
Trust-adapted enforcement of security policies in distributed 
component-structured applications* 

Peter Herrmann and Heiko Krumm 
Universitat Dortmund, Fachbereich Informatik, D-4422 1 Dortmund 

{ herrmann I krumm} @ls4.cs.uni-dortmund.de 

Abstract 

Software component technology on the one hand sup- 
ports the cost-effective development of specialized appli- 
cations. On the other hand, however; it introduces spe- 
cial security problems. Some major problems can be solved 
by the automated run-time enforcement of security policies. 
Each component is controlled by a wrapper which monitors 
the component’s behavior and checks its compliance with 
the security behavior constraints of the component’s em- 
ployment contract. Since control functions and wrappers 
can cause substantial overhead, we introduce trust-adapted 
control functions where the intensity of monitoring and be- 
havior checks depends on the level of trust, the component, 
its hosting environment, and its vendor have currently in 
the eyes of the application administration. We report on 
wrappers and a trust information service, shortly outline the 
embedding security model and architecture, and describe a 
Java Bean based experimental implementation. 

Key Words: software components, wrappers, trust man- 
agement, security policy enforcement, trust information ser- 
vice. 

1. Introduction 

As enterprises are increasingly dependent on their in- 
formation systems, the security of the information systems 
is of growing importance. Therefore security models are 
designed identifying the relevant principals, objects, opera- 
tions, attributes, and relations of the systems on an abstract 
user-oriented level. Security policies refer to the model and 
express the different security objectives to be enforced. The 
objectives concern confidentiality, integrity, accountability, 
and availability properties of data and functions as they are 
demanded by the different principals. With respect to the 
systems’ implementation and operation security architec- 
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tures are developed. A security architecture reflects the spe- 
cial architecture of an information system and defines the 
types, positions, and applications of security services to be 
integrated into the system in order to provide the security 
objectives even under presence of attacks. The services are 
implemented by suitable combinations of security mecha- 
nisms. Current application middleware platforms already 
adopted this view. They facilitate the corresponding pro- 
vision of security and supply suitable models and services. 
So, e.g., the widely used CORBA platform meanwhile sup- 
ports secure distributed object-based application systems. 

The approach of component-structured software envis- 
ages applications composed from cost-effective compo- 
nents. The components are supplied by different developers 
and are #offered to a growing community of customers on 
an open market (cf. [30]). By selection, configuration, and 
customization of components powerful applications can be 
built which are tailored to the special needs of single cus- 
tomers. Their architecture reflects very flexibly the user re- 
quirements and their environment. The applications are eas- 
ily extensible and modifiable by dynamic changes of com- 
ponents and their coupling. Moreover, since applications 
are built by defining the communication and coordination 
of components, the same means can be used to integrate 
different applications to cooperating super-applications. 

Meanwhile a series of platforms supports components. 
Most prominent are Java Beans and Enterprise Java Beans. 
The COE/I/DCOM approach is well-established in PC-based 
environments. Moreover, the CORBA initiative extended 
its approach to the comprehensive support of component 
structures. The platforms typically provide notions for the 
description of component types, parameter types, and inter- 
faces. They supply rich run-time support for the coupling 
of components and, in particular, enable introspection, the 
exploration of components, their interfaces, and their prop- 
erties at run-time. Additional interest is given to the com- 
fortable construction of applications by scripting languages 
or visual application builder tools. 

The expected benefits of software component technol- 
ogy as well as the increasing availability of powerful mid- 
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dleware platforms plead for a rapidly growing employment 
of component-structured distributed applications. The ar- 
chitecture of those application systems, however, really ex- 
tends the architecture of distributed object-based applica- 
tions. In particular it imposes new security aspects since it 
introduces new principals and roles. In addition to users 
and application system owners, also component vendors 
and host providers have to be considered. On the one hand 
they introduce their own security objectives. On the other 
hand, they introduce new types of threats since in general 
the different principals cannot trust each other to full extent. 

Of course, the composition of applications from vari- 
ous components causes not only security problems. Among 
other properties, in particular it is essential for the func- 
tionality of an application that each component acts in ac- 
cordance with its specifications. Therefore the approach of 
software components refers to the employment of explicit 
contracts. Each component integration is accompanied by a 
contract describing the agreed properties of the component, 
especially its interface, operations, and the relations with its 
environment (cf. [30]). 

