
The Journal of Systems and Software xxx (2009) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss
Tool support for the rapid composition, analysis and implementation
of reactive services

Frank Alexander Kraemer *, Vidar Slåtten, Peter Herrmann
Department of Telematics, Norwegian University of Science and Technology (NTNU), O.S. Bragstads Plass 2a, N-7034 Trondheim, Norway

a r t i c l e i n f o a b s t r a c t
Article history:
Received 6 May 2008
Received in revised form 23 March 2009
Accepted 26 June 2009
Available online xxxx

Keywords:
Service engineering
Service composition
UML
Model-driven development
Temporal logic
Model checking
0164-1212/$ - see front matter � 2009 Elsevier Inc. A
doi:10.1016/j.jss.2009.06.057

* Corresponding author. Tel.: +47 735 92890; fax: +
E-mail addresses: kraemer@item.ntnu.no (F.A. Kra

(V. Slåtten), herrmann@item.ntnu.no (P. Herrmann).

Please cite this article in press as: Kraemer, F.A
Software (2009), doi:10.1016/j.jss.2009.06.057
We present the integrated set of tools Arctis for the rapid development of reactive services. In our method,
services are composed of collaborative building blocks that encapsulate behavioral patterns expressed as
UML 2.0 collaborations and activities. Due to our underlying semantics in temporal logic, building blocks
as well as their compositions can be transformed into formulas and model checked incrementally in
order to guarantee that important system properties are kept. The process of model checking is fully
automated. Error traces are presented to the users as easily understandable animations, so that no exper-
tise in temporal logic is needed. In addition, the results of model checking are analyzed, so that in some
cases automated diagnoses and fixes can be provided as well. The formal semantics also enables the cor-
rect, automatic synthesis of the activities to state machines which form the input of our code generators.
Thus, the collaborative models can be fully automatically transformed into executable Java code. We
present the development of a mobile treasure hunt system to exemplify the method and the tools.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Reactive systems consist of numerous devices like controllers,
sensors and computation nodes which must be connected to pro-
vide services together that each single unit could not render sepa-
rately. Unfortunately, the coordination of units often turns out to
be more difficult than expected. One reason for that is the reactive
nature of most systems dealing with several actuators or users; of-
ten, these systems follow a symmetric peer-to-peer structure in
which several units may take initiative simultaneously. This makes
the modeling of system synchronizations difficult and demands
suitable modeling techniques.

Another inherent reason is the so-called cross-cutting nature of
services. Obviously, to execute a service, we need a description of
its physically deployable components. Their behavior can be ex-
pressed by means of state machines, as for example offered by
ITU-T (2002) or Object Management Group (2007). A service, how-
ever, is typically collaborative and spans across several compo-
nents, and one component participates in several services. This
collaborative dimension is orthogonal to that of components
(Mikkonen, 1999). If we only use component descriptions, services
are specified only indirectly by the combined behavior of its partic-
ipating components. In contrast, a more explicit description in the
form of collaborations (see, for example (Sanders et al., 2005)), not
ll rights reserved.

47 735 96973.
emer), vidarsl@item.ntnu.no

., et al. Tool support for the rap
only has the benefit that service behavior can be understood and
analyzed in isolation, but also opens new possibilities for the reuse
of services as sub-functions provided by several components: Both,
local functionality and solutions to problems that require coordi-
nation of several components, can be used directly in various
applications.

Based on the idea to enable the reuse of collaborative, reactive
behavior in the form of building blocks, we developed the engi-
neering method SPACE (Kraemer, 2008; Kraemer and Herrmann,
2006, 2007a,b), depicted in Fig. 1. To build a system, an engineer
considers a library of reusable building blocks. In contrast to more
traditional components, these building blocks may cover collabo-
rative behavior among several components. They are expressed as
a combination of UML 2.0 collaborations, activities and so-called
external state machines (ESMs) to document their externally visible
behavior. The building blocks are composed to more comprehen-
sive ones, until the system specification is complete. After an anal-
ysis and potential corrections, the produced system specification is
transformed automatically into state machines which can be
implemented via code generation. The approach comprises the fol-
lowing key features that speed up development:

– The design of a service is facilitated by applying reusable build-
ing blocks that are general or domain specific collaborations
which can be integrated into several system descriptions. Due
to the abstract description via external interfaces expressed by
the ESMs, the internals of the building blocks do not have to
be considered when they are applied.
id composition, analysis and implementation of reactive services. J. Syst.

http://dx.doi.org/10.1016/j.jss.2009.06.057
mailto:kraemer@item.ntnu.no
mailto:vidarsl@item.ntnu.no
mailto:herrmann@item.ntnu.no
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://dx.doi.org/10.1016/j.jss.2009.06.057


Fig. 1. The SPACE engineering method.

2 F.A. Kraemer et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

ARTICLE IN PRESS
– Engineers only work on collaborative models expressed by UML
activities. The component-oriented models expressed by state
machines that are needed for code generation are derived fully
automatically; a difficult and time-consuming manual synthesis
of state machines is not necessary.

– Due to the mathematical background in temporal logic, the
compositions and transformations are sound. For such a proof,
see (Kraemer, 2008, App. B). Beyond that, model checking is pos-
sible also for larger systems. The compositional properties of the
method facilitates the analysis of the building blocks in separa-
tion which reduces the state space during model checking sig-
nificantly. Currently, the analysis focuses on general safety
properties that should be fulfilled by any application, for
instance that all building blocks an application is composed
from are used in a correct manner. Since theorems for these
behaviors can be derived automatically, the process of model
checking is completely automated, and engineers do not need
to deal with any formal technique directly.

The theoretical foundations of the method are detailed in Kra-
emer (2008) and Kraemer and Herrmann (2007a,b, 2006)). In the
following, we focus on the corresponding tool support, imple-
mented by the Arctis plug-ins (Arctis, 2009), as depicted in Fig. 2.
Editor

Analyzer
TLC Model 

Checker
TLA 

Formulator

Archiving for Reuse

Animation
and Fixes

Reuse Composition

UML Activities
Collaborations

Library

Fig. 2. Overview of t

Please cite this article in press as: Kraemer, F.A., et al. Tool support for the ra
Software (2009), doi:10.1016/j.jss.2009.06.057
Building blocks are composed by engineers using the Arctis editor.
The result can either be composite building blocks or entire sys-
tems, which are also special forms of building blocks. If desired,
building blocks may be archived in the library for later reuse. To
analyze a building block, its UML activity is transformed into a
temporal logic formula and transferred to the TLC model checker
(Yu et al., 1999). It verifies the specification against theorems that
we will explain later. If a theorem is violated, the analyzer tries to
identify possible reasons and presents an error trace as animation
in the activity to the engineer. Once a system specification is con-
sistent and sound, it may be implemented automatically using a
model transformation and code generation.

We will proceed as follows: In the next section, we present how
our example of a mobile treasure hunt is composed from building
blocks using the Arctis editor. In Section 3, we present how Arctis
supports the analysis of specifications by automating model check-
ing and the provision of corrections in some cases. The transforma-
tion from activities to state machines is explained in Section 4, and
the code generation process is summarized in Section 5. We close
with an overview of related approaches and concluding remarks.

2. Composing services from building blocks

As an example we develop a mobile treasure hunt, first de-
scribed in Samset and Br�k (2008). In this game, a player receives
a riddle via SMS. The answer of the riddle is associated with a cer-
tain location in the town the game takes place. To answer, the
player does not reply via an SMS but tries to reach the location.
Via GSM/GPS/WLAN positioning of the mobile phone, the player’s
position is known to the system; once at the correct goal, the next
riddle is sent out until the final place is reached. To make the game
more difficult, players must reach the target location within a lim-
ited time. For the discussion, we consider the realization for one
player at a time. Using the mechanisms described in Kraemer et
al. (2007), this specification can be expanded to handle multiple
users as well.

