
Verification of UML-based real-time system designs by means of cTLA�

Günter Graw, Peter Herrmann, and Heiko Krumm
Universität Dortmund, Fachbereich Informatik, D-44221 Dortmund

fgrawjherrmannjkrummg@ls4.cs.uni-dortmund.de

Abstract

The Unified Modeling Language UML is well-suited for
the design of real-time systems. In particular, the design
of dynamic system behaviors is supported by interaction
diagrams and statecharts. Real-time aspects of behaviors
can be described by time constraints. The semantics of the
UML, however, is non-formal. In order to enable formal
design verification, we therefore propose to complement the
UML based design by additional formal models which re-
fine UML diagrams to precise formal models. We apply
the formal specification technique cTLA which is based on
L. Lamport’s Temporal Logic of Actions TLA. In partic-
ular cTLA supports modular definitions of process types
and the composition of systems from coupled process in-
stances. Since process composition has superposition char-
acter, each process system has all of the relevant properties
of its constituting processes. Therefore mostly small subsys-
tems are sufficient for the verification of system properties
and it is not necessary to use complete and complex formal
system models. We present this approach by means of an ex-
ample and also exemplify the formal verification of its hard
real-time properties.

1. Introduction

Presently, the Unified Modeling Language UML be-
comes well established and is increasingly used for the
specification of object-oriented application systems. It aims
to a broad and practice-oriented design support and pro-
poses a set of diagram types, each supporting the graph-
ical description of certain system properties, aspects, and
views [2]. Besides of the well-known class diagrams, use
case diagrams document the purpose and utilization of sys-
tems. Object diagrams present the object instances of typ-
ical system configurations. Interactions between objects
are described by collaboration diagrams or sequence charts.
Statecharts or activity charts represent the behavior of ob-

�This work was funded by the German research foundation DFG.

jects. Moreover, package diagrams and component dia-
grams deal with architecture and deployment issues.

The UML does neither provide for binding formal se-
mantics of single diagrams nor does it formally define the
detailed relationships between diagrams and the resulting
semantics of diagram combinations. Instead, the diagrams
support intuitive interpretations and the meaning of diagram
combinations depends to a certain extend on non-formal in-
formations. Therefore, on the one hand, the UML lacks a
concise formal modeling basis which would enforce unique
interpretations and moreover could provide for formal ver-
ification and analysis means. On the other hand, the non-
formal and in some sense open character of the UML se-
mantics can be a strength with respect to practical appli-
cation. The intuitive understanding based semantics is very
flexible and thus enables various types of concessions to the
special needs of practical projects. In particular, the set of
UML diagrams of a project can concentrate on special and
only partially interrelated views. It can reflect intermediate
design stages and specify the system incompletely. More-
over, the UML is not limited to the description of structure
and functionality. Additionally, descriptions of real-time
properties are possible and contribute to the broad appli-
cability of the UML.

For the design of critical systems, however, UML is
not sufficient since essential system properties and func-
tions should be specified formally in order to reduce the
probability of misinterpretations and to enable the applica-
tion of stringent formal analysis and verification techniques.
With respect to this, it is of high interest, not to substi-
tute the UML based design, but to complement it by for-
mal methods. Then, the system as a whole can be devel-
oped by the well-established means of the UML whereas
the more costly formal techniques can concentrate on crit-
ical parts and aspects of the system. Consequently, several
approaches were developed already which propose formal
semantics for the UML. Mainly these approaches focus on
formal models for single UML diagrams. Mostly this is not
sufficient for the formal verification of interesting system
properties since very often only the combined semantics of
a set of diagrams supplies the necessary prerequisites for a

proof. Let, e.g., two objects cooperate and perform critical
operations. If a reasoning on possible histories of these op-
erations is of interest, then the combined semantics of three
diagrams is needed. The two statecharts describing the be-
havior of the two objects have to be set in context with an in-
teraction diagram which defines the exchange of messages
between the objects.

Our approach therefore not only supports a mapping
from single UML diagrams to corresponding detailed for-
mal models. Moreover, it supports the formal composition
of diagram models to system models. Additionally, it is of
importance that formal verifications can be based on sub-
models of a system since the combination of all formal di-
agram models mostly would result in a very large system
model which would be too complex to admit formal ver-
ifications in practice. This calls for the use of a formal
specification technique, the process composition operation
of which has the character of superposition. Thus, a system
as a whole inherits all relevant properties of its constituting
processes and subsystems.

We use the specification technique cTLA which is based
on L. Lamport’s Temporal Logic of Actions TLA [14].
cTLA supports the modular definition of process types and
the composition of process instances to systems [7]. A pro-
cess may as well describe the behavior of a resource at
all, as it may concentrate on partial aspects and thus corre-
sponds to a behavior constraint. Basically, cTLA describes
safety and liveness properties like TLA. Moreover, follow-
ing the approach of [13], it has been extended for the de-
scription of real-time aspects and continuous system ele-
ments [8]. The so-called structured verification — which
uses relatively small subsystems for the proof of system
properties of cTLA — can also be applied for the verifi-
cation of hard real-time properties [6]. Moreover, there is
preceding work concerning the formal modeling of object-
oriented systems. [3] reports on the systematic transforma-
tion of UML diagrams into cTLA specifications. [4] shows
how this transformation can be applied for formal verifica-
tions of system properties and proofs of refinement correct-
ness.