Our overall approach is also based on contracts. A com- 
ponent contract has to contain a description of the security- 
relevant behavior with which the component’s execution is 
assumed to correspond. At design time, the structure of the 
system is analyzed in combination with the behavior de- 
scriptions of its components in order to prove that required 
security properties of the system hold if each component 
will act in accordance with its contract. At run-time, the 
consideration can focus on the components. For each com- 
ponent it is of interest that its actual behavior in fact is con- 
formable with its contract since malicious components or 
compromised code (e.g., by virus or Trojan horse infection) 
will result in diverging behaviors. For that purpose the com- 
ponent behavior can be controlled at run-time by means of 
wrappers. Detailed control functions, however, can cause 
substantial overhead. Therefore we propose the dynamic 
adaptation of the control functions to that level of trust, the 
component currently can have in the eyes of the application 
owner. 

In the sequel we will only outline the overall approach 
and concentrate on the trust-adapted security-policy en- 
forcement which is implemented by component wrappers 
and a trust-managing infrastructure. Firstly we sketch the 
major security aspects of distributed component-structured 
software. Thereafter we refer to related work concerning 
the enforcement of security policies and the management 
of trust relations. The next section describes our special 
component control approach and explains wrappers, trust- 
management, and their interactions. Later on we discuss 
the trust management system in more detail and report on a 
Java Bean based implementation of the approach. 

2. Security aspects of components 

One can identify a hierarchy of application architecture 
classes which starts with local applications, comprises dis- 
tributed and mobile code applications, and ends with dis- 
tributed component-structured applications. The security 
aspects of local applications focus on the definition of user 
classes, on their authentication, and on access control since 
trusted software and a trusted hosting system are assumed. 
The security of distributed software additionally has to rec- 
ognize that parts of an application reside on different host 
computers which are connected by a communication net- 
work. Though the hosts mostly are trusted, the network is 
not. The binding between application parts as well as their 
communication may be attacked via the network. Therefore 
services for the secure communication are needed. More- 
over, authentication and access control must be able to op- 
erate in a distributed environment. In a further extension 
mobile code applications contain parts which can migrate 
between hosts. Here also the secure transfer of code mod- 
ules has to be provided. Moreover, since host and appli- 
cation owners not necessarily trust each other, host environ- 
ments need protection against malicious code and vice versa 
the applications may be attacked by malfunctions of hosts 
(cf. [lo, IS]). 

Distributed component-structured applications can con- 
sist of software components which are supplied by different 
vendors. Therefore one has to distinguish between applica- 
tion owners and software component vendors and there is a 
needs for corresponding protection: 

e 

e 

The 

Protection of an application against malicious compo- 
nents with respect to the integrity of the application, 
its configuration, and its resources, to the confidential- 
ity and availability of managed information and sup- 
ported operations, as well as to the accountability of 
performed actions. 

Protection of a component vendor against wrong in- 
criminations with respect to spiteful application ad- 
ministrators, malicious surrounding components, and 
malfunctions of hosting environments. Moreover a 
component vendor is interested in protection against 
unlicensed employment of components. 

corresponding security model identifies a rich set of 
principals comprising users, resource owners, application 
owners, host providers, and component vendors. The main 
objects of the model are resources, software components, 
application configurations, hosting environments, and com- 
munication facilities. The major relations concern that com- 
ponents constitute applications and contribute to the func- 
tionality of an application. So, a component accesses and 
manages resources on behalf of a user. Moreover, it for- 
wards information and control to other components and to 
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the application’s environment using several types of com- 
ponent interface mechanisms (e.g., component attributes, 
events, use of special supportive services like life-cycle, 
binding, and configuration services, “normal” method in- 
vocations and returns). During run-time a series of inter- 
face mechanism events occurs at the border of a component 
which forms its behavior. A component-specific security 
policy can constrain this behavior by defining static as well 
as dynamic conditions. 

