
Service Virtualization for Self-Adaptation in
Mobile Cyber-Physical Systems

Amir Taherkordi1,2, Peter Herrmann1, Jan Olaf Blech3, and Álvaro Férnandez1

1 NTNU Trondheim, Norway
{amirhost,herrmann,alvarof}@item.ntnu.no

2 University of Oslo, Norway
amirhost@ifi.uio.no

3 RMIT University, Melbourne, Australia
janolaf.blech@rmit.edu.au

Abstract. Mobile Cyber-Physical Systems (mCPS) consist of cooperating units
that often operate in an unpredictably changing environment. Thus, they need
to adapt quickly to varying spatial and temporal conditions during operation,
e.g., to avoid collisions. The control software of the mobile units has to reflect
this complex dynamics, and traditional device-level adaptation models are usu-
ally not efficient enough to engineer them smoothly. We address this challenge
by proposing a Virtual Adaptation Services Framework (VASF). It provides a vir-
tualized application-level view to adaptation requirements, enabling adaptation
coordination between cooperative mCPS devices. In particular, the VASF allows
us to describe the contextual conditions of mCPS by abstract rules that are an-
alyzed at runtime by the tool-set BeSpaceD. Based on this analysis, the control
systems of the involved mCPS units are automatically reconfigured using the
OSGi framework. The approach is demonstrated with DiddyBorg robots that are
operated by Raspberry Pi boards.

Keywords: Mobile CPS, spatiotemporal reasoning, virtualized adaptation services

1 Introduction

A Cyber-Physical System (CPS) integrates a physical mechanism with a computer-
based control and monitoring system. Usually, it contains feedback loops in which the
physical processes affect embedded computer systems and vice versa [10]. Being tightly
integrated with physical processes, a CPS is not always predictable and does not neces-
sarily operate in a controlled environment [25]. Therefore, it needs to respond and adapt
quickly to changes during operation, such as hardware and software defects, changes
in resource use efficiency and surrounding environments, unexpected conditions, and
non-continual feature usage.

This concern is particularly important for mobile Cyber-Physical Systems (mCPS),
in which a unit moves freely in its environment and may cooperate with other units, e.g.,
in mobile robotics and smart vehicles [37]. The mCPS essentially run in highly dynamic
environments (e.g., coordination of autonomous vehicles). In consequence, they need
to adapt their behavior in a collaborative manner at runtime. The kind of adaption that

2 A. Taherkordi, P. Herrmann, J. O. Blech, Á. Férnandez

mCPS software systems may perform can be the dynamic allocation of resources [22],
content adaptation [26] (e.g., multimedia content), or the adaptation of the structure and
functionality of software, to name the most significant ones. Among these, dynamic
and autonomous adaptation of mCPS software is considered the most difficult aspect to
implement. It involves the deployment of software modules and reconfiguration of net-
works and software architectures at runtime, as well as the adaptation of mCPS control
software parameters (e.g., the speed of a unit) [13].

To coordinate a bunch of mCPS units and to adapt them to a varying environment in
a timely manner, we need efficient context reasoning solutions that guide the reconfig-
urations carried out in the various devices. The control systems of the involved mCPS
have to consider numerous spatial and temporal contextual conditions (e.g., humans
in the vicinity). This and the potentially large number of cooperating units makes con-
text processing and self-adaptation of mCPS software a non-trivial design problem for
which traditional device-centric adaptation approaches are hardly suited [36].

The challenge to create adaptable mCPS software systems has received growing
attention by the research community. Existing work addressed this challenge within
specific application domains, e.g., robotics and smart automotive systems [14]. Most
proposed solutions are either devoted to low-level reconfiguration issues for adaptation
(e.g., component-based frameworks [11]) or focus on specifying the CPS adaptable be-
havior through high-level language abstractions, such as Domain-Specific Languages
(DSL) [33, 34]. However, the state-of-the-art has not sufficiently addressed the afore-
mentioned complexity issues in modeling and developing adaptive mCPS.