Related work mainly concerns the formal modeling of
object-oriented systems and UML diagrams, the object-
oriented description of real-time systems, the formal mod-
eling of real-time systems, and the verification of real-time
system designs. So, e.g., [15] presents formal models for
UML diagrams. In particular, [12] models behavioral as-
pects of object-oriented systems by means of the formal
technique DisCo which, like cTLA, uses state transition
models, applies superposition, and connects components
via joint actions. The Real-Time Object Oriented Model-
ing approach ROOM combines object-orientation with real-
time aspects like latency and service times [19]. With re-
spect to verification it relies on simulation since it is not

based on formal models. Formal models of hard real-time
systems have to represent combinations of real-time and
functional properties. Mostly, timed state transition sys-
tems are used for that purpose. They extend functional
state transition models by timing constraints (e.g., timed
IO automata [18], hybrid automata [5], and timed state-
charts [11]). In principle, these models support tool-assisted
formal verifications. Mainly, model checking tools for the
automated verification of finite state real-time systems (e.g.,
Uppaal [16], Hytech [1]) were proposed. In comparison
with these, our approach favors creatively designed sym-
bolic proofs which on the one hand need some development
effort, but on the other hand can also be applied to systems
with very large state spaces.

In the sequel, we firstly discuss the description of real-
time systems in the UML. We slightly extend the corre-
sponding timing constraint constructs of the UML for the
representation of time intervals and refer to the timed se-
mantics of statecharts as proposed by [11]. Thereafter we
introduce an example and outline its UML based specifica-
tion. After a short introduction into cTLA we report on the
cTLA based formal model of the system. Finally, we out-
line parts of the formal design verification which is enabled
by the cTLA specifications.

2. Describing real-time in the UML

The UML in its present form already supports the an-
notation of timing information [2]. So, timing events (e.g.,
after 2 msec) and change events (e.g.,when3:40) can be
used to trigger state transitions in behavior descriptions
of objects (i.e., in statecharts and activity charts). More-
over, interaction specifications (i.e., collaboration diagrams
and sequence charts) can contain declarations of time mark
labels which refer to the exchange of specific messages.
Time marks can be used in constraints where the quali-
fiers ‘.startTime’, ‘.stopTime’, and ‘.executionTime’stand
for the corresponding time points respectively duration pe-
riod (e.g., a.executionTime< 10 msec). Thus, more abstract
interaction-oriented timing properties can be specified as
well as more implementation-related waiting times for state
transitions of objects.

In practice, one needs both types of timing information
in order to support design by stepwise refinement. Con-
sequently, the example, we introduce later on, will con-
tain both types. It will provide for two system views, one
abstract view modeling a simplified system structure, and
one detailed view which corresponds to a refined, more
implementation-oriented system. The first view serves as
an abstract specification stating the requirements to the sys-
tem. The second view represents a refined design step and
shows how the requirements will be tackled by system inter-
nal functions. The provision of specifications with different

levels of abstractions can document the process of a refining
design. Moreover, it is of high interest for formal verifica-
tion since it enables proofs of correct refinements. In partic-
ular, we like to refer to the notion of correct refinement of
TLA which ensures that a refined system in fact will have
all relevant properties of the preceding more abstract spec-
ification [14]. While other verification approaches mainly
check one design step against some criteria in a relatively
isolated way, a series of refinement proofs can verify the
design process as a whole.

In order to support refinement proofs, we had slightly to
extend the time notions of the UML. In fact, it is nearly im-
possible to implement exact non-interval waiting time con-
straints like ’the transition has to be triggered in exactly
11 msec after its enabling’. Therefore, we will use time
intervals instead of exact periods. In interaction diagrams
we will restrict the use of timing constraints correspond-
ingly and the constraint type‘every’ will be parametrized
by time intervals constraining the time period between each
two consecutive events in a sequence. In statecharts we will
also use time interval parameters for time events in order
to state minimal and maximal waiting times for state transi-
tions.

Unlike the semantics of interaction diagrams, the seman-
tics of statecharts is relatively complicated but neverthe-
less only non-formally described in the UML. To prepare
stringent reasoning we therefore need a more precise un-
derstanding of statecharts and timed state transitions. It can
be supplied by reference to existing approaches. In partic-
ular, the approach of Timed Statecharts [11] is very near to
our needs. With respect to the modeling of time consump-
tion it provides a helpful separation of concerns. It makes a
distinction between immediate transitions and waiting tran-
sitions. Immediate transitions are triggered by inputs, but
abstract from time consumption at all. Whenever an im-
mediate transition is enabled, it must be executed before
time can proceed. Thus, immediate transitions serve for the
purpose of timeless modeling of functional behavior. Time
consumption, i.e., progress of time, is possible only when
no immediate transition is enabled. Then the object is wait-
ing in its current state and time will proceed till a waiting
timed transition will fire. Timed transitions do not depend
on inputs. Therefore, they focus on the modeling of time
consumption. Their time parameters specify time intervals
realistically where a timed transition is labeled by two du-
ration values, a minimal and a maximal waiting time. It has
to wait at least for the minimal waiting time, and if no other
transition changes the current state, it has to fire before the
maximal waiting time is exceeded.

