
Trust-adapted enforcement of security policies in distributed
component-structured applications*

Peter Herrmann and Heiko Krumm
Universitat Dortmund, Fachbereich Informatik, D-4422 1 Dortmund

{ herrmann I krumm} @ls4.cs.uni-dortmund.de

Abstract

Software component technology on the one hand sup-
ports the cost-effective development of specialized appli-
cations. On the other hand, however; it introduces spe-
cial security problems. Some major problems can be solved
by the automated run-time enforcement of security policies.
Each component is controlled by a wrapper which monitors
the component’s behavior and checks its compliance with
the security behavior constraints of the component’s em-
ployment contract. Since control functions and wrappers
can cause substantial overhead, we introduce trust-adapted
control functions where the intensity of monitoring and be-
havior checks depends on the level of trust, the component,
its hosting environment, and its vendor have currently in
the eyes of the application administration. We report on
wrappers and a trust information service, shortly outline the
embedding security model and architecture, and describe a
Java Bean based experimental implementation.

Key Words: software components, wrappers, trust man-
agement, security policy enforcement, trust information ser-
vice.

1. Introduction

As enterprises are increasingly dependent on their in-
formation systems, the security of the information systems
is of growing importance. Therefore security models are
designed identifying the relevant principals, objects, opera-
tions, attributes, and relations of the systems on an abstract
user-oriented level. Security policies refer to the model and
express the different security objectives to be enforced. The
objectives concern confidentiality, integrity, accountability,
and availability properties of data and functions as they are
demanded by the different principals. With respect to the
systems’ implementation and operation security architec-

*This work was funded by the German research foundation DFG.

tures are developed. A security architecture reflects the spe-
cial architecture of an information system and defines the
types, positions, and applications of security services to be
integrated into the system in order to provide the security
objectives even under presence of attacks. The services are
implemented by suitable combinations of security mecha-
nisms. Current application middleware platforms already
adopted this view. They facilitate the corresponding pro-
vision of security and supply suitable models and services.
So, e.g., the widely used CORBA platform meanwhile sup-
ports secure distributed object-based application systems.

The approach of component-structured software envis-
ages applications composed from cost-effective compo-
nents. The components are supplied by different developers
and are #offered to a growing community of customers on
an open market (cf. [30]). By selection, configuration, and
customization of components powerful applications can be
built which are tailored to the special needs of single cus-
tomers. Their architecture reflects very flexibly the user re-
quirements and their environment. The applications are eas-
ily extensible and modifiable by dynamic changes of com-
ponents and their coupling. Moreover, since applications
are built by defining the communication and coordination
of components, the same means can be used to integrate
different applications to cooperating super-applications.

Meanwhile a series of platforms supports components.
Most prominent are Java Beans and Enterprise Java Beans.
The COE/I/DCOM approach is well-established in PC-based
environments. Moreover, the CORBA initiative extended
its approach to the comprehensive support of component
structures. The platforms typically provide notions for the
description of component types, parameter types, and inter-
faces. They supply rich run-time support for the coupling
of components and, in particular, enable introspection, the
exploration of components, their interfaces, and their prop-
erties at run-time. Additional interest is given to the com-
fortable construction of applications by scripting languages
or visual application builder tools.

The expected benefits of software component technol-
ogy as well as the increasing availability of powerful mid-

1530-1346/01$10.00 @ 2001 IEEE
2

mailto:ls4.cs.uni-dortmund.de

dleware platforms plead for a rapidly growing employment
of component-structured distributed applications. The ar-
chitecture of those application systems, however, really ex-
tends the architecture of distributed object-based applica-
tions. In particular it imposes new security aspects since it
introduces new principals and roles. In addition to users
and application system owners, also component vendors
and host providers have to be considered. On the one hand
they introduce their own security objectives. On the other
hand, they introduce new types of threats since in general
the different principals cannot trust each other to full extent.

Of course, the composition of applications from vari-
ous components causes not only security problems. Among
other properties, in particular it is essential for the func-
tionality of an application that each component acts in ac-
cordance with its specifications. Therefore the approach of
software components refers to the employment of explicit
contracts. Each component integration is accompanied by a
contract describing the agreed properties of the component,
especially its interface, operations, and the relations with its
environment (cf. [30]).