The corresponding security architecture is based on the 
extension of each component employment contract by a set 
of static and dynamic behavior constraints expressing the 
security policy of the component’s employment. Control 
functions perform a monitoring of the component’s inter- 
faces. They dispose of a run-time representation of the be- 
havior constraints and enforce the constraints. Addition- 
ally applications contain manager components which inter- 
act with the control functions. A manager component su- 
pervises the control functions, it activates and deactivates 
them, and receives their notifications. Moreover, it supplies 
an administration interface and communicates with external 
services. There is a needs for two types of external services: 

Trust information service, 

Conflict resolution service. 

A trust information service records component vendors, 
component employers, component types, and reports about 
the employment of components. It calculates the accumu- 
lated risks of component types. It considers the positive and 
negative reports on components and evaluates the current 
component trust levels. It communicates trust information 
on demand and notifies registered applications about signif- 
icant changes. 

Mainly, a conflict resolution service has to resolve con- 
flicts between component vendors and application owners 
about actual or supposed breaches of employment contracts. 
Moreover, conflicts between trust information services and 
component vendors have to be handled if vendors complain 
of wrong bad evaluations of their products. Also, applica- 
tion owners may complain of getting wrong good or delayed 
alert information from a trust information service. Vice 
versa a trust information service may complain of getting 
wrong information from application owners or component 
vendors. Of course not all conflicts can be resolved by au- 
tomated services without human interaction. The services, 
however, can prepare external decisions. So, they may man- 
age the integration of additional log collecting components 
into application configurations. 

3. Related work 

Security of component-structured software benefits from 
the research done in the field of mobile code. In this 

field various approaches were recently developed in order 
to protect host computers against attacks by mobile pro- 
grams. These methods mainly focus on control flow safety, 
memory safety, and stack safety [20]. Besides of isolat- 
ing security-critical operations in a protected system kernel 
(e.g. [2]) and using cryptography for the transit of code, 
code inslrumentation gained attraction in the last years. 
Here, machine code is altered in a way that critical oper- 
ations can be analyzed before or monitored during the exe- 
cution of the code in order to detect attacks. An example is 
software fault isolation (eg., [32]) where non-trusted code 
is executed and monitored in a safe system part where it 
cannot caiuse damage. 

Another approach based on code instrumentation is fol- 
lowed by Schneider [28, 291 who models policies formally 
by so-called security automata. Moreover, a security au- 
tomaton can be used to enforce a policy by simulating it si- 
multaneously to the execution of the code. The code is only 
permitted to perform an execution step if that corresponds to 
a transition of the automaton. The automata based enforce- 
ment extends the early approach of state dependent security 
specificalions [4]. 

Language based security is a kind of code instrumenta- 
tion, too. Here, special security-related information about 
mobile code is obtained during parsing or other program 
analyses. The program user utilizes this information in or- 
der to check the code for compliance with his security poli- 
cies. An example is the Java byte code verifier which proves 
Java byte code for type correctness and other security- 
related properties. Another method is proof carrying code 
(cf. [20]) which enables formal program verification. The 
program developer annotates the code with a formal spec- 
ification (fi., pre- and postconditions of functions or loop 
invariants) and hands this information over to the user who 
proves the code formally. Examples for utilizing proof car- 
rying code are the touchstone compiler [27] and the efficient 
code certification [19]. Moreover, this method was used 
for more specialized verification purposes as type check- 
ing [24, 3111 and information flow analysis [ 11, 25, 261. 

Since the information used for code verification is pro- 
duced by the code developer, it may be distorted in order 
to mask imalicious code. Thus, one has to check that the 
program complies to the additional information used for 
verification. Here, the concept of generic software wrap- 
pers proves helpful. In this approach a program is ex- 
tended by a software checking the code during runtime 
for security properties without changing it. Generic soft- 
ware wrappers are used with firewalls and intrusion detec- 
tion [ l ,  113, 231. Moreover they can also be applied for 
protecting component-structured software performing ma- 
licious system calls [12]. 