While these elements of Timed Statecharts fit well with
our requirements, there are modifications which are nec-
essary to adapt it to the statecharts of the UML. One ma-
jor difference concerns the handling of inputs. In original

Timed Statecharts inputs are stored in a flag-register like
way. All pending inputs are visible and each of them can
trigger a series of immediate transitions till the flag-register
is reset (It is reset, when time proceeds). Other than this
mechanism, each UML object provides for a queue which
stores incoming messages in a FIFO manner. Here, only the
front element of the queue can trigger the next transition
and the transition implicitly removes the element. When
the front element does not match with a transition of the
current state, it can explicitly be deferred. Otherwise, it
will also be removed implicitly. Since the FIFO handling of
incoming messages is a basic feature of UML objects, we
modify Timed Statecharts accordingly. We keep, however,
the separation between functionality and time consumption.
We also follow up the principle, that time can proceed only,
while no immediate transition is enabled.

Other essential differences between UML statecharts and
Timed Statecharts concern the action sequences which can
occur as labels of UML statechart transitions. With respect
to this, we assume, that transitions are at most labeled by
one action. When the transition fires, the action is executed
atomically without any time consumption. Therefore we
resolve action sequences and replace each sequence labeled
transition by a series of one-action transitions and additional
intermediate states.

3. Example system

Our example system is a part of a distributed multime-
dia system. It provides the transfer of a video frame stream
from a source to a remote display. The used frame trans-
mission service is of varying quality. Therefore hard real-
time mechanisms are applied in order to adapt the system
to the current quality of the frame transmission. As often
proposed in this field of application (e.g., according to the
Open Distributed Processing Reference Model ODP [10]
and as realized in corresponding multimedia middleware
systems [20]), we connect source and sink by explicit bind-
ing objects and use cooperating filters for the quality of ser-
vice adaption. From the ODP model, moreover, we adopt
two levels of abstraction. Corresponding to ODP’s compu-
tational view, we firstly abstract from distribution and trans-
mission. Our refined system then enters into ODP’s engi-
neering view and explicitly models the use of a telecom-
munication network and the adaption to its current quality
of service. The interesting quality parameters of the exam-
ple are the frame rates and jitter values of source and sink.
During frame transfer in the network variable delays can
occur. Increasing frame delays indicate overload and there-
fore shall cause a reduction of the sending frame rate. The
example and its formal modeling are furthermore related
to [17] who also propose a TLA based formal representa-
tion of quality of service constraints. Like our approach,

User

System

Management
Administrator

Watching

Figure 1. Example system use case diagram

they use formal composition of behavior constraints, how-
ever, cannot profit from superposition properties.

Fig. 1 shows the use cases of the example system. A reg-
ular user wants to watch the video frame stream produced
by the remote camera. Furthermore, an administrator can
perform operations in order to manage the system. In the
sequel, we will concentrate on the watching use case and
do not go into details of management.

Consequently, the class diagram (cf. Fig. 2) concentrates
on the attributes and operations which are relevant for the
watching functionality. A source object produces a frame
stream with a certain frame rateframeRateunder a certain
jitter. It periodically calls the operationconsumeFrameof a
connected medium or sink. The environment can influence
the frame rate by means of the operationsetFrameRate. A
sink is characterized by its minimal and maximal frame rate
and the maximally tolerable jitter. It receives frames by ex-
ecuting the operationconsumeFrame. Moreover, the opera-
tion changeSinkFrameRatecan be called in order to signal
the current frame rate to the sink. A medium is a combina-

Sink

minFrameRate : Integer

maxFrameRate : Integer

maxJitter : Integer

consumeFrame()

changeFrameRate()

Medium

Source

FrameRate : Integer

maxJitter : Integer

setFrameRate()

DisplayAbstract Binding

1111

Rendering Filter

1

Abstract Network

1111

Camera

1

Network Binding

Source Filter

1111

1

Figure 2. Example system class diagram

C :

Camera

b : Abstract

Binding

d :

Display

{every [1/r - j, 1/r + j], where

r = c.frameRate

AND j=c.maxJitter}

{every[1/r - j, 1/r + j], where

d.minFrameRate <= r

AND j = d.maxJitter}

1: consumeFrame(Frame) 2: consumeFrame(Frame)

AND r <= d.maxFrameRate

Figure 3. Abstract watching system collabo-
ration diagram

tion of a source and a sink. In the abstract view, the medium
subclassAbstractBindingwill be used, which later on will
be refined to a composition of three medium objects of the
classesSourceFilter, NetworkBinding, andRenderingFilter.

The more abstract model‘Abstract Watching System
AWS’of the example is presented by means of the collab-
oration diagram in Fig. 3. It shows an association of three
object instances. The camerac and the displayd are con-
nected by an abstract binding objectb. The camera periodi-
cally calls theconsumeFrameoperation of the abstract bind-
ing object which in turn calls theconsumeFrameoperation
of the display. Both operation call sequences underly tim-
ing constraints which are documented in the diagram. They
constrain the period between each two consecutive opera-
tion calls. As introduced in Sec. 2 the constraints refer to
corresponding time intervals.