Our overall approach is also based on contracts. A com-
ponent contract has to contain a description of the security-
relevant behavior with which the component’s execution is
assumed to correspond. At design time, the structure of the
system is analyzed in combination with the behavior de-
scriptions of its components in order to prove that required
security properties of the system hold if each component
will act in accordance with its contract. At run-time, the
consideration can focus on the components. For each com-
ponent it is of interest that its actual behavior in fact is con-
formable with its contract since malicious components or
compromised code (e.g., by virus or Trojan horse infection)
will result in diverging behaviors. For that purpose the com-
ponent behavior can be controlled at run-time by means of
wrappers. Detailed control functions, however, can cause
substantial overhead. Therefore we propose the dynamic
adaptation of the control functions to that level of trust, the
component currently can have in the eyes of the application
owner.

In the sequel we will only outline the overall approach
and concentrate on the trust-adapted security-policy en-
forcement which is implemented by component wrappers
and a trust-managing infrastructure. Firstly we sketch the
major security aspects of distributed component-structured
software. Thereafter we refer to related work concerning
the enforcement of security policies and the management
of trust relations. The next section describes our special
component control approach and explains wrappers, trust-
management, and their interactions. Later on we discuss
the trust management system in more detail and report on a
Java Bean based implementation of the approach.

2. Security aspects of components

One can identify a hierarchy of application architecture
classes which starts with local applications, comprises dis-
tributed and mobile code applications, and ends with dis-
tributed component-structured applications. The security
aspects of local applications focus on the definition of user
classes, on their authentication, and on access control since
trusted software and a trusted hosting system are assumed.
The security of distributed software additionally has to rec-
ognize that parts of an application reside on different host
computers which are connected by a communication net-
work. Though the hosts mostly are trusted, the network is
not. The binding between application parts as well as their
communication may be attacked via the network. Therefore
services for the secure communication are needed. More-
over, authentication and access control must be able to op-
erate in a distributed environment. In a further extension
mobile code applications contain parts which can migrate
between hosts. Here also the secure transfer of code mod-
ules has to be provided. Moreover, since host and appli-
cation owners not necessarily trust each other, host environ-
ments need protection against malicious code and vice versa
the applications may be attacked by malfunctions of hosts
(cf. [lo, IS]).

Distributed component-structured applications can con-
sist of software components which are supplied by different
vendors. Therefore one has to distinguish between applica-
tion owners and software component vendors and there is a
needs for corresponding protection:

e

e

The

Protection of an application against malicious compo-
nents with respect to the integrity of the application,
its configuration, and its resources, to the confidential-
ity and availability of managed information and sup-
ported operations, as well as to the accountability of
performed actions.

Protection of a component vendor against wrong in-
criminations with respect to spiteful application ad-
ministrators, malicious surrounding components, and
malfunctions of hosting environments. Moreover a
component vendor is interested in protection against
unlicensed employment of components.

corresponding security model identifies a rich set of
principals comprising users, resource owners, application
owners, host providers, and component vendors. The main
objects of the model are resources, software components,
application configurations, hosting environments, and com-
munication facilities. The major relations concern that com-
ponents constitute applications and contribute to the func-
tionality of an application. So, a component accesses and
manages resources on behalf of a user. Moreover, it for-
wards information and control to other components and to

3

the application’s environment using several types of com-
ponent interface mechanisms (e.g., component attributes,
events, use of special supportive services like life-cycle,
binding, and configuration services, “normal” method in-
vocations and returns). During run-time a series of inter-
face mechanism events occurs at the border of a component
which forms its behavior. A component-specific security
policy can constrain this behavior by defining static as well
as dynamic conditions.

The corresponding security architecture is based on the
extension of each component employment contract by a set
of static and dynamic behavior constraints expressing the
security policy of the component’s employment. Control
functions perform a monitoring of the component’s inter-
faces. They dispose of a run-time representation of the be-
havior constraints and enforce the constraints. Addition-
ally applications contain manager components which inter-
act with the control functions. A manager component su-
pervises the control functions, it activates and deactivates
them, and receives their notifications. Moreover, it supplies
an administration interface and communicates with external
services. There is a needs for two types of external services:

Trust information service,

Conflict resolution service.

A trust information service records component vendors,
component employers, component types, and reports about
the employment of components. It calculates the accumu-
lated risks of component types. It considers the positive and
negative reports on components and evaluates the current
component trust levels. It communicates trust information
on demand and notifies registered applications about signif-
icant changes.