We propose a self-adaptation service framework for mCPS addressing the complex-
ity in modeling and adapting to highly dynamic location and time aspects of coopera-
tive mCPS, called the Virtual Adaptation Services Framework (VASF). In contrast to
device-oriented approaches, it allows us to define adaptation requirements for a whole
system of cooperating mCPS units. In particular, we can model spatiotemporal system
properties using a set of rules that relate contextual aspects to reconfiguration and other
change tasks. VASF uses the tool-set BeSpaceD [3] to reason about which rules to ap-
ply in a certain context. The result of this analysis is a number of adaptation actions
that are automatically executed at the involved mCPS units. The provision of a rule-
based reference context model eases the modeling of simultaneous and complicated
contextual conditions, while the automatic runtime operation of VASF facilitates soft-
ware reconfigurations on cooperating mCPS devices. We demonstrate the framework
implementation on DiddyBorg robots [30] operated by Raspberry Pi boards.

The rest of this paper is organized as follows: In Section 2, we introduce a motivat-
ing scenario followed by the proposed adaptation framework in Section 3. We present
related work in Section 4 and conclude in Section 5.

2 Motivating Scenario

Autonomous mobile robots are getting popular in various application domains rang-
ing from healthcare to warehousing and transport (e.g., autonomously operating cars
and stellar rovers). Like mCPS in general, the robots operate collaboratively in vary-
ing physical environments that may have different contextual properties. For instance,

Service Virtualization for Self-Adaptation in mCPS 3

(a) (b)

Fig. 1: (a) A DiddyBorg robot and (b) its testing environment

transport robots can face changing indoor and outdoor environments ranging from ster-
ile “highways” in which they are protected from conflicting obstacles to areas crowded
by humans, stationary barriers, and other robots which may be on conflicting courses.
The differing environments aggravate the construction of a correct and timely working
control software since, for example, the sensors to be used need to change constantly.
In the following, we list some typical contextual environment properties:

– Surface: The state of the surface, a mobile robot operates on, may effect relevant
control parameters (e.g., braking distances are larger on wet surfaces than on dry
ones). Further, the surface may influence the sensors to be used since, for instance,
some sensors tend to provide wrong readings when the robot movement is bumpy.

– Network access: Larger distances and obstacles may impede the communication
between robots operating in the same area which, e.g., may lead to a delayed reac-
tion when two robots are on a conflicting course (see [18]).

– Self-localization: For many tasks, it is important for a robot to know where it is
(see, e.g., [24]). The way to find the current position, however, depends on various
aspects (for example, GPS can only be used outdoors; for triangulation, a number
of beacons have to be located at the right spots).

– Coordination and collision prevention: For the control, it is relevant whether a
robot operates alone in a sterile environment or if it has to coordinate with other
robots. A relevant use case is, of course, the protection of humans that may be
severely hurt when colliding with a robot.

– Energy consumption: Many robots are run by batteries, and for a sustainable op-
eration it is often relevant to keep energy consumption as low as possible. For in-
stance, it may be useful to switch off sensors at the side and the back of a robot if
it operates straight ahead for a while.

When a robot moves between locations for which the above mentioned contextual prop-
erties differ, it has to adapt its control software. If, moreover, several robots collaborate,
the adaptations may embrace the control systems of all of them.

Our testbed consists of DiddyBorg robots [30], see Fig. 1. That are affordable and
easily manageable demonstrators, each consisting of six motors that are controlled by a
Raspberry Pi. To use DiddyBorg robots in practice, we provided them with sensors in
order to enable self-localization and to avoid collisions with fixed and moving obstacles.
In our current arrangement, we test the use of infrared and ultrasound sensors combined
with an accelerometer and a magnetic sensor determining the direction of the robot.