The system is specified by a UML 2.0 collaboration as shown in
the screenshot in Fig. 3. On this level, the collaboration roles (de-
picted by rectangles) represent the components of the system.
The location server is responsible for the positioning of mobile sub-
scribers. The sms gateway provides SMS-based communication
from the users into the system and vice versa. We assume, that
these components are realized and managed by an external oper-
ator; for our specification, they are therefore part of the environ-
ment, marked with a corresponding stereotype. In contrast, the
three other components are constituents of the system we are
going to implement. The game server is responsible for coordinat-
ing the game, assisted by the proximity and riddle servers. The col-
laboration uses (depicted as ellipses) decompose the overall
functionality of the treasure hunt system into sub-services. Be-
tween the game server and the sms gateway, collaboration uses
Model
Transformer

Code 
Generator

,
UML State Machines Java Code

he tool support.

pid composition, analysis and implementation of reactive services. J. Syst.

http://dx.doi.org/10.1016/j.jss.2009.06.057


Fig. 4. Building blocks provided by a network operator.

Fig. 3. Eclipse workbench with the Arctis library browser and editor.

F.A. Kraemer et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 3

ARTICLE IN PRESS
s1: Single SMS Notification and s2: Send SMS realize the necessary
interactions with the player. Collaboration use p: Proximity Alert re-
fers to a three-way collaboration between the location server, the
game server and an additional proximity server. Within this collab-
oration, the proximity server constantly monitors the position of
the user and alerts the game manager once the user is at a specified
target.1 A dedicated collaboration to query riddles from a data base
is r: Riddle Generation.

2.1. Elementary building blocks

The services offered by the network operator are encapsulated
within dedicated, collaborative building blocks. In addition to the
interface behavior towards the operator’s servers, such building
blocks may also contain local behavior that simplifies the task to
implement and integrate them with the rest of the system.

As UML collaborations and collaboration uses focus only on
structural issues like role binding, we use a combination of UML
activities and ESMs (external state machines) for the description
of behavior. Fig. 4 shows the external representation for the build-
ing blocks encapsulating behavior towards the operator.2 On the
right side, they are shown in their instantiated form as call behavior
actions. These are constructs of UML activities and can be composed
within an enclosing activity, as we will see in Section 2.2. The pins at
their sides are used to control their behavior. As activities can be
understood by token flow semantics (Object Management Group,
2007), building blocks (instantiated as call behavior actions) are con-
trolled by tokens passing their pins. The call behavior action s1: Sin-
gle SMS Notification has only two pins: Input pin subscribe activates
the block, awaiting an incoming SMS. This is issued by a token pass-
ing through the terminating output pin sms, which in turn deacti-
vates the building block. As parameter, subscribe carries the
number agreed upon with the operator that subscribers use to send
in messages. Pin sms provides objects of type Message for each
incoming SMS.
1 The decision to realize the proximity server as a separate component can be
motivated by different reasons, for example a load analysis as explained in Br�k and
Haugen (1993).

2 The building block for the location tracking is used within collaboration Proximity
Alert, as we will see below.

Please cite this article in press as: Kraemer, F.A., et al. Tool support for the rap
Software (2009), doi:10.1016/j.jss.2009.06.057
To document the valid sequences in which these pins may be
invoked, we use the ESMs which are expressed by stereotyped
UML state machines shown to the left of each building block. The
labels of the transitions refer to the pins that a token passes. A
slash distinguishes cause and effect, seen from the context instan-
tiating the building block. The prefixes in: and out: are used to refer
to input or output pins, respectively.

Following the description from above, the externally visible
behavior of s1: Single SMS Notification is triggered in its starting
transition from the outside via in:subscribe/ and eventually termi-
nates via /out:sms which is triggered from the inside of the building
block, i.e., it is spontaneous. Similarly, the building block s2: Send
SMS is started via pin init. From then on, however, the client side
may continuously send text messages via sms. As this is a so-called
id composition, analysis and implementation of reactive services. J. Syst.

http://dx.doi.org/10.1016/j.jss.2009.06.057


Fig. 5. First solution of the proximity alert.

4 F.A. Kraemer et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

ARTICLE IN PRESS
streaming node presented in black, tokens may pass while the
block is active.

The block for the location tracking is a bit more complex. After a
subscription that tells which mobile user (identified by a mobile
subscriber ID, MSID) should be tracked, the client continuously re-
ceives updates via streaming pin update while the subscriber
moves. This is expressed by the spontaneous self-transition /out:-
update which has state active as source and target. Once the client
is not interested in location data anymore, it may invoke pin
unsubscribe, upon which the building block unsubscribes from
the location server and terminates via terminated. The ESM also al-
lows that an update is combined with an simultaneous unsubscribe
via transition /out:update+in:unsubscribe. This is useful when the
reception of an update should be taken as trigger to unsubscribe.

The ESMs describe the behavior of the building blocks so that
engineers may instantiate and compose them to build more com-
prehensive services, without looking at their internals. Further-
more, during the analysis of a building block via model checking,
the behavior of the building blocks it consists of is abstracted by
the ESMs as well, effectively reducing the state space. The internals
of building blocks are only needed when components and their
state machines are generated and are described by UML activities,
as we will see in the next section. The building blocks are stored
within a UML repository managed by Arctis. As each building block
is a combination of a UML collaboration, an activity and an ESM,
Arctis provides an editor that keeps these three views consistent.
Syntactic inspections warn if any conventions are violated. Build-
ing blocks may be retrieved via the library of building blocks
shown on the left hand side of Fig. 3.

2.2. Composing building blocks

To create more comprehensive services from elementary build-
ing blocks, UML activities are used to describe their precise behav-
ioral composition. As an example, we consider the collaboration for
the proximity alert as described by the activity in the lower part of
Fig. 5. (The figure shows a premature design which we will analyze
and improve in Section 3.) The task of this sub-service is to notify
the client once a mobile user reaches a certain target position. Each
participant of the collaboration is represented by an activity parti-
tion. Proximity alert refers to the location tracking service, repre-
sented by call behavior action t. The client starts the sub-service
by providing the MSID of the player to track and the target loca-
tion, encapsulated by an object of type Tracking Target. When the
tracking target arrives at the proximity server, it passes a fork node
which duplicates the token. One copy follows the lower edge to the
operation extractLocation in which the location is extracted and
stored in the variable target. Within the same step, the other copy
follows the upper flow leaving the fork so that MSID is extracted
from the tracking target and the track location is started. From
then on, the track location emits a token carrying the current loca-
tion via update every time the subscriber changes position. This up-
dated location is compared in the boolean operation closeEnough
with the target location stored in the variable target. If the position
is not yet close enough to the target, the false branch is chosen and
the flow ends in the flow final node. If, however, the position is
close enough to the target, the else branch is chosen, which notifies
the client via alert. Within the same step, a token is pushed through
unsubscribe of t, so that no more updates are received. Unsubscribe
tokens coming from the enclosing context are directly forwarded
to the location tracker. Likewise, the termination of t is forwarded
to the client.

To create the specification, the location building block may sim-
ply be dragged into the editor. Arctis manages the assignment to
activity partitions based on the role binding of the collaborations.
As UML does not provide a language syntax to describe actions
Please cite this article in press as: Kraemer, F.A., et al. Tool support for the ra
Software (2009), doi:10.1016/j.jss.2009.06.057
executed within the operations like closeEnough, the editor also
maintains a Java file for each partition that contains corresponding
methods which may be edited by the service engineer.