Mainly, a conflict resolution service has to resolve con-
flicts between component vendors and application owners
about actual or supposed breaches of employment contracts.
Moreover, conflicts between trust information services and
component vendors have to be handled if vendors complain
of wrong bad evaluations of their products. Also, applica-
tion owners may complain of getting wrong good or delayed
alert information from a trust information service. Vice
versa a trust information service may complain of getting
wrong information from application owners or component
vendors. Of course not all conflicts can be resolved by au-
tomated services without human interaction. The services,
however, can prepare external decisions. So, they may man-
age the integration of additional log collecting components
into application configurations.

3. Related work

Security of component-structured software benefits from
the research done in the field of mobile code. In this

field various approaches were recently developed in order
to protect host computers against attacks by mobile pro-
grams. These methods mainly focus on control flow safety,
memory safety, and stack safety [20]. Besides of isolat-
ing security-critical operations in a protected system kernel
(e.g. [2]) and using cryptography for the transit of code,
code inslrumentation gained attraction in the last years.
Here, machine code is altered in a way that critical oper-
ations can be analyzed before or monitored during the exe-
cution of the code in order to detect attacks. An example is
software fault isolation (eg., [32]) where non-trusted code
is executed and monitored in a safe system part where it
cannot caiuse damage.

Another approach based on code instrumentation is fol-
lowed by Schneider [28, 291 who models policies formally
by so-called security automata. Moreover, a security au-
tomaton can be used to enforce a policy by simulating it si-
multaneously to the execution of the code. The code is only
permitted to perform an execution step if that corresponds to
a transition of the automaton. The automata based enforce-
ment extends the early approach of state dependent security
specificalions [4].

Language based security is a kind of code instrumenta-
tion, too. Here, special security-related information about
mobile code is obtained during parsing or other program
analyses. The program user utilizes this information in or-
der to check the code for compliance with his security poli-
cies. An example is the Java byte code verifier which proves
Java byte code for type correctness and other security-
related properties. Another method is proof carrying code
(cf. [20]) which enables formal program verification. The
program developer annotates the code with a formal spec-
ification (fi., pre- and postconditions of functions or loop
invariants) and hands this information over to the user who
proves the code formally. Examples for utilizing proof car-
rying code are the touchstone compiler [27] and the efficient
code certification [19]. Moreover, this method was used
for more specialized verification purposes as type check-
ing [24, 3111 and information flow analysis [11, 25, 261.

Since the information used for code verification is pro-
duced by the code developer, it may be distorted in order
to mask imalicious code. Thus, one has to check that the
program complies to the additional information used for
verification. Here, the concept of generic software wrap-
pers proves helpful. In this approach a program is ex-
tended by a software checking the code during runtime
for security properties without changing it. Generic soft-
ware wrappers are used with firewalls and intrusion detec-
tion [l , 113, 231. Moreover they can also be applied for
protecting component-structured software performing ma-
licious system calls [12].

Another field of interest for our approach is trust man-
agement, Here, the trust in a human or computer principal

4

is expressed mathematically depending on good and bad ex-
periences with this principal. In [161, Josang introduces a
so-called opinion-triangle expressing belief, disbelief, and
uncertainty about a principal. These values can be calcu-
lated from the number of good and bad experiences with
the principal by metrics. Josang and Knapskog [171 calcu-
late the belief in a principal as the ratio of the number of
positive experiences and the total number of positive and
negative experiences. Thus, a negative experience can be
compensated by some positive experiences. In contrast, in
Beth’s et al. [3] metric a single negative experience leads to
complete disbelief in a principal forever. If no bad experi-
ence occurred, the belief grows with an increasing number
of good experiences.

Trust management is used for authorization systems [6].
Unlike classical mechanisms like access control lists, the
access to an action or a resource is provided if the caller
shows a certain number of credentials issued by third par-
ties which are trusted by the server. Implementations of
trust management-based authorization systems are Policy-
Maker [7], REFEREE [8], and KeyNote [5].