4 A. Taherkordi, P. Herrmann, J. O. Blech, Á. Férnandez

OSGi Framework OSGi Framework OSGi Framework

 VASF

Virtualization Support

Scalable Adaptation Framework

OS

JRE
OSGi Framework

System Services

B
usiness

B
undles

 Scalable Context

Modeling Space

Real-time
Context Data

Context Reasoning

Adaptation
Actions

✕

✕

✕

✕ ✕

✕

✕

✕

✕ ✕

✕ ✕

Adaptation
Manager

Spatiotemporal
Analyzer

Service
Tracker

RemoteBundle
Loader

OSGi Framework

Service
Reconfiguration

Adaptation
Manager

Spatiotemporal
Analyzer

Service
Tracker

RemoteBundle
Loader

Service
Reconfiguration

Context
Monitoring

OS + JRE OS + JRE OS + JRE

Virtual Adaptation Services Framework

C
ontext

B
undle 1

C
ontext

B
undle 2

OS

JRE
OSGi Framework

System Services

B
usiness

B
undles

Spatiotemporal Model of
the Environment

✕

✕
✕ ✕

✕

✕

✕

✕ ✕

✕ ✕

✕
Virtual Adaptation Services Framework

C
ontext

B
undle 2

C
ontext

B
undle n

C
ontext

B
undle 1

Context
Data

Fig. 2: Overview of our virtualization-based approach for self-adaptation in mCPS

Moreover, the robots are provided with sensors for temperature and air pressure which
enables us to adapt their behavior in, e.g., icy conditions. Infrared sensors are suitable
for very close distances until 80 cm. They fit nicely to the ultrasound sensors which
cannot render precise measures to obstacles closer than 60 cm but provide good distance
sensing of more distant objects of up to about 5 m. Using all these sensors, we have to
prevent straining the batteries of a DiddyBorg robot. Its motors are operated by 10 AA
cells connected in series while we use a rechargeable 5V battery to drive the Raspberry
Pi and the sensors. We consider the following dynamic adaptations beneficial:

– To save energy, it seems sensible not to use all sensors at once but to start and stop
them according to the environment, the robot operates in, and to adapt the control
software accordingly.

– Typical controller parameters like maximum speed and protective braking distances
shall be adjusted depending on the physical location and other properties of the
environment. For instance, when the robot operates in a long and empty corridor,
and the ultrasound sensor detects no obstacle within three meters, the robot can
operate with full speed. When enclosing an obstacle, the speed may be reduced
depending on the distance to the obstacle.

– We also consider special constructional features which might affect the quality of
the sensor readings (e.g., we found out that the heating pipes in one of our labs
falsify the readings of the ultrasound sensors which render wildly shaking values
when the pipes are approached).

– Temporary conditions in an environment can occur, e.g., due to spills or accidents,
that afford extra caution or to avoid an area entirely.

Our VASF-based solution introduced below, shall address these adaptation types.

3 Adaptation Framework

The main goal of the VASF is to provide a unified abstraction for adaptation in mCPS in
order to reduce the complexity of modeling spatiotemporal-related contextual changes

Service Virtualization for Self-Adaptation in mCPS 5

of the control software of mCPS. In particular, it allows us to express the contextual
aspects of a mCPS that may consist of various cooperating units, with a set of eas-
ily understandable rules. Each rule allows the user to relate contextual information to
context change tasks. Based on sensor inputs and other existing context data, a context
reasoning system driven by BeSpaceD [3] analyzes the rules and sorts out potential
conflicts between them. The result of the analysis is a set of reconfigurations that VASF
automatically forwards to the involved units. They may vary from basic parameter-
based reconfiguration of software (e.g., switching from one localization sensor type
to another type) to service-level software replacements (e.g., replacement of a energy-
draining localization software service with a less powerful but more energy-efficient
one).

Figure 2 illustrates the main design elements of VASF. That includes: i) the con-
text modeling space which represents the mCPS operation environment; ii) the VASF
which resides on the software system of mCPS devices and offers the context moni-
toring and processing, and reconfiguration functionality. Reconfiguration is performed
through services relying on the Java-based OSGi framework [28]. From the developer’s
viewpoint, the VASF provides a unified virtualized view to the mCPS-level adaptation
needs which will be further detailed for each mCPS device. The different design aspects
of the VASF are introduced below.