3. Automated model checking and analysis

To analyze building blocks and complete systems, the Arctis
editor constantly checks the model for a number of syntactic con-
straints. For a more thorough analysis of the behavior, Arctis em-
ploys the model checker TLC (Yu et al., 1999) based on the
Temporal Logic of Actions (TLA, (Lamport, 2002)). Fig. 2 outlines
this process: When a building block is complete and syntactically
correct, Arctis transforms the UML activity into TLA+, the language
for TLA, and automatically adds theorems expressing properties
that should hold for any application. Then, TLC is started. If TLC re-
ports an error, our tool visualizes the error trace and analyzes the
results; in some cases, it provides diagnostics and proposes fixes
that the user may apply. In the following, we will describe the de-
tails of this process by analyzing the proximity alert collaboration
sketched in Fig. 5. In Section 3.1, we show how the semantics of
activities are expressed in temporal logic, and discuss in Section
3.2 how theorems for correct building blocks can be written auto-
matically. In Section 3.3, we present how error traces are reported
back to the developer by means of animations in Arctis, and in Sec-
tion 3.4 how diagnosis and fixes can be proposed by the tool in
some cases. Section 3.5 introduces a building block that solves
problems of mixed initiatives, and Section 3.6 presents the com-
plete treasure hunt example system. Finally, we discuss the scala-
bility of the analysis in Section 3.7.

3.1. Semantics in temporal logic

TLA specifications are structured as TLA+ modules that describe
behavior as sequences of steps. This mathematical interpretation
fits well with the more graphical representation of activity behav-
ior as token flows; stable states in which tokens rest in places are
pid composition, analysis and implementation of reactive services. J. Syst.

http://dx.doi.org/10.1016/j.jss.2009.06.057


Fig. 6. TLA+ module for the semantics of ProximityAlert.

Fig. 7. Simplified proximity alert without data.

F.A. Kraemer et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 5

ARTICLE IN PRESS
represented by the variables of a TLA specification, and the token
movements are specified by TLA actions (see Kraemer and Herr-
mann (2007a)). Fig. 6 lists the TLA+ module for the proximity alert,
as generated by Arctis.3 In its second line, the module declares the
variables representing the states of the specification, followed by
their initial values given by Init. After that, the TLA actions are de-
clared. These are predicates on pairs of states each expressing behav-
ioral steps. The Next statement as well as Spec define the actual
specification as the disjunction of all of these actions. The last part
describes some theorems which we will explain below. For details,
we refer to Lamport (2002). As we focus on the analysis of the coor-
dination of concurrent behavior, we ignore in our TLA model the
UML variables of the specification (like target in Fig. 5) and UML
operations on it. We therefore look at the version of the proximity
alert in Fig. 7, to make the discussion easier to follow.

Due to the refinement semantics employed in SPACE (Kraemer
and Herrmann, 2007a), TLA actions are formulated in such a way
that tokens only rest on places where they wait for other events
to happen. This can be the expiration of a timer or the arrival of an-
other token in a partition. For the proximity alert, tokens rest at the
flows that cross partitions between client and proximity server,
illustrated by the circles q1. . .q4, and represented in the TLA+ mod-
ule by the corresponding variables. We assign integers to them
storing the number of tokens in the corresponding place. In addi-
tion, the ESM state of the location tracking building block is repre-
sented by variable t. So, we can effectively reduce the state space
when analyzing the proximity alert by considering only the more
abstract ESM of the location but not its internal details. As the col-
laboration is open, that means, depends on the interactions from
the enclosing context, we represent the state of the enclosing
ESM (shown in Fig. 5) by the variable esm.

In the initial state (declared by Init) all queues are empty
ðq1 . . . q4 ¼ 0Þ and the ESM of t as well as the enclosing ESM are
in state off.4 In this state, only action observe is enabled and can be
executed. Actions refer to pairs of states, where unprimed variables
(like q1) model the current state and primed variables (like q10) refer
3 For readability, we adjusted the automatically derived names of variables and
actions.

4 When used as instantiated building blocks, the initial ESM state and all final
states are mapped to the single state off, representing an inactive block. For the
enclosing ESM of the main activity, we distinguish between the initial state off and
the terminated state finished to reason about the life-cycle, as we will later see.

Please cite this article in press as: Kraemer, F.A., et al. Tool support for the rap
Software (2009), doi:10.1016/j.jss.2009.06.057
to the next state. Consequently, action observe describes that the
enclosing ESM changes from off to active and a token is placed into
queue q1. In the UML activity, this corresponds to a token entering
via observe and flowing into the transmission medium between the
client and proximity server.

The other actions represent the residual steps our specification
describes. Thus, subscribe models the arrival of a token in the prox-
imity server upon which the location tracking is started. Action up-
date represents that a new location arrived, upon which the client
is notified via q2 and the location tracking is terminated.5 Actions
unsubscribe and unsubscribe2 describe how the client terminates
the subscription to the proximity alert. Actions term1 and term2
model how a termination by the client propagates towards the ser-
ver, and alert represents the notification of the client once the target
is reached.

3.2. Theorems for correct building blocks

There are a number of general behavioral properties that should
hold for any building block. To check them, Arctis automatically
adds corresponding theorems to the TLA specification, as listed in
the last compartment of Fig. 6.
5 An update not matching the target location corresponds to a step without state
change which we left out for brevity.

id composition, analysis and implementation of reactive services. J. Syst.

http://dx.doi.org/10.1016/j.jss.2009.06.057


ProximityAlertState 3

client

update: Location

subscribe

unsubscribe

terminated

t: TrackLocation

proximity server location server

observe

alert

unsubscribe

finished

finishing

off

ProximityAlertState 2

client

update: Location

subscribe

unsubscribe

terminated

t: TrackLocation
proximity server location server

observe

alert

unsubscribe

finished

active

off

ProximityAlertState 1

client

update: Location

subscribe

unsubscribe

terminated

t: TrackLocation
proximity server location server

observe

alert

unsubscribe

finished

off

off

q1

q2

q3

q4

q1

q2

q3

q4

q1

q2

q3

q4

(initial)

Fig. 8. Visualization of TLC’s error trace in Arctis.

6 F.A. Kraemer et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

ARTICLE IN PRESS
– To prevent communication overflows, queue places between
partition borders must be bounded. To detect violations, we
state with theorem t_bounds that q1 to q4 must not exceed a cer-
tain number, here chosen to be 5. This has to hold in any state of
the specification, which is expressed by the temporal operator �
(always).

– A building block must be free of deadlocks, in which it does not
reach any of its final states. This is covered by theorem t_dead-
lock, which states that, at any time, the building block must
either have reached a final state of its ESM (encoded as finished),
or that one of its actions has to be enabled.

– The sub-activities within a building block must be used accord-
ing to the ESM, so that pins are traversed only in the allowed
order. In particular, this means whenever there is a token that
can flow into a pin of the sub-activity t, its ESM has to be in a
state that accepts this token. For our example this means that
whenever a token is in queue q1 that could enter t via subscribe,
then the ESM of t (see Fig. 4) must be in state off, as an entry via
subscribe would activate it. Similarly, whenever a token from q3
could unsubscribe, t has to be in state active. These constraints
are expressed by theorems t_q1 and t_q3.

– As the internal behavior of a building block must correspond to
its external description, similar theorems are created for the
enclosing ESM. For instance, whenever a token in q2 could tra-
verse via alert, the enclosing ESM (see Fig. 5) has to be in state
active, expressed by t_q2. Theorem t_q4 works accordingly.

In addition to the general well-formedness properties described
above, users may add application-specific constraints in form of
assertions expressed by dedicated stereotypes in the UML activi-
ties. Examples for such properties are how often certain operations
may or must be executed, or if certain operations are mutually
exclusive.

3.3. Error trace animation in Arctis

Arctis generates the TLA+ module as described above and in-
vokes the TLC model checker. During the generation of the TLA+

module, a map from the variable names used in TLA to the ele-
ments of the activity is constructed. Therefore, if TLC reports that
theorems are violated, our tool parses the textual error trace pro-
vided by TLC and maps each state back into the original activity
diagram.