Moreover, we want to model, that the abstract binding
transfers the frames reliably without loss, corruption, and
reordering. Furthermore, we want to express, that the trans-
fer delay is limited by a constantmaxDelay. For that pur-
pose, we add a statechart for the behavior of the abstract
binding which is shown in Fig. 4. In the main, the state-
chart model uses a FIFO queue component in order to show
that a series of frames may be under reliable transfer at the
same time. With respect to the delay time constraint repre-
sentation, the model queue attaches a time stamp of latest
possible delivery to each frame which is computed from the
enqueuing current timetimeunder addition of the duration
constanttimeMaxDelay. While all other transitions are im-

consumeFrame(f) /

q.enqueue

(<F, time

q : queue for records of

type [f : Frame; t : timepoint]

frameSent

frameLost

consumeFrame(f)

when[0, q.first.t] [not q.empty]/

Display.consumeFrame(q.dequeue.f);

+ timeMaxDelay>);

Figure 4. Abstract binding statechart

c :

Camera

sf : Source

Filter

n : Abstract

Network

rf : Rendering

Filter

d :

Display

{n.TransferTime - n.TransferJitter<

sf2.startTime - sf1.startTime <

n.TransferTime + n.TransferJitter}

{the Abstract Network transfers

frame streams without reordering}

{n.TransferTime - n.TransferJitter <

rf2.startTime - rf1.startTime <

n.TransferTime + n.TransferJitter}

{the Abstract Network transfers rate command

streams without reordering}

{every [Cam.FrameRate -

Cam.Jitter, FrameRate + Jitter]
if cam not blocked by previous
operation call}

csf: consumeFrame(f)

rf2: setFrameRate(r)

sf1: consumeFrame(f)

sf2: consumeFrame(f)

rf1: setFrameRate(r)

rfc: consumeFrame(f)

{rfc.executionTime < c}

Figure 5. Detailed watching system collabo-
ration diagram

mediate, the dequeuing and delivering transition depends on
a timed change event. The transition has to fire within this
time period which starts when a frame becomes the front of
the queue and ends when the current time matches the time
stamp of the last delivery.

The more detailed model‘Detailed Watching System
DWS’ of the example system refines the abstract binding
into filter and abstract network objects. The system as a
whole is shown by means of its collaboration diagram in
Fig. 5. The interactions between the filters and the net-
work are performed by signals. Signal messages of type
consumeFrametransfer frames from the source filter to the
rendering filter. In backward directionsetFrameRatesig-
nals control the source filter’s frame rate. The time con-
straints of the signal transfer use time marks and state that
the transfer time in the abstract network is limited. More-
over natural language constraints express that the network
does not reorder signals. Furthermore the calls of thecon-
sumeFrameoperation of the source filter by the camera are
constrained to occur periodically within given period time
limits if the returns of the operation calls occur in time. Fi-
nally there is a maximal execution time constraint forcing
the return of eachconsumeFrameoperation of the display.

For the specification of the relevant properties of DWS
the collaboration diagram has to be completed by describ-
ing functional and timing properties of the two filters. Since
the behavior of the filters is more subtle we use timed stat-
echarts. Fig. 6 shows the statechart of the source filter. The
source filter receives frames from the camera. The received
frame is buffered and the execution of theconsumeFrame
operation returns immediately. The sending of frames de-
pends on the two control states‘fast’ and‘slow’ which cor-
respond to two sending rate constantsr1 and r2. They
are used in the time trigger interval of the sending transi-
tions. Moreover, two immediate transitions are triggered by
incomingsetFrameRatesignals. They change the control
state.

As shown in its statechart (see Fig. 7), the rendering fil-

fast

slow

after[r1 - Jitter, r1 + Jitter]

/ abstractNetwork.
consumeFrame(b)

after[r2 - Jitter, r2 + Jitter]

/ abstractNetwork.

consumeFrame(f) /

b := f; return; b : buffer of type frame

setFrameRate(r1)setFrameRate(r2)

consumeFrame(f)

/ b := f; return;
consumeFrame(b)

Figure 6. Source filter statechart

ter has four control states. In its initial phase it only re-
ceives frames from the network. The received frames are
stored in a queueq. When the queue is filled over its mid-
dle level constantml, the initial phase ends and the filter
will concurrently send and receive frames. Innormalmode
the frames are assumed to be supplied in a fast rate from
the network and the rendering filter also forwards them in
a fast rate to the display. When the queue tends to become
empty (length below lower level constantll), thesinkslow-
downmode is entered. Then the frames are sent to the dis-
play in accordance with the slow sending rate constant. An
increase of the queue length over ml will again restore the
normal mode. When the queue tends to exceed its capacity
(length over upper level constantul), the sourceslowdown
mode is entered. The rendering filter sends asetFrameR-
atesignal to the network and still forwards frames in high
sending rate. When thereafter the queue length is normal

slowdown

normal

slow downsource

consumeFrame(f)[not q.overflow] /

q.enqueue(f)

initial phase

normal

source

slowdown

sink

[q.length > ml]

[q.length > ml]

[q.length < ml] /

setFrameRate(r2)

[q.length < ll]

[q.length > ul] /

after[1/frameRateFast - Jitter,

1/frameRateFast + Jitter][not q.empty]

/consumeFrame(q.dequeue);

after[1/frameRateSlow - Jitter,

1/frameRateSlow + Jitter]

[not q.empty]

/consumeFrame(q.dequeue);

setFrameRate(r1)

slowdown

Figure 7. Rendering filter statechart

PROCESS Queuing (Elem : type) ;
! Queuing of elements of type Elem in
! a queue-instance.
VAR q : queue of Elem ;
INIT q = empty ;
ACTIONS

enq (e : Elem)
�

= q 0
= enqueue(q,e) ;

deq (e : Elem)
�

= q 6= empty ^

e = front(q) ^

q 0
= tail(q) ;

END ;

Figure 8. Process type Queuing

again, thesourceslowdownmode is left and asetFrameRate
signal requests for frame supply in high rate. Besides of the
two frame sending transitions all transitions are immediate.
The frame sending transitions are triggered by time events
in order to occur periodically in accordance with the current
rate and jitter constants.