3.1 Spatiotemporal Context Modeling and Reasoning

For context modeling and reasoning, we propose the use of our BeSpaceD language and
tool [3] for spatiotemporal modeling and reasoning. Spatiotemporal models provide a
formal view of the context modeling space that robots are operating in. Such models can
include geometric information like obstacles, regions with specific operating conditions
as well as topological information such as interconnection information between differ-
ent regions that do not depend on a specific geometry. Temporal aspects are used to
describe the change of geometry and topology over time, and the appearance and disap-
pearance of structures and other robots. Furthermore, BeSpaceD formalizes conditions
under which a change may occur.

BeSpaceD is implemented in Scala and its core functionality runs in a Java envi-
ronment. It has been successfully applied in different contexts such as decision support
for factory automation [4] and for verification of spatiotemporal properties of industrial
robots [19]. Besides of basic logical operators (e.g., AND), BeSpaceD offers special
constructs for space, time, and topology. For instance, OccupyBox refers to a rectan-
gular two-dimensional space parameterized by its left lower and its right upper corner
points while constructs like TimeInterval make the modeling of temporal aspects
possible. For example, the following formula expresses that the rectangular space with
the corner points (1050, 2056) and (1502, 2603) will be temporary closed between the
time points 200 and 600:

IMPLIES(AND(TimeInterval(200,600),Owner("TemporaryClosure")),
OccupyBox(1050,2056,1502,2603))

BeSpaceD formulas can be efficiently analyzed for spatiotemporal and other prop-
erties. For instance, we can specify a point of time and a predicate and derive the spatial

6 A. Taherkordi, P. Herrmann, J. O. Blech, Á. Férnandez

implications from these definitions. Likewise, logical quantifiers can be applied to spec-
ify and check the existence of a spatiotemporal condition in a specification, or to prove
that a certain property holds for a distinct time and space area. In addition, algorithms
and tools such as external SMT solvers (e.g., we have a connection to z3 [8]) can help
to resolve geometric constraints such as the overlapping of different areas in time and
space. A variety of different operators (for instance, breaking geometric constraints on
areas down to geometric constraints on points) exist which facilitates the reasoning
about geometric and topological constraints.

We decided to utilize BeSpaceD for reasoning about the context rules since it ad-
dresses their spatiotemporal nature well. The BeSpaceD language is used to specify the
rules while the efficient automatic analysis of BeSpaceD makes it suitable to find out
which rules have to be triggered in a certain context. Moreover, the expressibility of
BeSpaceD allows us to define prioritization schemes in order to find out which of two
or more contradicting rules to prefer.

3.2 Software Reconfiguration

The control software of an mCPS unit shall support runtime changes in the configura-
tion parameters as well as in the software structure, e.g., through software component
replacement. In addition, the mCPS software has to support plugability of context data
provider components. Such general-purpose components are dynamically loaded and
unloaded from the mCPS device, providing contextual information such as sensor data.

The software reconfiguration mechanism is built on the Java-based OSGi (formerly
known as Open Service Gateway initiative) platform [28]. We chose this framework as
resource-efficiency has been one of the core design goals of OSGi and therefore it does
not impose high resource overhead on mCPS devices. Some existing implementations,
such as Concierge [32], exhibit a reasonable memory footprint for resource-constraint
devices (80 kB). Our testbed, the Raspberry Pi node used to control a DiddyBorg,
can host the Eclipse OSGi framework, called Equinox [9]. OSGi offers a class-loading
mechanism to dynamically load and unload Java packages, so-called business bundles
that, in our context, may implement a service like listening to a sensor or controlling
an activator. For that, OSGi offers functions to activate, deactivate, and replace a busi-
ness bundle. In particular, it preserves automatically the dependencies of a system when
some of its bundles are installed, uninstalled or reconfigured.

Figure 3 shows the architecture of the VASF. The core idea of the proposed archi-
tecture is to provide a virtualization layer supporting the access to the collaborating
units. Thus, it allows abstract services like the Context Monitoring to interact with one
or more actual services on selected devices in order to perform a part of an adaptation
process, e.g., loading a bundle on devices.