Fig. 8 illustrates how the trace is presented graphically to the
user after TLC reported that a theorem was violated. The user can
jump through the error trace, animated by tokens in the editor.
The state of the activity and each of its building blocks are repre-
sented by the corresponding ESM states. In addition, the pins of t
and the parameter nodes6 of the enclosing activity are marked
based on their corresponding ESM states: A node that may release
a token is depicted with a token besides it, while one that must
not be passed by a token is shown crossed out.

– In the initial state 1, a token may enter the activity via observe
and place a token in queue q1. This changes the enclosing ESM
to active, and state 2 is reached.

– In state 2, the client may send an unsubscribe, placing a token
into q3.

– In state 3, TLC reports that theorem t q3 is violated. We can see,
that the token in q3 could enter the ESM of t via unsubscribe. The
ESM, however, is in state off, because the token that should acti-
vate it still resides in q1.
6 Conceptually, UML distinguishes between parameter nodes that are at the border
of activities and pins which represent parameter nodes once the activity is
instantiated as call behavior action. Both are represented by the same symbols.

Please cite this article in press as: Kraemer, F.A., et al. Tool support for the ra
Software (2009), doi:10.1016/j.jss.2009.06.057
3.4. Automatic diagnose and fixes

The presentation of the traces within the editor is already help-
ful, especially as users do not have to consider any temporal logic
formulas. In addition, Arctis can in many cases provide a more dis-
tinct diagnosis and suggest improvements. For that, each violated
theorem triggers a number of pattern searches that take the UML
activity as well as TLC’s error trace as input. In the example, Arctis
detected a match for the situation that a token overtakes another
one during the transmission between partitions: Between state 2
and state 3, q3 is filled while q1 has not yet been emptied. This
may be intended by the designer. The fact, that the token arriving
in q3 harms a theorem, however, is a reason for Arctis to report this
situation.

As a remedy, Arctis proposes to add a sequencing construct, so
that a token in q3 can only proceed towards unsubscribe after q1
was consumed. The altered design is shown in Fig. 9, after Arctis
pid composition, analysis and implementation of reactive services. J. Syst.

http://dx.doi.org/10.1016/j.jss.2009.06.057


Fig. 10. New error situation in the altered design.

Fig. 9. Suggested improvement by Arctis with sequencing.

F.A. Kraemer et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 7

ARTICLE IN PRESS
added an additional fork, a join node and a timer.7 Before a token
can move from q3 into unsubscribe of t, it has to wait in the join
node until the other incoming flow can offer a token. This may only
happen after a token was consumed from q1, which enforces the
desired sequence. The additional timer8 prevents that tokens pass
through subscribe and unsubscribe within the same step, since this
would harm the assumptions of the ESM of block t. Further cases
for automatic diagnosis and fixes are described in Slåtten (2005).

3.5. A building block to handle mixed initiatives

We let Arctis analyze the improved design. After a new analysis,
Arctis reports that a theorem was violated and presents the error
trace. For brevity, we directly consider its last state shown in
Fig. 10. We can see that in this state, a player must have reached
the target position, as one token is in queue q2. This token may
have only arrived there via pin update of t. However, in the mean-
time, the client has chosen to unsubscribe, since the join node fol-
lowing q3 contains a token as well. This reveals a situation that is
typical for systems in which several active components may take
initiatives at the same time, due to the buffered communication.
These two initiatives are in conflict. Once identified, such a situa-
tion can be handled by assigning primary and secondary priorities
to the conflicting partners. An initiative from the primary side is
accepted in all cases. For the secondary side, this means that it
must be prepared to receive a primary initiative even after it issued
an initiative itself, and obey the primary one; the secondary is in
this case discarded. The solution may sound trivial, but such situ-
ations are intricate to get right, as the generic solution is combined
with the complexity of the rest of the application. Thus, often it is
not treated with the appropriate care.

As mixed initiatives are so common in this kind of system, we
provide special building blocks in our library that solve such situ-
ations (see also Kraemer et al. (2007)). In the following, we present
one in which the side that starts the interactions has secondary pri-
ority, called Mixed Initiative Secondary Starter, MISS for short.

The internal behavior is represented by a network of activity
nodes that implements the desired behavior, shown in the center
of Fig. 11. This activity appears quite complex on the first glance.
However, an engineer using this building block never has to look
at the inside as presented here; the external description is suffi-
cient. It is given by two local ESMs that describe the external
behavior on each of the participants of the building block. The side
7 While elements are added and connected automatically, it is up to the user to
adjust their layout.

8 Since we do not look into real-time behavior during the analysis, timers are just
modeled as actions that may execute whenever the timer is active, see also Kraemer
and Herrmann (2007a).

Please cite this article in press as: Kraemer, F.A., et al. Tool support for the rap
Software (2009), doi:10.1016/j.jss.2009.06.057
with secondary priority starts the block. If the primary side takes
initiative, the block eventually terminates on the secondary side
via primWins. If the secondary side takes its initiative (in the trea-
sure hunt this means that the timer expired), it has to wait for the
primary side to either confirm via secAccepted or, if the primary
side took initiative in the meantime, be overruled and receive a
secOverruled. The ESM for the primary side is easier, as its initiative
always succeeds, and no waiting for a confirmation in necessary.

For the proximity alert, we apply the mixed initiative block with
the starting secondary side assigned to the client, as shown in
Fig. 12. In the strict sense, this means a slight advantage for the
players, as an arrival is counted if the corresponding notification
reaches the proximity server before the timeout. Later, during
the usage of the proximity alert, we need to know if the initiative
of the client was overruled. Therefore, we propagate this via the
ESM of the proximity alert using alertAnyhow. The introduction
of a building block to handle this situation makes this design
choice explicit. If we want to change this policy (so that for exam-
ple the timeout should get priority over the arrival of the player),
we would simply replace this block by one in which the primary
side starts and assigns the corresponding roles to the proximity
server and the client.

3.6. The complete treasure hunt system

The complete behavioral system is described by the activity in
Fig. 13. Each collaboration use from the system collaboration from
Fig. 3 is represented by a corresponding call behavior action (i.e.,
s1, s2, p, r). In addition, it contains two auxiliary activity blocks
t2: Timer to measure time and c: Countdown as a decrementing
counter. These blocks are local to the game server and help to de-
scribe the composition between the other collaborations. There-
fore, Arctis draws them in blue.

At startup, s1, s2 and counter c are initialized as tokens are emit-
ted from the three initial nodes i1..i3. Then, the single SMS notifica-
tion s1 is waiting for an incoming SMS to start a game. Once it
arrives, the player’s MSID is extracted, upon which a welcome mes-
sage is produced and sent out via s2. Within the same step, the rid-
dle generator r is queried for the first riddle. It answers by
simultaneously issuing the next target, the granted time for the
completion as well as the question in form of an SMS message.
The target is used to start the proximity alert collaboration p. In
the same step, timer t2 is started with the granted time as input
and the question is sent out to the player. It is now up to the player
to move fast enough to the right target, upon which the proximity
alert terminates via alert, which stops the timer. In addition, a to-
ken is sent through the countdown, which determines if more rid-
dles should be sent out. In this case, after decreasing its internal
id composition, analysis and implementation of reactive services. J. Syst.

http://dx.doi.org/10.1016/j.jss.2009.06.057


Fig. 11. Building block to handle mixed initiatives with local ESMs for both of its participants.

Fig. 12. Correct proximity alert with the mixed initiative building block.

Fig. 13. Complete system specification of the treasure hunt.

8 F.A. Kraemer et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

ARTICLE IN PRESS

Please cite this article in press as: Kraemer, F.A., et al. Tool support for the rapid composition, analysis and implementation of reactive services. J. Syst.
Software (2009), doi:10.1016/j.jss.2009.06.057

http://dx.doi.org/10.1016/j.jss.2009.06.057


F.A. Kraemer et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 9

ARTICLE IN PRESS
counter, it directs the token to continue, which triggers another
round. Otherwise, the game is ended successfully and a message
is sent to the player. In case the player arrives too late at the target,
the timeout from t2 causes an unsubscribe from the proximity alert
and the player is notified that the game is lost.