4. cTLA

Like TLA [14], cTLA [7] refers to state transition system
models where a state space is defined by a set of state vari-
ables, an initial condition defines the set of possible starting
states, and a next state relation is given by a disjunction of
so-called actions. An action is a condition over action pa-
rameters, state variables referring the current state and so-
called primed variables referring to the successor state.

cTLA supports modular definitions of process types, in-
stances of which form processes. As an example Fig. 8
shows the simple process typeQueuing. Processes of this
type are state transition systems with a state space of an
infinite queueq for items of data typeElem. Initially, the
queue is empty (see initial conditionINIT). Two actions are
defined,enqenqueues a new iteme into the queue,deqde-
queues the front item of the queue. Besides of simple pro-
cesses, process types can describe subsystems which consist
of a set of coupled processes. Like in the standard specifica-
tion language Lotos [9], processes can be coupled via joint
actions where two or more processes act simultaneously by
each process performing one of its actions. Processes which
do not participate in a joint action are assumed to perform
stuttering steps. Thus, the actions of a system are conjunc-
tions of process actions and process stuttering steps. Ac-
tion parameters can be used to communicate data values
between processes. Fig. 9 shows the subsystem typeCam-
eraas an example. A camera is a system of three processes
CC, CPmin, andCPmax. A camera has two actions which
both are three-party rendezvous of the three constituting

PROCESSES
CC : FlipFlop ;
! Call / Return Controlflow
CPmin : MinCamPeriod (1/rate - jitter);
! Time constraint
CPmax : MaxCamPeriod (1/rate + jitter);
! Time constraint

ACTIONS

SfConsFCall (t : Real)
�

=

! call of op consumeFrame of source filter
CC.switch1 ^

CPmin.sfConsFCall(t) ^

CPmax.sfConsFCall(t);

SfConsFReturn (t : Real)
�

=

! return from op
CC.switch0 ^

CPmin.sfConsFReturn(t) ^

CPmax.sfConsFReturn(t);
END;

Figure 9. Process type Camera

processes. This example applies the so-called constraint-
oriented style of specification where a fine-grained process
structure exists and each process can represent properties of
a certain single concern.

Pure state transition systems express safety properties
stating what a system can do, but they do not force state
transitions. For that purpose liveness properties are of inter-
est. They state that a system must not delay reactions on cer-
tain conditions over an infinite period of time. As in TLA,
cTLA describes liveness indirectly by fairness statements
for actions. If a fair action would be enabled infinitely, it
must eventually be executed. Describing liveness indirectly
by action fairness has the advantage that it cannot introduce
inconsistencies to safety properties.

Moreover, cTLA supports the description of real-time

PROCESS MinCamPeriod(minTime : Real)
�

=

VAR timestamp, nCall : Real;
INIT nCall = minTime;
ACTIONS

sfConsFCall(t : Real)
�

=

t = nCall ^ timestamp 0
= now;

sfConsFReturn
�

=

nCall 0
= max(0, minTime -

(now - timestamp));
V MIN TIME sfConsCall(t) : t;
END;

Figure 10. Process type MinCamPeriod

properties [8] following the TLA approach of [13]. We as-
sume that a state variablenow exists which represents the
current time and is lively incremented by a clock actiontick.
It is readable by all processes of a system. Additionally,
comparable to the annotation of actions with a fairness la-
bel, one can attach minimal and maximal waiting times for
actions. An action can be executed only, if it is enabled for
a time period of its minimal waiting time. It must be exe-
cuted, before it is enabled for a longer time period than its
maximal waiting time. As a short example, Fig. 10 shows
the process typeMinCamPeriodwhich is the type of the
processCPmin in Fig. 9. It expresses that the time period
between two consecutivesfConsFCallactions is at least of
lengthminTimeif the return of the former operation call oc-
curred before. The return is modeled by the actionsfCons-
FReturn. The two state variables store the time of the last
call (timestamp) and the minimal waiting time for the next
call which is computed when the last return occurs (ncall).
The ‘V MIN TIME’ construct states the minimal waiting
time property of the actionsfConsFCall. Correspondingly
a ‘V MAX TIME’ construct and an ‘IMMEDIATE’ con-
struct exist which state maximal waiting time properties.
The ‘V’ denotes volatile and means that disruptions of the
corresponding enabling period will restart the time condi-
tion.

Unlike TLA, cTLA supports superposition of process
properties. If a process instance is part of a system, then all
of its relevant safety, liveness, and real-time properties shall
be guaranteed by the system, too. While superposition of
safety properties is not a problem (since the state variables
are private to owning processes), a special solution is nec-
essary for the semantics of forcing liveness and real-time
annotations. Since an action of a process can be coupled
on system level to participate in joint actions with the sys-
tem environment and with other processes, an action of a
process may be blocked by its environment. Consequently,
time periods may exist where a process action is enabled,
but cannot execute since one of its joint action peers is not
enabled. With respect to this, the semantics of forcing an-
notations of cTLA actions is conditional and refers to the
period of time where the action is as well enabled as its en-
vironment does not block it. For this conditional semantics
superposition properties hold. For proofs of unconditional
forcing properties, however, we have to consider the envi-
ronment of a process additionally.