Service properties are the main source of information for determining the filtering,
i.e., which data to consider. They enable the association of additional metadata with
services, in addition to the service name. We propose two types of properties for ser-
vices in order to achieve adaptation: i) generic properties that describe the functionally
of a service, e.g., localization.ultrasound; ii) properties describing the non-
functional aspects of services, e.g., accuracy.distance.high or energy.low.

Service Virtualization for Self-Adaptation in mCPS 7

OSGi Framework OSGi Framework OSGi Framework

 VASF

Virtualization Support

Scalable Adaptation Framework

OS

JRE
OSGi Framework

System Services

B
usiness

B
undles

 Scalable Context

Modeling Space

Real-time
Context Data

Context Reasoning

Adaptation
Actions

✕

✕

✕

✕ ✕

✕

✕

✕

✕ ✕

✕ ✕

Adaptation
Manager

Spatiotemporal
Analyzer

Service
Tracker

RemoteBundle
Loader

OSGi Framework

Service
Reconfiguration

Adaptation
Manager

Spatiotemporal
Analyzer

Service
Tracker

RemoteBundle
Loader

Service
Reconfiguration

Context
Monitoring

OS + JRE OS + JRE OS + JRE

Virtual Adaptation Services Framework

C
ontext

B
undle 1

C
ontext

B
undle 2

OS

JRE
OSGi Framework

System Services

B
usiness

B
undles

Spatiotemporal Model of
Environment

✕

✕
✕ ✕

✕

✕

✕

✕ ✕

✕ ✕

✕
Virtual Adaptation Services Framework

C
ontext

B
undle 2

C
ontext

B
undle n

C
ontext

B
undle 1

Context
Data

Fig. 3: Architecture of virtualization-based adaptation using the OSGi framework

For example, if the functional property for filtering is decided to be localiza-
tion.shortrange, another level of filtering can be performed by including the non-
functional property energy.low in order to select a short range localization service
that demands less energy. If there is more than one bundle implementing a service, the
service.ranking property, a standard OSGi property, is defined for such services
in order to select a single service with the highest ranking.

The VASF can be either implemented and deployed on a network node (e.g., a gate-
way) or it can reside on an mCPS unit that is powerful enough to perform the context
processing and to communicate with the other devices for performing the adaptation
actions. In the latter case, we need a leader selection protocol (see, e.g., [29]) to com-
pensate for the failure of the leading unit. The key component of the VASF, the Virtual-
ization Support, handles the communications between the VASF and the mCPS units,
in our case, the Raspberry Pi devices. The WiFi capability of devices along with the
socket-based data transmission between the VASF device and robots will be used, e.g.,
to perform service tracking and load remote bundles.

The Adaptation Manager receives the current system context retrieved by the Con-
text Monitoring service from the corresponding actual services on the units. The Adap-
tation Manager forwards the context space information to the Spatiotemporal Analyzer,
running the BeSpaced-based analysis. Based on its results, the Spatiotemporal Analyzer
selects the OSGi mechanism to execute, as well as the new property settings and noti-
fies the Service Tracker. This service is used to detect services of a specific type, e.g.,
sending notifications when a service is started or stopped. Its instance at the VASF level
is in charge of communicating with the equivalent services on selected mCPS devices
to perform service tracking. Thanks to OSGi, we can build our own Service Tracker
based on OSGi’s service tracking component. Specifically, when the Spatiotemporal
Analyzer suggests a new service for update, the Service Tracker will perform investiga-
tions regarding the current status of the old service and ensure that other bundles using
this service can continue their execution safely during reconfiguration.