3.7. Scalability of the analysis

Due to the compositional nature of the underlying formalism in
temporal logic and the way building blocks are composed with
each other, each building block can be analyzed separately. Even
when a building block is composed from others, these sub-behav-
iors are abstracted by their respective ESMs, which leads to a smal-
ler state space than if a block would be analyzed with all its sub-
behaviors in place.

To illustrate the reduction of complexity of the analysis through
the building blocks and ESM, we conducted an experiment, in
which we compare the size of state spaces of the complete system
with those of the strategy of analyzing all building blocks
separately.

– When we produce the state space of the complete system with-
out making use of the building blocks and their ESMs (i.e., we
expand the behavior contained in all building blocks), the model
checking finds 575 distinct states.

– When we analyze each building block separately, the state space
for each building block is only a fraction of this number: The
treasure hunt system on its highest composition level in
Fig. 13 has only 7 distinct states. The building block to handle
mixed initiatives in Fig. 11 requires 22 states, and the collabora-
tion for the proximity alert from Fig. 12 has 17 states. The
remaining blocks in Fig. 13 not further detailed here have simi-
larly few states, with TrackLocation being the most complex with
4 distinct states.

Obviously, real systems tend to be larger than the presented
example. However, this does not result in more complex
building blocks, but rather in additional levels of decomposition,
represented by additional building blocks. Since those can be
analyzed separately, as shown, the total effort for validation only
increases linearly with the size of the system, since more build-
ing blocks have to be analyzed, but not a larger overall state
space.

In the FABULA project (Kathayat and Br�k, 2009), for example,
the treasure hunt system is currently extended with chat and in-
stant messaging functions between the users. This is achieved by
encapsulating the treasure hunt system as a service, and creating
a new system level in which the treasure hunt service is combined
with the chat and instance messaging services.
9 The signal names are derived from the names of activity edges, not shown here.
4. Automated transformation

The UML activities of the building blocks together with the Java
methods for the content of the call operation actions constitute a
complete system description. To split this description into sepa-
rate components, the activities have to be transformed into exe-
cutable state machines that can be implemented via code
generation to run on our execution platforms, as we will detail
in Section 5. Some concepts found in activities have their direct
correspondence in state machines. Call operation actions are exe-
cuted as operations that are part of a transition. Operations on
variables stay largely unchanged, and decisions in activities map
to choice pseudostates in a state machine. The remaining concepts,
however, are fundamentally different (see Kraemer and Herrmann
(2007b)):
Please cite this article in press as: Kraemer, F.A., et al. Tool support for the rap
Software (2009), doi:10.1016/j.jss.2009.06.057
– In contrast to the explicit control states of state machines, activ-
ities represent their states indirectly via the different token
markings that occur during the execution. The transformation
has to find all reachable token markings and map them to con-
trol states.

– The token movements must be mapped to transitions of state
machines. There is, however, no one-to-one mapping between
activity flows and state machine transitions either. Depending
on the markings, one flow may have to be represented by several
state machine transitions. This is the case for join nodes, where
tokens have to wait until all incoming edges can fire.

– As components communicate via buffered message exchange,
flows crossing partition borders have to be split up and trans-
lated into corresponding signal transmissions. If a flow carries
objects, signal types have to take these objects as payload.

The detailed algorithm to construct the state machine transition
identifies the events within a partition that correspond to events in
state machines. These are the expiration of timers and the arrival of
signals (resp. tokens entering a partition). By traversing the activity
graph and taking into account the current marking, the state ma-
chine transition is constructed successively. The details of the algo-
rithm are explained in Kraemer and Herrmann (2007b). In the
following, we illustrate the transformation process for the game
server component.

4.1. Scalability of the transformation

The search for reachable markings implies a state space explo-
ration of the system’s specification. To reduce the state space, we
employ a strategy that, similar to our strategy in model checking,
utilizes the external behavior of the building blocks as described
by ESMs. Only one state machine is produced at a time. Therefore,
we only need to consider those building blocks with its internals
that directly contribute to the state machine under construction.
The other building blocks are abstracted by their ESMs. When we
create the state machine for the game server, for example, we
may disregard the internals of t: Track Location, while the other
building blocks need to be integrated. To generate the state ma-
chine for the proximity server, only the building blocks for the
mixed initiative and the location tracking have to be seen from
the inside.

4.2. State machine for the game server

Fig. 14 shows the state machine automatically produced by the
Arctis transformation from the activity of Fig. 13. As general UML
state machines can be used in various ways, we describe in Kra-
emer et al. (2006) rules for transitions so that the state machines
may be executed efficiently. For example, each transition with
exception of the initial one must be scheduled by a signal or a
timeout. The application of these rules is noted by the stereotype
executable.

The initial transition, initializes the counter and starts the SMS
notification, whereupon the state machine changes into state
state_1 and waits for an incoming SMS. Once the SMS arrives, the
MSID of its sender is extracted, from which a welcome message
is generated that is sent back to the player. Within the same tran-
sition, the riddle server is queried for a new riddle via signal
GetRiddle.9 This implements the flow in Fig. 13 starting within s1
via pin sms. In a similar way, the other flows in Fig. 13 are trans-
formed into transitions of the state machine of Fig. 14.
id composition, analysis and implementation of reactive services. J. Syst.

http://dx.doi.org/10.1016/j.jss.2009.06.057


Fig. 14. Executable state machine for the game server generated by Arctis.

10 F.A. Kraemer et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

ARTICLE IN PRESS
The generated state machine handles the mixed initiative be-
tween the timer and the alert correctly. This is visible in control
state state_4, reached after a timeout, where the state machine is
prepared to receive both an acknowledgement of the timeout as
well as a primary initiative modeling the arrival of the player at
the target.

4.3. Correctness of the transformation

Obviously, it is important that the generated state machines be-
have exactly as implied by the activities of the specifications. To
ensure this, we use temporal logic as well. Similar to the semantics
of activities presented in Section 3.1, we defined formal semantics
of the executable state machines in (Kraemer et al., 2006), using a
compositional variant of TLA, cTLA (Herrmann and Krumm, 2000).
A system of state machines can therefore be presented as a TLA
specification SpecE. As the implementation relation corresponds
to logical implication in TLA, we have to prove that SpecE ) SpecA

holds, where SpecA is the TLA specification of the system as ex-
pressed by activities (see Kraemer and Herrmann (2007a)). This
relationship can be shown by a TLA refinement proof as demon-
strated in Kraemer (2008, App. B). The necessary refinement map-
ping (Abadi and Lamport, 1991) is easy to find using the guidelines
described in Kraemer and Herrmann (2007b). Note, however, that
such a reasoning is only necessary to ensure the soundness of the
transformation once. During the implementation of systems, the
service engineers can then rely on the tool to execute the transfor-
mation correctly.

5. Code generation from state machines

The mechanisms for the execution of state machines go back to
principles found in telecommunication systems (Br�k et al., 1981)
and use a run-time support system that schedules the execution of
the state machine transitions, further described in Kraemer et al.
(2006). Through this additional level of multiplexing, many state
machine instances can be executed within the same operating sys-
tem thread, which is important for systems to scale. While these
mechanisms can be implemented on a variety of platforms, we fo-
cus currently on Java and use the ServiceFrame/ActorFrame execu-
tion platforms (Br�k et al., 2002). These frameworks take care of
Please cite this article in press as: Kraemer, F.A., et al. Tool support for the ra
Software (2009), doi:10.1016/j.jss.2009.06.057
addressing and routing. The implementation and scheduling of
state machine transitions are based on JavaFrame (Haugen and
Møller-Pedersen, 2000). Code for these frameworks is generated
automatically with the tool described in Kraemer (2003) and Støyle
(2004). The code generator creates OSGi bundles for the compo-
nents that can be deployed on different machines. In addition,
we can generate Java Micro Edition code for the execution on
Sun SPOTs (Merha, 2008), targeting embedded devices.