5. Transformation to cTLA

All diagrams of the UML based design (cf. Sec. 3) can
be transformed systematically to cTLA based formal spec-
ifications following the approach of [3]. Here, we use cre-
atively designed transformations instead which work simi-
lar to the systematic translation but yield more concise spec-

ifications. The transformations concentrate on the logical
content of the diagrams. In particular, they do not model
internal mechanisms (e.g., the message queues of object in-
stances) separately.

The cTLA specifications define two systems, theAb-
stract Watching System AWSand the Detailed Watch-
ing System DWSby a series of process type definitions.
The simple process types represent separate functional
and real-time behavior constraints. The subsystem types
define the mutual coupling of the constraints. Exam-
ples of the specification are already outlined in Figs. 8
to 10. The complete specification can be found in the
WWW under the URL ‘http://ls4-www.cs.uni-
dortmund.de/RVS/MA/hk/ExaSpec.html’ .

The complete specification of the abstract watching sys-
tem AWS is given by the system process typeAWS. The
actions of this system describe calls and returns of object
operations. So, each execution of the actionabConsFCall-
Lossmodels a call for the operationconsumeFrameof the
abstract binding object which will result in a loss of this
frame. The actionabConsFCallmodels calls forconsume-
Frame which will transfer their frames to the sink with-
out loss. The actiondConsFCallrepresents calls for the
consumeFrameoperation of the display. Thus, the cTLA
model directly deals with the interactions between object
instances. The functional and real-time properties of the
corresponding behavior are described by the components of
the systemAWS:

� AB, a subsystem describing the abstract binding,

� SRmaxandSRmin, two timing constraints describing
the source frame rate,

� BRmaxandBRmin, two timing constraints describing
the rate of the frames delivered to the display.

AB again is a system type and consists of the following con-
straints:

� FQ of type Queuing(cf. Fig. 8) describes the func-
tional behavior of the abstract binding,

� LO states that the binding will at most lose each second
frame,

� DL specifies a bounded delay for the frame transfers.

The formal verification to be discussed later on will use
AWSrespectively the constituting constraints listed above
as proof goals.

The specification of the detailed watching system DWS
also is given by the system typeDWSwhich, again, mod-
els calls and returns of object operations by cTLA system
actions. Moreover, few internal actions (e.g., the switch-
ing from initial to normal state of rendering filter) are intro-
duced.DWSis a composition of subsystems (the cameraC,

the source filterSF, the abstract networkAN, and the ren-
dering filterRF) with one simple processD modeling that
the display will respond to calls of its operationconsume-
Frameby returns. The cameraC consists of three constraint
processes (see Fig. 9):

� CC models the blocking of the camera after an opera-
tion call till the corresponding return occurs,

� CPminandCPmaxspecify minimal and maximal wait-
ing times between calls for the operationconsume-
Frameof the source filter.

The source filterSFconsists of four constraints:

� B models the functionality of the one-place buffer for
the current frame,

� CRmodels the call / return functionality,

� RCdescribes the control of the sending rate,

� TCdefines the minimal and maximal waiting times for
calls of theconsumeFrameoperation of the network.

The abstract networkANcontains five constraints:

� FQ andRQstand for the network’s functional queue-
behavior,

� FDminandFDmaxconstrain the delay of frames,

� RDmaxconstrains the delay of rate commands.

Finally, the rendering filterRFconsists of six constraint pro-
cesses:

� FQ models the internal frame queue ofRF,

� IP describes the switching between initial phase and
normal mode,

� PRdescribes the switching between normal mode and
slow display,

� SRdescribes the switching between normal mode and
slow source,

� BL specifies thatRF is blocked after callingconsume-
Frameof the display until this operation returns,

� TC supplies minimal and maximal waiting times for
consumeFramecalls.

We listed here all constraint processes ofDWSsince they are
used as axioms resp. assumptions during the formal verifi-
cation.

6. Proofs

The formal verification of the design correctness has to
prove that the detailed systemDWScorrectly implements
the abstract systemAWS. Both systems are compositions of
constraint processes (listed in Sec. 5). Due to the superpo-
sition property of the cTLA composition, each composition
corresponds to a consistent logical conjunction of its pro-
cesses, i.e., the properties expressed by a constraint process
cannot be in contradiction with the properties of another
constraint process and the composition will have all proper-
ties of all of its constituting processes. Based on this, cTLA
supports the so-called structured verification. If one wants
to prove that a systemS implies a propertyP and if there is
a subsystemR of Swhich impliesP, then it is sufficient to
prove that the subsystemR impliesP.

We combine structured verification with TLA’s notion of
refinement proofs (cf. [14]). With respect to this, a proof
of the correct implementation of an abstract specificationA
by a refined specificationB is accomplished by proving the
formula‘B implies A’ to be a valid TLA implication. In our
example this means we have to prove‘DWS implies AWS’.
By means of structured verification this proof can be splitted
into a series of proofs of the form‘some subsystem of DWS
implies a constraint process of AWS’. Thus, each relevant
AWSproperty can be verified separately. Furthermore, un-
der appropriate structuring subsystems ofDWScan be used
which are less complex than the systemDWSas a whole. To
structure the necessary proofs of a verification further and
to reduce the size of the subsystems used within the proofs,
moreover, subgoals, so-called lemmas, can be introduced.