Another field of interest for our approach is trust man- 
agement, Here, the trust in a human or computer principal 
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is expressed mathematically depending on good and bad ex- 
periences with this principal. In [ 161, Josang introduces a 
so-called opinion-triangle expressing belief, disbelief, and 
uncertainty about a principal. These values can be calcu- 
lated from the number of good and bad experiences with 
the principal by metrics. Josang and Knapskog [ 171 calcu- 
late the belief in a principal as the ratio of the number of 
positive experiences and the total number of positive and 
negative experiences. Thus, a negative experience can be 
compensated by some positive experiences. In contrast, in 
Beth’s et al. [3] metric a single negative experience leads to 
complete disbelief in a principal forever. If no bad experi- 
ence occurred, the belief grows with an increasing number 
of good experiences. 

Trust management is used for authorization systems [6]. 
Unlike classical mechanisms like access control lists, the 
access to an action or a resource is provided if the caller 
shows a certain number of credentials issued by third par- 
ties which are trusted by the server. Implementations of 
trust management-based authorization systems are Policy- 
Maker [7], REFEREE [8], and KeyNote [5]. 

4. Trust-adapted enforcement 

One dominating security problem of software compo- 
nent employment is that the component code may not be 
trusted to full extent. Therefore techniques are of inter- 
est by means of which the application owner can analyze 
the compliance between component code and component 
specification. Our proposal relies on simulated security au- 
tomata [28] since they support state dependent security con- 
straints [4] and can manage the analysis without difficult 
explicit formal verification. The security automata are au- 
tomatically integrated by means of generic wrappers [23]. 
In combination with additional measures run-time behavior 
checks are of further use and contribute to the control of 
non-trusted hosting environments. 

A simple example shall exemplify the conception of state 
dependent security constraints. There may be two compo- 
nents in an application system, a componentACcontrols the 
access to a set of resources, and a component OP performs 
operations on the resources. It is intended that OP only ac- 
cesses resources by means of a resource handle which OP 
has formerly obtained from AC on behalf of a user. This 
can be expressed by a state dependent constraint for the 
behavior of OP. The corresponding state automaton has a 
state space of type “set of pairs of resource handle and user 
identifbtion”. The initial state is the empty set. When- 
ever an event of type “AC grants a resource handle rh for  
user us” occurs, a transition is performed which inserts the 
pair (rh,  us) into the current state. Whenever an event of 
type “OP closes a resource handle rh” occurs, another tran- 
sition deletes the corresponding pair from the state. More- 

over there may be a transition which spontaneously removes 
pairs after a specified lifetime is exceeded. Finally all events 
of type “OP accesses a resource under ( rh ,  us)” are con- 
nected with a transition which is combined with the security 
condition “(rh,  u s )  is element of the current state”. Though 
this example is simple, it shows how state dependent secu- 
rity constraints can help to manage the distribution of secu- 
rity responsibilities between run-time components. 

As shown in the example state dependent security con- 
straints can be modeled by state automata and can be 
checked at run-time by automata implementations which 
are linked with the controlled behavior. Each significant 
event of the controlled behavior is linked with a correspond- 
ing transition type. Thus an automaton records the history 
of events and pending events can be checked for compli- 
ance: If an event is pending, the corresponding transition 
must be enabled. 

This principle, however, has to be extended in order to 
support dynamic adaptation of behavior control. Since it is 
possible to provide a series of logically AND-connected be- 
havior constraints for the same component, adaptation can 
be performed by dynamic activation and deactivation of sin- 
gle constraints. In the implementation the constraints cor- 
respond with a series of state automata where all automata 
are simulated simultaneously. Therefore, in a first setting, 
adaptation can be performed by activating and deactivating 
the automata implementations. Nevertheless, this simple 
solution works only in the special cases where the state of 
an automaton can be initialized on activation or where the 
events occurring during deactivated periods are not relevant 
for later activated periods. In the example above this is not 
the case. OP may obtain a valid handle during a deactivated 
phase and use the handle in a following activated phase. 

In the general case, an automaton cannot be deactivated 
in the whole. We therefore propose to structure the activities 
of a transition into three parts: 

1. Check of the enabling condition, 

2. Check of the security condition, 

3. Computation and assignment of the next state. 

The parts 1 and 3 are not subjected to deactivation. They 
are designed to record the relevant event history. So, in the 
example above, insert and remove transitions can keep track 
of the set of valid resource handles. Only the execution of 
part 2 - which is devoted to the computation of (sometimes 
more complex) state checks - depends on the current ac- 
tivation state of the automaton. In the example resource 
access transitions are accompanied by a security condition 
checking the validity of handles. 