6. Related approaches

A number of other tools combine UML modeling with formal
analysis techniques. The majority of these approaches directly uses
state machines as the main specification units. HUGO (Knapp and
Merz, 2002), for example, verifies UML state machines against
UML interactions using the SPIN model checker (Holzmann,
2003), and UPPAAL (Bengtsson and Yi, 2003) to check real-time
properties. Burmester et al. (2004) uses so-called real-time state
charts that represent behavioral patterns and utilizes Amnell
et al. (2001) for their verification. The specifications in OMEGA
(Hooman et al., 2008) are based on state machines as well. Using
the model checker IF (Bozga et al., 2004), they are verified against
properties expressed by special observer state machines, as de-
scribed in Ober et al. (2004).

Analysis of activities is done for example in Guelfi and Mammar
(2005) via SPIN. In Dong and Shensheng (2003), UML activities are
analyzed using the p-calculus. Safety and liveness properties are
expressed using the modal mu-calculus and checked using the
MWB tool (Victor and Moller, 1994). Similarly, Eshuis (2006) uses
the model checker NuSMV to check the consistency of activity dia-
grams. The difference of these approaches to ours lies mainly in the
semantics employed for the activities and the domain of applica-
tion. While they focus on activities more from a perspective of
business processes assuming a central clock or synchronous com-
munication, we need for our activities reactive semantics (Kraemer
and Herrmann, 2007a) reflecting the transmission of asynchronous
messages between distributed components.

In the domain of web services, the tool suite WS-Engineer (Fos-
ter et al., 2007) enables verification (freedom of deadlocks, safety
and liveness properties) of a BPEL implementation and its choreog-
raphy description. Like in our method, this is accomplished
pid composition, analysis and implementation of reactive services. J. Syst.

http://dx.doi.org/10.1016/j.jss.2009.06.057


F.A. Kraemer et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 11

ARTICLE IN PRESS
through the use of an underlying formalism (in this case FSP, Finite
State Process, (Magee and Kramer, 2006)) and model checking (via
the LTSA tool (Magee and Kramer, 2006)). Apart from the differ-
ences in chosen formalism and languages, our method differs from
that of WS-Engineer in its strong focus on the behaviorally com-
plete definition of reusable, collaborative building blocks and their
separate analysis.

There exist also other tools that present the results of a model
checker in terms of a graphical model. vUML (Lilius and Paltor,
1999) automatically creates PROMELA specifications from UML
state charts and model checks them using SPIN. Like us, they mostly
check general properties that the users do not specify manually, but
they also allow to declare certain states as erroneous or desired
goals. Any error traces are presented as sequence diagrams. An-
other tool is Theseus (Goldsby et al., 2006) which visualizes error
traces from the SPIN and SMV model checkers onto UML 1.4 state
chart diagrams, and also generates UML sequence diagrams from
the trace. While both of the above tools visualize the trace, they
do not try to find a reason for the error. Moreover, as error traces
are presented as sequence diagrams, the user has to find manually
the relation to the original source model. In our case, errors are vis-
ible within the same editor used to create the specification.

In Flender and Freytag (2006), a method is proposed for visual-
izing soundness violations of workflow Petri nets (van der Aalst,
1998), detected by the Woflan tool (van der Aalst, 1999), in the
WoPeD tool (WoPeD, 2008). Soundness violation is separated into
five violation classes and a list of eleven error reasons is presented.
In the case of a violation, the violating nodes are highlighted with
the violation class and the error reason. If a violation is caused by a
certain firing sequence of the net, an animation can be shown.
Since this approach works on workflow Petri nets, it is quite close
to the UML activities used in our case. However, similar to the
works on activities mentioned earlier, focus lies on business pro-
cesses, not on distributed, reactive components with asynchronous
communication.

The tool support provided by the SIMS project (2009) uses col-
laborations as well, albeit in a form that is complementary to the
current approach in Arctis. In SIMS, elementary collaborations de-
scribe a pair of behavioral interfaces (Carrez et al., 2008). These can
be connected within composite collaborations to describe, how an
overall service goal may be achieved. Engineers are supported by
validation algorithms that check compliance of state machines
with behavioral interfaces. However, these state machines have
to be constructed manually.

The SDL pattern tool (SPT, (Dorsch et al., 2004)), supports the
integration of patterns into SDL designs. The patterns are inte-
grated within the component-oriented perspective expressed by
SDL processes. In contrast to our encapsulated building blocks, pat-
terns are expressed as SDL fragments that have to be integrated
into the state machine under construction.
7. Concluding remarks

In the current version of our method and tools we focus on the
analysis of general safety properties as detailed in Section 3.2.
Analysis of real-time and liveness properties is subject of future
work. Our experience so far, however, shows that checking safety
properties, in particular the obligation with the ESMs of the build-
ing blocks, uncover many design flaws that should be addressed
first. In addition, we study the possibility to ensure application-
specific properties (such as mutual exclusion between certain
operations, for instance) by applying assertive stereotypes to the
activities. Similar to the general safety properties, these assertions
are automatically transformed into theorems for model checking
(Slåtten, 2005).
Please cite this article in press as: Kraemer, F.A., et al. Tool support for the rap
Software (2009), doi:10.1016/j.jss.2009.06.057
Arctis is used within the applied research project ISIS (Infra-
structure for Integrated Services) funded by the Research Council
of Norway. In this project we develop methods, tools and platforms
for the rapid specification and deployment of services in the do-
main of home automation. We believe that the collaboration-ori-
ented approach underlying Arctis is ideal in this setting: While
there exists a number of rather stable sub-services that provide
some basic functionality, the challenge is to compose them quickly,
as demonstrated in the example.

Our tool is also used within the FABULA project (Kathayat and
Br�k, 2009), which deals with the creation of learning platforms
that make use of location-aware services. In this project, the trea-
sure hunt system as presented here is extended to serve as a gen-
eral framework for situated learning systems, in which exercises
are solved by pupils in a mobile setting. Within these projects, as
well as in teaching and student theses (Haugsrud, 2008; Heitmann,
2008; Sangvanphant, 2008), we have tested the effectiveness of our
method. The threshold to get started is rather low; a developer
familiar with Java and the Eclipse platform can build a running sys-
tem within a short time, depending on how many existing building
blocks may be reused. For the presented system, for instance, we
could reuse the blocks for SMS communication (SendSMS and Sin-
gleSMSNotification) and location tracking as well as the one to han-
dle mixed initiatives from previous projects. Therefore, editing the
entire system as presented in Figs. 12 and 13 took us less than one
hour.

In our opinion, the specification style supported by our method
is quite intuitive, due to its way of decomposing systems into col-
laborative building blocks: The main specification of the system
as depicted in Fig. 13 is very close to an informal functional descrip-
tion that can be the result of a requirements analysis. It focuses on
the distribution of responsibilities and decomposes the system
according to its sub-functions. In contrast, state machines (which
in our approach are never read by humans) provide a less compre-
hensive view. To understand them, detailed signal transmission
must be considered, and elements related to a single function (like
counters, timers or the coordination of mixed initiatives) are mixed
with each other. In activities, on the other side, all elements related
to a certain function are encapsulated within one building block.
This supports reuse, since developers may simply drag existing
functionalities in form of building blocks into the editor and only
refer to their externally visible events represented by pins. Since
the building blocks may cover behavior of several participants, en-
tire sub-services may be reused by referring to a single element.
Furthermore, since the building blocks also allow system specifica-
tions to be decomposed into arbitrary many levels, the complexity
of each level (i.e., building block) is quite manageable, which makes
the overall method also scalable from a developer’s point of view.