4. Trust-adapted enforcement

One dominating security problem of software compo-
nent employment is that the component code may not be
trusted to full extent. Therefore techniques are of inter-
est by means of which the application owner can analyze
the compliance between component code and component
specification. Our proposal relies on simulated security au-
tomata [28] since they support state dependent security con-
straints [4] and can manage the analysis without difficult
explicit formal verification. The security automata are au-
tomatically integrated by means of generic wrappers [23].
In combination with additional measures run-time behavior
checks are of further use and contribute to the control of
non-trusted hosting environments.

A simple example shall exemplify the conception of state
dependent security constraints. There may be two compo-
nents in an application system, a componentACcontrols the
access to a set of resources, and a component OP performs
operations on the resources. It is intended that OP only ac-
cesses resources by means of a resource handle which OP
has formerly obtained from AC on behalf of a user. This
can be expressed by a state dependent constraint for the
behavior of OP. The corresponding state automaton has a
state space of type “set of pairs of resource handle and user
identifbtion”. The initial state is the empty set. When-
ever an event of type “AC grants a resource handle rh for
user us” occurs, a transition is performed which inserts the
pair (rh, us) into the current state. Whenever an event of
type “OP closes a resource handle rh” occurs, another tran-
sition deletes the corresponding pair from the state. More-

over there may be a transition which spontaneously removes
pairs after a specified lifetime is exceeded. Finally all events
of type “OP accesses a resource under (rh , us)” are con-
nected with a transition which is combined with the security
condition “(rh, u s) is element of the current state”. Though
this example is simple, it shows how state dependent secu-
rity constraints can help to manage the distribution of secu-
rity responsibilities between run-time components.

As shown in the example state dependent security con-
straints can be modeled by state automata and can be
checked at run-time by automata implementations which
are linked with the controlled behavior. Each significant
event of the controlled behavior is linked with a correspond-
ing transition type. Thus an automaton records the history
of events and pending events can be checked for compli-
ance: If an event is pending, the corresponding transition
must be enabled.

This principle, however, has to be extended in order to
support dynamic adaptation of behavior control. Since it is
possible to provide a series of logically AND-connected be-
havior constraints for the same component, adaptation can
be performed by dynamic activation and deactivation of sin-
gle constraints. In the implementation the constraints cor-
respond with a series of state automata where all automata
are simulated simultaneously. Therefore, in a first setting,
adaptation can be performed by activating and deactivating
the automata implementations. Nevertheless, this simple
solution works only in the special cases where the state of
an automaton can be initialized on activation or where the
events occurring during deactivated periods are not relevant
for later activated periods. In the example above this is not
the case. OP may obtain a valid handle during a deactivated
phase and use the handle in a following activated phase.

In the general case, an automaton cannot be deactivated
in the whole. We therefore propose to structure the activities
of a transition into three parts:

1. Check of the enabling condition,

2. Check of the security condition,

3. Computation and assignment of the next state.

The parts 1 and 3 are not subjected to deactivation. They
are designed to record the relevant event history. So, in the
example above, insert and remove transitions can keep track
of the set of valid resource handles. Only the execution of
part 2 - which is devoted to the computation of (sometimes
more complex) state checks - depends on the current ac-
tivation state of the automaton. In the example resource
access transitions are accompanied by a security condition
checking the validity of handles.

The conception of automata is also used for the specifica-
tion of state dependent security constraints. Therefore com-
ponent employment contracts contain automata definitions

5

which as well correspond to the logically interesting secu-
rity specifications as they enable the direct translation to
run-time checking automata simulations. Mostly, the secu-
rity specifications are developed by a component producer
and handed over to the component user. Before the corre-
sponding employment of a component the user checks the
specifications for compliance with the security policies of
the system to which the component will belong.

In our more special approach we specify the security
constraints in the formal specification technique cTLA [14,
151 which is based on Leslie Lamport's Temporal Logic
of Actions (TLA) [21]. cTLA facilitates the description
of safety, liveness, and real-time properties in a process-
like style similarly to programming languages. In particu-
lar it supports the definition of so-called constraint-oriented
processes which can model single aspects of components.
Thus, different security properties (e.g., different informa-
tion flow and data access restrictions) may be specified by
separate cTLA processes.

Moreover one can apply cTLA for the specification of
abstract system security policies and one can combine com-
ponent specifications to formal system specifications. This
forms the basis for formal cTLA based system proofs. They
check if an application system under given composition and
component contracts will comply with the abstract policies.
The proofs can be performed by formal logical reasoning
and will be explained elsewhere.