The conception of automata is also used for the specifica- 
tion of state dependent security constraints. Therefore com- 
ponent employment contracts contain automata definitions 
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which as well correspond to the logically interesting secu- 
rity specifications as they enable the direct translation to 
run-time checking automata simulations. Mostly, the secu- 
rity specifications are developed by a component producer 
and handed over to the component user. Before the corre- 
sponding employment of a component the user checks the 
specifications for compliance with the security policies of 
the system to which the component will belong. 

In our more special approach we specify the security 
constraints in the formal specification technique cTLA [ 14, 
151 which is based on Leslie Lamport's Temporal Logic 
of Actions (TLA) [21]. cTLA facilitates the description 
of safety, liveness, and real-time properties in a process- 
like style similarly to programming languages. In particu- 
lar it supports the definition of so-called constraint-oriented 
processes which can model single aspects of components. 
Thus, different security properties (e.g., different informa- 
tion flow and data access restrictions) may be specified by 
separate cTLA processes. 

Moreover one can apply cTLA for the specification of 
abstract system security policies and one can combine com- 
ponent specifications to formal system specifications. This 
forms the basis for formal cTLA based system proofs. They 
check if an application system under given composition and 
component contracts will comply with the abstract policies. 
The proofs can be performed by formal logical reasoning 
and will be explained elsewhere. 

5. Trust information service 

In order to reduce the performance expenditure of a secu- 
rity wrapper, positive and negative experiences, other users 
gained with the wrapped component, can be utilized. A 
component user may trust a component based on these ex- 
periences to a certain extent and may vary the intensity of 
safeguards based on the level of trust. For instance, a com- 
ponent should be thoroughly scrutinized for launching at- 
tacks, if it is not known very well or already attacked other 
users. If it, however, is well known and never caused bad 
experiences, the safeguards can be reduced to spot checks 
or omitted at all. 

In our approach the management of trust is performed 
by a trust information system (cf. Fig. 1). It consists of a 
trust manager for each security wrapper, a trust information 
service, and a cipher service. The trust managers determine 
the intensity of security checks by their wrappers depending 
on the trust values carried by the scrutinized components. 

The trust information service stores reports about pos- 
itive and negative events and calculates trust values from 
them. For determining a trust value we currently use a com- 
bination of the metrics of Josang [16] and Beth et al. [3]. 
The events come from the trust managers which indicate 
in intervals their experiences with the checked component. 

~ 

CertiRrition Authority 

PnrAer / I I I \ 

Figure 1. Trust Information System 

Moreover, the reports of product certification authorities 
can be used for the calculation of trust values as well. 
The trust manager requests the trust value of an interesting 
component in order to decide the level of security checks. 
Furthermore, the trust information service offers an alarm 
service notifying all interested trust managers immediately 
about a negative event report of a particular component. 
Additionally, trust information services may provide typi- 
cal consumer information which can prepare purchase deci- 
sions. 

In order to guarantee the privacy of component produc- 
ers, the trust information service can use ciphers instead of 
complete component descriptors. The ciphers are created 
by the cipher service. If a component producer wants to 
register a component, it does not call the trust information 
service but the cipher service which generates a cipher and 
a signature consisting of the cipher and a component sig- 
nature passed by the producer. Thereafter, this signature 
is handed over to the producer while the trust information 
service receives only the cipher. When the producer sells 
the component, it passes the signature to the customer. A 
trust mana.ger of the customer authenticates the cipher of the 
Component by means of the signature. Afterwards, it inter- 
acts with the trust information service using only the cipher 
instead of the full component name. The privacy is guaran- 
teed since the trust information service knows only the ci- 
phers and not the real component names, the trust managers 
use only trust values of a very limited number of compo- 
nents, and the cipher service has no knowledge about trust 
values. 