For the analysis, we follow the strategy proposed by Rushby in
‘‘Disappearing Formal Methods” (Rushby, 2000), to hide formal
methods in tools in such a way that users are not directly con-
cerned with them. In our experience, this strategy not only reduces
the threshold to analyze models thoroughly. This is also an incen-
tive for the use of rigorous modeling in the first place and inte-
grates well with the paradigms of the Model-Driven Architecture
(MDA, (Object Management Group, 2003)).

Based on case studies, we are currently expanding the analytical
capabilities of Arctis, so that more automated fixes and corrections
can be offered. That gives even better assistance to the engineers
which, in consequence, reduces development time further.

Acknowledgement

The research on which this article reports has partly been
funded by the Research Council of Norway through the project ISIS
(Infrastructure for Integrated Services, #180122).
id composition, analysis and implementation of reactive services. J. Syst.

http://dx.doi.org/10.1016/j.jss.2009.06.057


12 F.A. Kraemer et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

ARTICLE IN PRESS
References

Abadi, M., Lamport, L., 1991. The existence of refinement mappings. Theoretical
Computer Science 82 (2), 253–284.

Amnell, T., Behrmann, G., Bengtsson, J., D’Argenio, P.R., David, A., Fehnker, A., Hune,
T., Jeannet, B., Larsen, K.G., Möller, M.O., Pettersson, P., Weise, C., Yi, W., 2001.
UPPAAL: now next and future. In: Modeling and Verification of Parallel
Processes. Lecture Notes in Computer Science, vol. 2067. Springer-Verlag, pp.
99–124.

Arctis Website, 2009. <http://arctis.item.ntnu.no>.
Bengtsson, J., Yi, W., 2003. Timed automata: semantics algorithms and tools. In:

Desel, J., Reisig, W., Rozenberg, G. (Eds.), Lectures on Concurrency and
Petri Nets, Lecture Notes in Computer Science, vol. 3098. Springer, pp.
87–124.

Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J., 2004. The IF toolset. In: Procceedings of
the 4th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems (SFM-RT’04), vol. 3185. Lecture Notes in
Computer Science, Springer, pp. 237–267.

Br�k, R., Haugen, Ø., 1993. Engineering Real Time Systems: An Object-Oriented
Methodology Using SDL. The BCS Practitioner Series. Prentice Hall.

Br�k, R., Helle, O., Sandvik, F., 1981. SOM – A SDL compatible specification and
design methodology. In: Fourth International Conference on Software
Engineering for Telecommunication Switching Systems, Conventry, vol. 198.
pp. 111–117.

Br�k, R., Husa, K.E., Melby, G., 2002. ServiceFrame Whitepaper, Ericsson NorARC,
Asker, Norway (April).

Burmester, S., Giese, H., Hirsch, M., Schilling, D., 2004. Incremental design and
formal verification with UML/RT in the FUJABA real-time tool suite. In:
Proceedings of the International Workshop on Specification and Validation of
UML Models for Real Time and Embedded Systems, SVERTS2004, Satellite Event
of the 7th International Conference on the Unified Modeling Language,
UML2004, pp. 1–20.

Carrez, C., Floch, J., Sanders, R., 2008. Describing component collaboration using goal
sequences. In: Meier, R., Terzis, S. (Eds.), Distributed Applications and
Interoperable Systems – Proceedings of DAIS 2008, Oslo, Norway, vol. 5053.
Lecture Notes in Computer Science, Springer, pp. 16–29.

Dong, Y., Shensheng, Z., 2003. Using p-calculus to formalize UML activity diagram
for business process modeling. In: Proceedings of 10th IEEE International
Conference and Workshop on the Engineering of Computer-Based Systems,
Huntsville, AL, USA, pp. 47–54.

Dorsch, J., Ek, A., Gotzhein, R., 2004. SPT – The SDL pattern tool. In: Amyot, D.,
Williams, A.W. (Eds.), System Analysis and Modeling, 4th International SDL
and MSC Workshop, SAM 2004, Ottawa, Canada, June 1–4, 2004, Revised
Selected Papers, vol. 3319. Lecture Notes in Computer Science, Springer, pp.
50–64.

Eshuis, R., 2006. Symbolic model checking of UML activity diagrams. ACM
Transactions on Software Engineering and Methodology 15 (1), 1–38.

Flender, C., Freytag, T., 2006. Visualizing the soundness of workflow nets. In:
Proceedings 13th Workshop Algorithms and Tools for Petri Nets, AWPN,
Hamburg, Germany, pp. 47–52.

Foster, H., Uchitel, S., Magee, J., Kramer, J., 2007. WS-engineer: a model-based
approach to engineering web service compositions and choreography. In:
Baresi, L., Nitto, E.D. (Eds.), Test and Analysis of Web Services. Springer-Verlag,
pp. 87–119.

Goldsby, H., Cheng, B.H.C., Konrad, S., Kamdoum, S., 2006. A visualization
framework for the modeling and formal analysis of high assurance systems.
In: MoDELS, pp. 707–721.

Guelfi, N., Mammar, A., 2005. A formal semantics of timed activity diagrams and its
PROMELA translation. In: APSEC’05: Proceedings of the 12th Asia-Pacific
Software Engineering Conference (APSEC’05), IEEE Computer Society,
Washington, DC, USA, pp. 283–290.

Haugen, Ø., Møller-Pedersen, B., 2000. JavaFrame – framework for java enabled
modelling. In: Proceedings of Ericsson Conference on Software Engineering
(September).

Haugsrud, S., 2008. A Mobile Treasure Hunt as an Example for Collaborative Service
Specifications, Project Thesis. Norwegian University of Science and Technology,
Trondheim, Norway (December).

Heitmann, N., 2008. Towards Modeling of Data in UML Activities with the SPACE
Method. An Example-Driven Discussion, Master’s Thesis. Norwegian University
of Science and Technology (June).

Herrmann, P., Krumm, H., 2000. A framework for modeling transfer protocols.
Computer Networks 34 (2), 317–337.

Holzmann, G., 2003. The Spin Model Checker. Primer and Reference Manual.
Addison-Wesley, Reading, Massachusetts.

Hooman, J., Kugler, H., Ober, I., Votintseva, A., Yushtein, Y., 2008. Supporting UML-
based development of embedded systems by formal techniques. Software and
Systems Modeling 7 (2), 131–155.

ITU-T, 2002. Recommendation Z.100: Specification and Description Language (SDL)
(August).

Kathayat, S.B., Br�k, R., 2009. Platform support for situated collaborative learning.
In: Proceedings of the 2009 International Conference on Mobile, Hybrid, and
On-line Learning, IEEE Press, Cancun, Mexico, pp. 53–60.

Knapp, A., Merz, S., 2002. Model checking and code generation for UML state
machines and collaborations. In: Schellhorn, G., Reif, W. (Eds.), FM-TOOLS 2002:
5th Workshop on Tools for System Design and Verification, Report
Please cite this article in press as: Kraemer, F.A., et al. Tool support for the ra
Software (2009), doi:10.1016/j.jss.2009.06.057
2002-11, Institut für Informatik, Universität Augsburg, Reisensburg, Germany,
pp. 59–64.

Kraemer, F.A., 2003. Rapid Service Development for Service Frame, Master’s Thesis,
University of Stuttgart.

Kraemer, F.A., 2008. Engineering Reactive Systems: A Compositional and Model-
driven Method Based on Collaborative Building Blocks, Ph.D. thesis. Norwegian
University of Science and Technology (August).

Kraemer, F.A., Herrmann, P., 2006. Service specification by composition of
collaborations – an example. In: Proceedings of the 2006 WI-IAT Workshops
(2006 IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology), IEEE Computer Society, 2nd
International Workshop on Service Composition (Sercomp), Hong Kong, pp.
129–133.