After the new service is located by the Spatiotemporal Analyzer and the Service
Tracker, the Adaptation Manager will initiate the service reconfiguration phase using
the dynamic service reconfiguration feature of OSGi. If no service with the specified

8 A. Taherkordi, P. Herrmann, J. O. Blech, Á. Férnandez

Table 1: Context change rules for the test bed

No. Location Other context aspects Reconfigurations Other changes

1 Hallways
US sensor detects no ob-
stacle within 300 cm

Switch off IR sensor

2 Everywhere
US sensor detects obstacle
between 100 and 300 cm

Switch on IR sensor Reduce speed to 50%

3 Everywhere
US or IR sensors detect ob-
stacle within 100 cm

Reduce speed to 25%

4 Everywhere
US or IR sensors detect ob-
stacle within 70 cm

Rely on IR sensor only

5 Room B216
Magnetic sensor detects
course towards the heating
pipes

Switch on detector for
unstable readings of the
US sensor

6 Room B216
Detector shows unstable
readings of the US sensor

Reduce speed to 25%

7 Outdoors
Temperature sensor shows
a temperature below 3◦C

Reduce speed to 50%

8 Hallways
Time is between 00 and 15
of the hour (lecture break)

Switch on IR sensor Reduce speed to 50%

9 Everywhere
Two or more robots within
10 meters

Switch on IR sensor at
all effected robots

Reduce speed to 50% at
all effected robots

10 Everywhere
Two or more robots within
5 meters

Reduce speed to 25% at
all effected robots

filtering criteria is found, the Adaptation Manager invokes the RemoteBundle Loader
to download the bundle that implements the requested service and load it to the OSGi
runtime system. This service is also used to load Context Bundles (see Fig. 2) that are
dynamically added to the system in order to collect new context information based on
the available sensors of the robot. Like the Service Tracker, the Service Reconfigura-
tion on the VASF communicates with the actual equivalent services on selected mCPS
devices to perform the configuration process.

3.3 Combining Context Reasoning and Software Reconfiguration

The business bundles in our DiddyBorg testbed comprise functionality like path plan-
ning, the control of the six engines, reading the various sensors, and special tasks nec-
essary in a certain environment (e.g., a detector for unstable sensor readings close to
heating pipes). Depending on the reconfigurations selected in the current context, bun-
dles may change in one or more robots. For example, in the case of an area temporarily
closed for an mCPS, a new path planning algorithm may be loaded and replace the pre-
vious one. Furthermore, once BeSpaceD identifies the approach of an uncritical area,
we may temporarily unload bundles that control some sensing devices if these are not
needed for the uncritical area. This can result in energy savings.

Service Virtualization for Self-Adaptation in mCPS 9

To clarify our approach, we list in Table 1 a set of rules4 guiding context reasoning
and software reconfiguration for our DiddyBorg robot testbed. The rules depend on the
current robot location and other contextual aspects like sensor readings, input from col-
laborating units, time properties, or reports about other robots being in the same room.
They are described as BeSpaceD formulas and guide the context reasoning. The results
of a rule may be software reconfigurations and other changes, e.g., the adjustment of
control parameters. For instance, rule 5 defines that if the robot is in room B216 and
the magnetic sensor detects that it heads towards the heating pipes which may effect
the reading of the ultrasound sensor, an OSGi-bundle containing a detector function is
added which constantly checks the readings of the ultrasound sensor. If the detector
finds out that the readings get unstable, i.e., start to jump ferociously, this is an in-
dication that the robot approaches the heating pipes. In this case, following rule 6, the
control parameter determining the robot speed is changed such that the speed is reduced
to 25% preventing the robot crashing against the pipes.

As discussed above, rules may be contradictory. For instance, rule 1 demands to
switch off the infrared sensor saving energy when the robot is operated in one of the
hallways and the ultrasound sensor does not detect any obstacles within 3 m. In contrast,
according to rule 8 the infrared sensor has to be kept operating between 00 and 15 of
the hour since then there is a break between lectures and many people are expected in
the hallways. Thus, the likelihood of somebody encountering the robot from the side
leaving a room is significantly higher and the infrared sensor may provide a better
reading of the exact distance. The context reasoning shall, of course, guarantee the
safest possible solution which, in our case, means prioritizing rule 8 keeping the infrared
sensor on. Using its prioritization scheme which, for instance, may determine that a
sensor has to be active if desired by one of the contradicting rules, BeSpaceD decides
that rule 8 will be applied and not rule 1.