5. Trust information service

In order to reduce the performance expenditure of a secu-
rity wrapper, positive and negative experiences, other users
gained with the wrapped component, can be utilized. A
component user may trust a component based on these ex-
periences to a certain extent and may vary the intensity of
safeguards based on the level of trust. For instance, a com-
ponent should be thoroughly scrutinized for launching at-
tacks, if it is not known very well or already attacked other
users. If it, however, is well known and never caused bad
experiences, the safeguards can be reduced to spot checks
or omitted at all.

In our approach the management of trust is performed
by a trust information system (cf. Fig. 1). It consists of a
trust manager for each security wrapper, a trust information
service, and a cipher service. The trust managers determine
the intensity of security checks by their wrappers depending
on the trust values carried by the scrutinized components.

The trust information service stores reports about pos-
itive and negative events and calculates trust values from
them. For determining a trust value we currently use a com-
bination of the metrics of Josang [16] and Beth et al. [3].
The events come from the trust managers which indicate
in intervals their experiences with the checked component.

~

CertiRrition Authority

PnrAer / I I I \

Figure 1. Trust Information System

Moreover, the reports of product certification authorities
can be used for the calculation of trust values as well.
The trust manager requests the trust value of an interesting
component in order to decide the level of security checks.
Furthermore, the trust information service offers an alarm
service notifying all interested trust managers immediately
about a negative event report of a particular component.
Additionally, trust information services may provide typi-
cal consumer information which can prepare purchase deci-
sions.

In order to guarantee the privacy of component produc-
ers, the trust information service can use ciphers instead of
complete component descriptors. The ciphers are created
by the cipher service. If a component producer wants to
register a component, it does not call the trust information
service but the cipher service which generates a cipher and
a signature consisting of the cipher and a component sig-
nature passed by the producer. Thereafter, this signature
is handed over to the producer while the trust information
service receives only the cipher. When the producer sells
the component, it passes the signature to the customer. A
trust mana.ger of the customer authenticates the cipher of the
Component by means of the signature. Afterwards, it inter-
acts with the trust information service using only the cipher
instead of the full component name. The privacy is guaran-
teed since the trust information service knows only the ci-
phers and not the real component names, the trust managers
use only trust values of a very limited number of compo-
nents, and the cipher service has no knowledge about trust
values.

6. Wrapper for Java Beans

A first implementation of our approach is centered a-
round the component model of Java Beans [22]. The en-
forcement system is sketched in Fig. 2 and consists of an
adapter fo:r each Java Bean to be checked, a number of ob-

6

I J.". 1

'r"r T I

Fig. 2: Architecture of the Security Wrapper

Figure 2. Architecture of the Security Wrapper

servers, a trust manager, a monitor, an adapter generator,
and the Java security manager.

In order to scrutinize the behavior at the component in-
terface, an adapter is wrapped around the bean. The bean
does not interact with its environment directly but only via
the adapter. Thus, the events at the interface can be ob-
served. Moreover, the adapter can seal the bean if it is sus-
pected to attack its environment. It wraps incoming and
outgoing calls of Java Bean events, properties, methods, and
exceptions as well as messages of an Infobus.

The check that a bean complies with cTLA process spec-
ifications is performed by the observers. Each observer cor-
responds to one cTLA constraint process. It contains the
state representation of the process. Furthermore it provides
an initialization method and action methods. The action
methods test the enabling condition and the security con-
dition of the corresponding action. Moreover they perform
the state transitions. The initialization method resets the
state representation.

If the adapter detects an interface event, it forwards it
to the observers by calling the corresponding action meth-
ods. If all relevant observers signaled the compliance of
the event, the adapter really transfers the interface event.
If, however, one observer refuses its corresponding action,
the adapter seals the bean and reports the violation to the
monitor. The monitor will inform the system administra-
tor who has to decide about further actions. Moreover, the
observers report violations also to the trust manager which
informs the trust management service about a negative event
and controls the intensity of checks. It activates and passi-
vates the observers depending on the current trust levels of
the components.

The system administrator performs the overall supervi-
sion of the system including the security wrappers by means
of the administration monitor. The monitor supports an in-
teractive interface to the system administrator. It forwards

reports from the observers and from the Java security man-
ager to the administrator and accepts control commands of
the administrator. Prior to the employment of a bean the
administrator has to create an adapter by means of the au-
tomated adapter generator. This generator introspects the
bean for its interface actions and creates the related adapter
based on this examination.

