data Mediation in
BPEL (For Semantic Web Services). In W. Aalst, J. Mylopoulos,
N. M. Sadeh, M. J. Shaw, C. Szyperski, D. Ardagna, M. Me-
cella, and J. Yang, editors, Business Process Management Workshops,
volume 17 of Lecture Notes in Business Information Processing,
chapter 53, pages 523–534. Springer Berlin / Heidelberg, 2009.

[10] R. Sætre, M. U. Khan, E. Stav, A. P. Fernandez, P. Herrmann, and
J. A. Gulla. Towards Ontology-driven End-user Composition of
Personalized Mobile Services. In Proceedings of the 2011 NLDB
conference, pages 242–245, 28-30 June 2011.

[11] H. Xiao, Y. Zou, R. Tang, J. Ng, and L. Nigul. Ontology-driven
service composition for end-users. Service Oriented Computing and
Applications, 5(3):159–181, Sept. 2011.


	Introduction
	Background
	UbiCompForAll
	Related Work

	Methods
	Syntax and the End-user Notation
	Meta-model Description
	Tools and Technology
	Ontology

	The Doctor's appointment Scenario
	Scenario Construction
	Analysis

	The Doctor's appointment plus alpha scenario
	Scenario Construction
	Analysis

	Results
	Discussion and Future Work
	References