Kraemer, F.A., Herrmann, P., 2007. Formalizing collaboration-oriented
service specifications using temporal logic. In: Networking and Electronic
Commerce Research Conference 2007 (NAEC 2007), ATSMA Inc., USA, pp. 194–
220.

Kraemer, F.A., Herrmann, P., 2007. Transforming collaborative service specifications
into efficiently executable state machines. In: Ehring, K., Giese, H. (Eds.),
Proceedings of the 6th International Workshop on Graph Transformation and
Visual Modeling Techniques (GT-VMT 2007), vol. 7, Electronic Communications
of the EASST, EASST.

Kraemer, F.A., Herrmann, P., Br�k, R., 2006. Aligning UML 2.0 state machines and
temporal logic for the efficient execution of services. In: Meersmann, R., Tari, Z.
(Eds.), Proceedings of the 8th International Symposium on Distributed Objects
and Applications (DOA), 2006, Montpellier, France, vol. 4276. Lecture Notes in
Computer Science, Springer-Verlag, Heidelberg, pp. 1613–1632.

Kraemer, F.A., Br�k, R., Herrmann, P., 2007. Synthesizing components with sessions
from collaboration-oriented service specifications. In: Gaudin, E., Najm, E., Reed,
R. (Eds.), SDL 2007, Lecture Notes in Computer Science, vol. 45. Springer-Verlag,
Berlin Heidelberg, pp. 166–185.

Kraemer, F.A., Slåtten, V., Herrmann, P., 2007. Engineering support for UML
activities by automated model-checking – an example. In: Proceedings of the
4th International Workshop on Rapid Integration of Software Engineering
Techniques (RISE).

Lamport, L., 2002. Specifying Systems. Addison-Wesley.
Lilius, J., Paltor, I., 1999. vUML: a tool for verifying UML models. In: 14th

IEEE International Conference on Automated Software Engineering, pp. 255–
258.

Magee, J., Kramer, J., 2006. Concurrency: State Models and Java Programming. John
Wiley and Sons, Inc..

Merha, B.T., 2008. Code Generation for Executable State Machines on Embedded
Java Devices, Project Thesis. Norwegian University of Science and Technology,
Trondheim, Norway (December).

Mikkonen, T., 1999. The two dimensions of an architecture. In: WICSA1, First
Working IFIP Conference on Software Architecture.

Ober, I., Graf, S., Ober, I., 2004. Validation of UML models via a mapping to
communicating extended timed automata. In: Graf, S., Mounier, L. (Eds.), SPIN,
Lecture Notes in Computer Science, vol. 2989. Springer, pp. 127–145.

Object Management Group, 2003. MDA Guide Version 1.0.1, omg/2003-06-01
Edition (June).

Object Management Group, 2007. Unified Modeling Language: Superstructure,
version 2.1.1, formal/2007-02-03 (February).

Rushby, J., 2000. Disappearing formal methods. In: High-Assurance Systems
Engineering Symposium, ACM, Albuquerque, NM, pp. 95–96.

Samset, H., Br�k, R., 2008. Describing active services for publication and discovery.
In: Lee, R. (Ed.), Software Engineering Research Management and Applications
(Selected Papers), Studies in Computational Intelligence, vol. 150. Springer-
Verlag.

Sanders, R., Castejón, H.N., Kraemer, F.A., Br�k, R., 2005. Using UML 2.0
collaborations for compositional service specification. In: ACM/ IEEE 8th
International Conference on Model Driven Engineering Languages and
Systems, vol. 3713. Lecture Notes in Computer Science, Springer, pp.
460–475.

Sangvanphant, N., 2008. Providing TLS Security Functions by Means of Collaborative
Building Blocks, Project Thesis. Norwegian University of Science and
Technology, Trondheim, Norway (December).

SIMS Project Website, 2009. <http://www.ist-sims.org>.
Slåtten, V., 2008. Automatic Detection and Correction of Flaws in Service

Specifications, Master’s thesis, Norwegian University of Science and
Technology (June).

Støyle, A.K., 2004. Service Engineering Environment for AMIGOS, Master’s thesis,
Norwegian University of Science and Technology.

The WoPeD Homepage, 2008. <http://woped.ba-karlsruhe.de/woped>.
van der Aalst, W.M.P., 1998. The application of petri nets to workflow management.

The Journal of Circuits Systems and Computers 8 (1), 21–66.
van der Aalst, W.M.P., 1999. Woflan: a petri-net-based workflow analyzer. Syst.

Anal. Model. Simul. 35 (3), 345–357.
Victor, B., Moller, F., 1994. The mobility workbench – a tool for the p-calculus. In:

Dill, D. (Ed.), CAV’94: Computer Aided Verification, Lecture Notes in Computer
Science, vol. 818. Springer-Verlag, pp. 428–440.

Yu, Y., Manolios, P., Lamport, L. 1999. Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (Eds.), Proceedings of the 10th IFIP WG 10.5 Advanced Research
Working Conference on Correct Hardware Design and Verification Methods
(CHARME’99), vol. 1703. Lecture Notes in Computer Science, Springer-Verlag,
pp. 54–66.
pid composition, analysis and implementation of reactive services. J. Syst.

http://arctis.item.ntnu.no
http://www.ist-sims.org
http://woped.ba-karlsruhe.de/woped
http://dx.doi.org/10.1016/j.jss.2009.06.057


F.A. Kraemer et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 13

ARTICLE IN PRESS
Frank Alexander Kraemer studied Electrical Engineering and Information Tech-
nology at the University of Stuttgart, Germany, and received his Ph.D. from the
Norwegian University of Science and Technology (NTNU) in 2008. He is now a
postdoctoral researcher at the Department of Telematics, NTNU. His research
activities are centered around the development of reactive systems, with a focus on
specification styles to enable their incremental construction and verification, formal
methods to ensure their correctness, and corresponding tool support.

Vidar Slåtten received his M.Sc. in 2008 from the Norwegian University of Science
and Technology (NTNU), Trondheim, Norway. He is now pursuing a Ph.D. degree at
the same university, at the Department of Telematics. His research focuses on
enabling the rapid engineering and analysis of reliable systems using a combination
of model-driven development and formal methods.
Please cite this article in press as: Kraemer, F.A., et al. Tool support for the rap
Software (2009), doi:10.1016/j.jss.2009.06.057
Peter Herrmann studied Computer Science at the University of Karlsruhe, Ger-
many, and achieved his diploma in 1990. From 1990 to 1999 and from 2001 to 2005
he worked as a researcher at the University of Dortmund, Germany, and did his
doctorate in 1997 on problem-oriented correctness-guaranteeing design of high-
speed communication protocols. Since 2005, he is professor on Formal Methods at
the Department of Telematics (ITEM) of the Norwegian University of Science and
Technology (NTNU) in Trondheim. He works in the areas of formal specification,
design, implementation and verification of distributed systems, networked services
and continuous-discrete technical systems, functional and security aspects of dis-
tributed component-structured software, and trust management. He has repre-
sented his institutions in the EU-funded projects iTrust and SIMS as well as in the
projects ISIS and UbiComp which are both funded by the Research Council of
Norway. He is a member of the IFIP Working Group 11.11 on Trust Management.
id composition, analysis and implementation of reactive services. J. Syst.

http://dx.doi.org/10.1016/j.jss.2009.06.057

	Tool support for the rapid composition, analysis and implementation of reactive services
	Introduction
	Composing services from building blocks
	Elementary building blocks
	Composing building blocks

	Automated model checking and analysis
	Semantics in temporal logic
	Theorems for correct building blocks
	Error trace animation in Arctis
	Automatic diagnose and fixes
	A building block to handle mixed initiatives
	The complete treasure hunt system
	Scalability of the analysis

	Automated transformation
	Scalability of the transformation
	State machine for the game server
	Correctness of the transformation

	Code generation from state machines
	Related approaches
	Concluding remarks
	Acknowledgement
	References