In accordance with these principles, the refinement proof
of the example has been accomplished by one person in
about two weeks of work. Due to length restrictions it is
not possible to document proofs in more detail here. The
reader, however, shall gain some impression of the proof
process. Therefore we outline below some typical phases
of the proof in different levels of abstractions.

Typical helpful lemmas for the verification of our exam-
ple system design concern the length of the frame queue
in the rendering filterRF. So we can introduce a lemma
NoUnderflowwhich states that the queue will never become
empty after initialization. With the help of this lemma, for
instance, it is relatively easy to prove, thatDWSimplies the
AWSconstraintBRmax. ThenRF’s dConsFCallaction oc-
currences only depend onRF’s timing constraintTC which
nearly directly corresponds to theAWSconstraintsBRmax
andBRmin. TC can in fact force the actiondConsFCall,
since the other processes ofRF and the displayD tolerate
the action within the time period ofTC: FQ tolerates it since
its queue is not empty (assumption by lemmaNoUnder-
flow). PR and SR tolerate it since their coupled actions
are trivially enabled. FinallyIP, BL, andD can only dis-

able their coupled actions for a short time period just when
cConsFCallhas occurred. So, they will tolerate the action
cConsFCallagain and again, each time for a period which
is limited only by the next occurrence of the action.

Another helpful queue length lemma to be introduced is
NoOverflow, which states that the rendering filter’s queue
never will lose frames due to queue overflow. Since this
lemma reflects the distributed cooperation between the most
of the system components, a direct proof might to be based
on a relatively large subsystem. Therefore we split the proof
into a series of steps. We outline the first step in slightly
more detail and give a high level description of the oth-
ers. Firstly, we prove that frames will be removed from
the queue in a fast minimal frequency whenever the queue
length exceeds the levelul. We prove a corresponding in-
variant by means of a subsystem which consists of the con-
straint processesFQ, IP, PR, andBL of the rendering filter
RF and the display constraintD. In this invariant, the time
between two dequeueing actions is represented by the dif-
ference of now to the value of an auxiliary variable which
stores the time of the last dequeueing action. Thereafter we
prove a second sublemma which estimates the frequency of
enqueueing actions (source filter and network sending re-
spectively transferring as fast as they can). From the dif-
ference between dequeueing frequency and enqueueing fre-
quency combined with the difference between levelul and
queue capacity, we derive the minimal time period which
is available before queue overflow. Then we have to prove
that this time period is sufficient for the reaction, which con-
sists of the transfer of a frame rate control command to the
source filter, of the source filters reaction, and the transfer of
the first slow mode frame to the rendering filter. Now we es-
timate the fastest possible frame enqueueing frequency for
the slow frame sending mode. It has to be less than the fast
minimal frequency which was analyzed in the first step in
order to prove that the queue length will decrease after the
reaction time has passed.

Finally, a refinement proof, i.e., a proof of a constraint
of the abstract system, shall be addressed in more detail.
We prove that the constraintFQ of the subsystemABof the
abstract systemAWSis implied by a subsystem of the de-
tailed systemDWS. The subsystem consists of the buffering
and queueing constraints ofDWS, i.e., the buffering con-
straint B of the source filterSF, the queueing constraintFQ
of the abstract networkAN, and the queueing constraintFQ
of the rendering filterRF. In general, a TLA based refine-
ment proof uses a so-called refinement mapping which has
some homomorphism properties and maps states of the re-
fined system to states of the abstract system (cf. [14]). In the
example this means, we have to define a mapping which has
the abstract queue of the constraintFQ of the subsystemAB
of AWS(i.e.,AWS.AB.FQ.q) as image of the state variables
of theDWSsubsystem. Usually, the mapping corresponds

to the idea behind the refinement and therefore is relatively
easy to design. In our case here, the idea is, that the abstract
queue corresponds to a concatenation of the contents of
the buffering and queuing components of the detailed sys-
tem: DWS.RF.FQ.qÆ DWS.AN.FQ.qÆ DWS.SF.B.b. Nev-
ertheless, since items of the buffer of the source filter can
be lost, the mapping is more subtle. In accordance with
TLA’s refinement proof principles we introduce an auxiliary
prophecy variable P which equals zero when the content of
DWS.SF.B.bwill not be lost and is unequal zero otherwise.
With this, the refinement mapping is:

AB.FQ.q
�

= IF (P = 0)
THEN DWS.RF.FQ.q Æ DWS.AN.FQ.q

Æ DWS.SF.B.b
ELSE DWS.RF.FQ.q Æ DWS.AN.FQ.q

Now we prove, that this mapping is a refinement map-
ping and the corresponding homomorphism properties hold.
SinceAWS.AB.FQis a pure safety constraint, it suffices to
prove the safety conditions:

1. The mapping images of initial states of the detailed
system are possible initial states of the abstract system.

2. Each transition of the detailed system is mapped to a
stuttering step or a possible transition of the abstract
system.

The first condition is trivially true due to the initial condi-
tions of the threeDWSconstraints. The proof of the sec-
ond condition can be split according to the action structure
of DWS. For each action of the DWS subsystem we have
to prove, that its mapping image implies the disjunction of
AWS.AB.FQactions and stuttering steps. With the help of
theNoOverflowlemma, the proofs are relatively simple.