Additionally to policy enforcement, the approach utilizes
the built-in Java security manager. A bean does not only
communicate with its environment via the component in-
terface but can also access system resources directly using
streams. These stream-based accesses, however, cannot be
detected by the introspection of the adapter generator and
therefore are not controlled by the adapter. Nevertheless,
system resource accesses have to comply to the Java secu-
rity manager. Therefore the security manager was extended
by functions to report accesses to the monitor. Moreover,
the administrator can decide which resource accesses are
allowed or forbidden.

The approach was tested with a component-structured
warehouse management system for franchise fast food res-
taurants [22]. This application was created with the Sales-
Point framework [9] containing a set of Java objects to
create business applications. We transferred a part of the
framework objects to Java beans. The test was performed
with three beans which realize a catalogue of goods offered
in the restaurant, the counting stock of these goods, and the
management functions. We considered the catalogue bean
as not secure since it offers a direct link to the franchise
company in order to fix prizes, input new offers, etc. The
wrapper checked that this bean does not access the counting
stock in order to prevent the franchise company to violate
the privacy of the restaurant owner by wiretapping informa-
tion about product sales. For testing purposes we used var-
ious versions some of which attacked the counting stock.
The wrapper worked correctly and detected all violations.'
The mean value of the runtime overhead in comparison to
running the bean without a security wrapper was 4.79% on
a Pentium 200 PC with Windows NT. Most of the overhead
was caused by the graphical interface of the administration
monitor. Without the monitor, the overhead was just 0.34%
in the example.

7. Concluding remarks

We proposed the approach of trust-adapted enforcement
of security policies which can be of high interest for fu-
ture complex multi-vendor component-structured applica-
tions. The embedding security architecture has to consider
various other security aspects as well and is not completely
elaborated yet. Currently we deal with the design of a more
detailed security model which, e.g., shall consider host em-
ployment contracts and shall integrate existing approaches

7

for secure distribution and code motion, A series of discus-
sions and future contributions of others may be necessary to
complete this model.

References

[I] F. M. Avolio and M. J. Ranum. A Network Perimeter with
Secure External Access. In Proc. Internet Society Sympo-
sium on Network and Distributed System Security, Glen-
wood, 1994.

[2] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker,
M. Fiuczynski, C. Chambers, and S. Eggers. Extensibil-
ity, safety, and performance in the SPIN operating system.
In Proc. 15th Symposium on Operating System Principles,
pages 267-284. ACM, 1995.

[3] T. Beth, M. Borcherding, and B. Klein. Valuation of Trust in
Open Networks. In Proc. European Symposium on Research
in Security (ESORICS), LNCS 875, pages 3-18, Brighton,
1994. Springer-Verlag.

[4] J. Biskup and C. Eckert. About the enforcement of state
dependent security specifications. In T. Keefe and C. Land-
wehr, editors, Database Security, pages 3-1 7. Elsevier Sci-
ence (NorthHolland), 1994.

[5] M. Blaze, J. Feigenbaum, J. loannidis, and A. D. Keromytis.
The KeyNote Trust Management System, Version 2. Report

[6] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis.
The Role of Trust Management in Distributed Systems Se-
curity. In J. Vitek and c. Jensen, editors, Internet Program-
ming: Security Issues for Mobile and Distributed Objects.
Springer-Verlag, 1999.

[7] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust
Management. In Proc. 17th Symposium on Security and Pri-
vacy, pages 164-173, Oakland, 1996. IEEE.

[8] Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and
M. Straws. REFEREE: Trust Management for Web Appli-
cations. World Wide Web Journal, 2:127-139, 1997.

[9] B. Demuth, H. Hussmann, L. Schmitz, and S. Zschaler. A
Framework-based Approach to Teaching OOT: Aims, Im-
plementation, and Experience. University of the Armed
Forces, Munich, 2000.

[lo] W. Farmer, J. Guttman, and V. Swarup. Security for Mobile
Agents: Issues and Requirements. In Proc. 19th National
Information Systems Security Conference (NISSC 96), pages

[I I] E. Ferrari, P. Samarati, E. Bertino, and S. Jajodia. Provid-
ing flexibility in information flow control for object-oriented
systems. In Proc. IEEE Symposium on Security and Privacy,
pages 130-1 40, Oakland, 1997.