6. Wrapper for Java Beans 

A first implementation of our approach is centered a- 
round the component model of Java Beans [22]. The en- 
forcement system is sketched in Fig. 2 and consists of an 
adapter fo:r each Java Bean to be checked, a number of ob- 
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Figure 2. Architecture of the Security Wrapper 

servers, a trust manager, a monitor, an adapter generator, 
and the Java security manager. 

In order to scrutinize the behavior at the component in- 
terface, an adapter is wrapped around the bean. The bean 
does not interact with its environment directly but only via 
the adapter. Thus, the events at the interface can be ob- 
served. Moreover, the adapter can seal the bean if it is sus- 
pected to attack its environment. It wraps incoming and 
outgoing calls of Java Bean events, properties, methods, and 
exceptions as well as messages of an Infobus. 

The check that a bean complies with cTLA process spec- 
ifications is performed by the observers. Each observer cor- 
responds to one cTLA constraint process. It contains the 
state representation of the process. Furthermore it provides 
an initialization method and action methods. The action 
methods test the enabling condition and the security con- 
dition of the corresponding action. Moreover they perform 
the state transitions. The initialization method resets the 
state representation. 

If the adapter detects an interface event, it forwards it 
to the observers by calling the corresponding action meth- 
ods. If all relevant observers signaled the compliance of 
the event, the adapter really transfers the interface event. 
If, however, one observer refuses its corresponding action, 
the adapter seals the bean and reports the violation to the 
monitor. The monitor will inform the system administra- 
tor who has to decide about further actions. Moreover, the 
observers report violations also to the trust manager which 
informs the trust management service about a negative event 
and controls the intensity of checks. It activates and passi- 
vates the observers depending on the current trust levels of 
the components. 

The system administrator performs the overall supervi- 
sion of the system including the security wrappers by means 
of the administration monitor. The monitor supports an in- 
teractive interface to the system administrator. It forwards 

reports from the observers and from the Java security man- 
ager to the administrator and accepts control commands of 
the administrator. Prior to the employment of a bean the 
administrator has to create an adapter by means of the au- 
tomated adapter generator. This generator introspects the 
bean for its interface actions and creates the related adapter 
based on this examination. 

Additionally to policy enforcement, the approach utilizes 
the built-in Java security manager. A bean does not only 
communicate with its environment via the component in- 
terface but can also access system resources directly using 
streams. These stream-based accesses, however, cannot be 
detected by the introspection of the adapter generator and 
therefore are not controlled by the adapter. Nevertheless, 
system resource accesses have to comply to the Java secu- 
rity manager. Therefore the security manager was extended 
by functions to report accesses to the monitor. Moreover, 
the administrator can decide which resource accesses are 
allowed or forbidden. 

The approach was tested with a component-structured 
warehouse management system for franchise fast food res- 
taurants [22]. This application was created with the Sales- 
Point framework [9] containing a set of Java objects to 
create business applications. We transferred a part of the 
framework objects to Java beans. The test was performed 
with three beans which realize a catalogue of goods offered 
in the restaurant, the counting stock of these goods, and the 
management functions. We considered the catalogue bean 
as not secure since it offers a direct link to the franchise 
company in order to fix prizes, input new offers, etc. The 
wrapper checked that this bean does not access the counting 
stock in order to prevent the franchise company to violate 
the privacy of the restaurant owner by wiretapping informa- 
tion about product sales. For testing purposes we used var- 
ious versions some of which attacked the counting stock. 
The wrapper worked correctly and detected all violations.' 
The mean value of the runtime overhead in comparison to 
running the bean without a security wrapper was 4.79% on 
a Pentium 200 PC with Windows NT. Most of the overhead 
was caused by the graphical interface of the administration 
monitor. Without the monitor, the overhead was just 0.34% 
in the example. 

7. Concluding remarks 

We proposed the approach of trust-adapted enforcement 
of security policies which can be of high interest for fu- 
ture complex multi-vendor component-structured applica- 
tions. The embedding security architecture has to consider 
various other security aspects as well and is not completely 
elaborated yet. Currently we deal with the design of a more 
detailed security model which, e.g., shall consider host em- 
ployment contracts and shall integrate existing approaches 
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for secure distribution and code motion, A series of discus- 
sions and future contributions of others may be necessary to 
complete this model. 
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