7. Concluding remarks

For the design of real-time systems we presented an ap-
proach which complements the UML based object-oriented
design by enabling formal verifications of functional and
hard real-time properties. We described an example appli-
cation, which showed that the formal modeling and verifi-
cation of interesting system parts can be accomplished with
feasible efforts. Since our approach primarily profits from
the designer’s understanding of a system and is based on his
creative proof designs, we did not discuss the application of
existing supporting tools. Moreover, meanwhile we study
further support, which transfers the design and software pat-
tern approach to formal specification. For special applica-
tion domains specification frameworks are under develop-
ment, which supply as well re-usable specification modules
as re-usable proof-elements.

References

[1] R. Alur, T.A. Henzinger, and P.-H. Ho, “Automatic
Symbolic Verification of Embedded Systems”, in14th
Annual Real-time Systems Symposium, IEEE Com-
puter Society Press, 1993, pp. 2–11.

[2] G. Booch, J. Rumbaugh, and I. Jacobson,The Unified
Modeling Language — User Guide, Addison Wesley
Longman, 1999.

[3] G. Graw, P. Herrmann, and H. Krumm, “Constraint-
Oriented Formal Modelling of OO-Systems”, in L.
Kutvonen, H. Knig, and M. Tienari (eds.),2nd Int.
Working Conf. on Distributed Applications and Inter-
operable Systems (DAIS’99), Kluwer Academic Pub-
lisher, 1999, pp. 345–358.

[4] G. Graw, P. Herrmann, and H. Krumm, “Compos-
ing Object-Oriented Specifications and Verifications
with cTLA”, in Workshop on Semantics of Objects as
Processes (SOAP’99), BRICS Notes Series NS-99-2,
1999, pp. 7–22.

[5] Th. Henzinger, “The Theory of Hybrid Automata”, in
11th Annual IEEE Symposium on Logic in Computer
Science (LICS’1996), IEEE Computer Society Press,
1996, pp. 278–292.

[6] P. Herrmann, G. Graw, and H. Krumm, “Compo-
sitional Specification and Structured Verification of
Hybrid Systems in cTLA”, in1st IEEE Interna-
tional Symposium on Object-oriented Real-time dis-
tributed Computing (ISORC’98), IEEE Computer So-
ciety Press, Kyoto, 1998, pp. 335–340.

[7] P. Herrmann and H. Krumm, “Compositional Specifi-
cation and Verification of High-Speed Transfer Proto-
cols”, in S. T. Vuong and S. T. Chanson (eds.),Proto-
col Specification, Testing, and Verification XIV, Chap-
man & Hall, Vancouver, 1994, pp. 339–346.

[8] P. Herrmann and H. Krumm, “Specification of Hybrid
Systems in cTLA+”, in5th International Workshop
on Parallel & Distributed Real-Time Systems (WP-
DRTS’97), IEEE Computer Society Press, Geneva,
1997, pp. 212–216.

[9] ISO, “Information processing systems — Open Sys-
tems Interconnection — LOTOS — A formal de-
scription technique based on the temporal ordering of
observational behaviour”, International Standard ISO
8807, 1989.

[10] ITU-T, “ISO/IEC Recommendation X.902, IS 10746-
2, ODP Reference Model: Descriptive Model”, ITU,
Geneva, 1995.

[11] Y. Kesten and A. Pnueli, “Timed and Hybrid Stat-
echarts and their Textual Representation”, in J. Vy-
topil (ed.),Formal Techniques in Real-Time and Fault-
Tolerant Systems, Springer-Verlag, LNCS 571, 1992,
pp. 591-619.

[12] R. Kurki-Suonio, “Fundamentals of object-oriented
specification and modeling of collective behaviors”, in
H. Kilov and W. Harvey (eds.),Object-Oriented Be-
havioral Specifications, Kluwer Academic Publishers,
1996, pp. 101–120.

[13] L. Lamport, “Hybrid Systems in TLA+”, in R. L.
Grossmann, A. Nerode, A. Ravn, and H. Rischel
(eds.),Hybrid Systems, Springer Verlag, LNCS 736,
1993, pages 77–102.

[14] L. Lamport, “The Temporal Logic of Actions”,ACM
Transactions on Programming Languages and Sys-
tems, vol. 16, no. 3, 1994, pp. 872–923.

[15] K. Lano and A. Evans, “Rigorous Development in
UML”, in FASE Workshop (ETAPS’99), Springer Ver-
lag, 1999.

[16] K. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a
Nutshell”, Springer International Journal of Software
Tools for Technology Transfer, vol. 1, no. 1+2, 1997.

[17] L. Leboucher and E. Najm, “A framework for real-
time QoS in distributed systems”, inIEEE Workshop
on Middleware for Distributed Real-Time Systems and
Service, IEEE Computer Society Press, San Francisco,
1997.

[18] N. Lynch and F. Vaandrager, “Forward and backward
simulations for timing-based systems”, in J. W. de
Bakker, W. P. de Roever, C. Huizing, and G. Rozen-
berg (eds.),Real-Time: Theory in Practice (REX’91),
Springer-Verlag, LNCS 600, Mook, 1992, pp. 397–
446.

[19] B. Selic, G. Gullekson, and P. Ward,Real-time Object-
Oriented Modelling, Wiley & Sons, 1994.

[20] D. Waddington and G. Coulson, “A Multimedia
Component Architecture”, in1st IEEE International
Workshop Enterprise Distributed Object Computing
(EDOC’97), IEEE Computer Society Press, Surfers
Paradise, 1997.