[I21 T. Fraser, L. Badger, and M. Feldman. Hardening COTS
Software with Generic Software Wrappers. In Proc. 1999
IEEE Symposium on Security and Privacy, 1999.

[I31 1. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A Se-
cure Environment for Untrusted Helper Applications. In
Proc. 6th USENIX Security Symposium, 1996.

[14] P. Herrmann and H. Krumm. Formal Hazard Analysis of
Hybrid Systems in cTLA. In Proc. 18th IEEE Symposium
on Reliable Distributed Systems (SRDS’99), pages 68-77,
Lausanne, 1999. IEEE Computer Society Press.

RFC-2704, IETF, 1999.

591-597, 1996.

[15] P. Herrmann and H. Krumm. A Framework for Modeling
Transfer Protocols. Computer Networks, 34(2):317-337,
2000.

[16] A. Jidsang. An Algebra for Assessing Trust in Certifica-
tion (Chains. In J. Kochmar, editor, Proc. Network and Dis-
tributed Systems Security Symposium (NDSS’99). The Inter-
net S,ociety, 1999.

[171 A. Jgsang and S. J. Knapskog. A metric for trusted systems.
In Proc. 21st National Security Conference. NSA, 1998.

[I81 G. K.arjoth, D. Lange, and M. Oshima. A Security Mod-
el for Aglets. IEEE Intemet Computing, pages 68-77,
July/August 1997.

[191 D. K.ozen. Efficient code certification. Technical Report
98-1 661, Computer Science Department, Comell Univer-
sity, 1998.

[20] D. KIozen. Language-Based Security. In M. Kutylowski,
L. Pacholski, and T. Wierzbicki, editors, Proc. Confer-
ence on Mathematical Foundations of Computer Science
(MFCSS99), LNCS 1672, pages 284-298. Springer-Verlag,
1999.

[21] L. Lamport. The Temporal Logic of Actions. ACM Transac-
tions on Programming Languages and Systems, 16(3):872-
923, May 1994.

[22] A. Nlallek. Sicherheit komponentenstrukturierter verteilter
Systeme: Vertrauensabhangige Komponenteniiberwachung.
Diplomarbeit, Universitat Dortmund, Informatik IV, 4422 1
Dortmund, 2000 (in German).

[23] M. A . Monroe. Security Tool Review: TCP Wrappers. ;log-
in:, 18(6):15-16, 1993.

[24] G. M:onisett, D. Walker, K. Crary, and N. Glew. From Sys-
tem 1; to typed assembly language. In Proc. 25th ACM SIG-
PLAiWSIGACT Symposium on Principles of Programming
Languages, pages 85-97, San Diego, 1998.

[25] A. C. Myers. JFlow: Practical Mostly-Static Information
Flow Control. In Proc. 26th ACM Symposium on Principles
of Pfiogramming Languages (POPL’99), San Antonio, 1999.

[26] A. C. Myers and B. Liskov. Complete, Safe Information
with Decentralized Labels. In Proc. IEEE Symposium on
Security and Privacy, pages 186-197, Oakland, 1998.

[27] G. C. Necula. Compiling with proofs. PhD thesis, Camegie
Mellon University, 1998.

[28] E B. Schneider. Towards fault-tolerant and secure agentry.
In Proc. I Ith International Workshop on Distributed Algo-
rithms (WDAG’97), LNCS 1320, pages 1-14. ACM SIG-
PLAN, Springer-Verlag, 1997.

[29] F. B. Schneider. Enforcable Security Policies. Technical
Report TR98-1664, Computer Science Department, Comell
Univixsity, 1998.

1301 C. S2:yperski. Component Software - Beyond Object Ori-
entea‘ Programming. Addison-Wesley Longman, 1997.

[31] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and
P. Lee. TIL: A type-directed optimizing compiler for ML.
In Pnoc. Conference on Programming Language Design and
Implementation. ACM SIGPLAN, 1996.

[32] R. Wabbe, S. Lucco, T. E. Anderson, and S. L. Graham. Ef-
ficient software-based fault isolation. In Proc. 14th Sym-
posium on Operating System Principles, pages 203-2 16.
ACMI, 1993.

8