The Diddyborg demonstrator is currently under development such that we cannot
provide reliable measures about the time needed for the various adaptations of the con-
trol systems of the robots. First tests of OSGi on a Raspberry Pi, however, give the
impression that the typical OSGi reconfiguration functions like starting or changing
business bundles are quite resource-efficient such that we expect no major performance
penalties of our approach. Of course, that has to be analyzed more in-depth when the full
demonstrator is running. Likewise, we have to determine the impact of the BeSpaceD-
based analysis on the overall performance. As discussed in [21], BeSpaceD proved to
run efficiently for similar approaches such that we do not expect a serious penalty here
either.

4 Related Work

Self-adaptation of CPS software systems has received great attention because of their
inherent unpredictability and high dynamicity. In the following, we discuss the related
work with respect to context modeling techniques for mCPS and the solutions for en-
abling self-adaptation of mCPS software system.

4 In Tab. 1, US stands for ultrasound and IR for infrared.

10 A. Taherkordi, P. Herrmann, J. O. Blech, Á. Férnandez

Spatiotemporal specifications and means to reason about them, are an important
part of our work. A variety of different specification mechanisms such as a process
algebra-like formalism and a related type system for concurrency and resource control
exists [6]. In the SPEEDS project [2, 17], contracts between components are used to
model behavior in the form of transition systems. Means to reason about spatial and
geometric constraints are described in, e.g., [1, 20]. Additional logic approaches for hy-
brid systems (e.g., [12, 31]) provide comprehensive languages and tools for describing
CPS including time and space. In contrast to these works, our system combines the Java
basis of the OSGi context with spatiotemporal reasoning at runtime that can take place
on the robot controller to support runtime adaptivity of CPS.

Other work addresses the large amount of information available for context process-
ing [7, 23]. This also includes the diversity of application variants for software reconfig-
uration [5, 27]. However, the view to diversity in these types of approaches is different
from what we envisage for mCPS applications, i.e., growing and diverse spatiotemporal
contextual changes. Another aspect of context processing is to address uncertainty in
adaptation. In [15, 16], meta-adaptation strategies are proposed that extend the adapt-
ability of a system by constructing new tactics at runtime reflecting the changes in the
environment.

With respect to dynamic software adaptation models for CPS, a framework for
mapping the large component model Kevoree into micro controller-based architec-
tures is discussed in [11]. The main goal of this work is to push dynamics and elas-
ticity concerns directly into resource-constrained devices, based on the notion of mod-
els@runtime. The proposed dynamic component model is benchmarked against cer-
tain key criteria such as memory usage and reliability, on an Arduino board with an
ATMEL AVR 328P microcontroller. The main focus of this work is on efficient de-
velopment of dynamic components for resource-constrained CPS, which is different
from the goal of this paper, i.e., modeling contextual aspects in a scalable manner and
adopting a service-based view to adaptation instead of the device-level view. In [33], an
approach is proposed for the development of adaptable software applications for em-
bedded systems based on a Domain-Specific Language (DSL). The authors chose DSL-
based adaptation to specify adaptation policies and strategies at a high-level, using rules
that produce the necessary runtime reconfigurations independent from the application
logic. In particular, they develop the adaptation framework of a Lego NXT Mindstorms
robot exploring the environment. Similarly, PLASMA [35] and Sykes [34] utilize ADL
and planning-as-model-checking technologies to enable dynamic replanning in the ar-
chitectural domain in robots. The focus of these works is on specifying the adaptable
behavior through DSL, while our work is characterized by a high-level service-oriented
abstraction model, which is domain-independent and simplifies adaptation modeling
and implementation in typical mCPS.

5 Conclusions and Future Work

Enabling efficient dynamic software adaptation is considered a key requirement of
mCPS with respect to their high dynamicity and spatiotemporal contextual changes.
In this paper, we propose a service-based software adaptation framework to address

Service Virtualization for Self-Adaptation in mCPS 11

this concern. The main goal of the presented framework is to facilitate the adaptation of
mCPS software, referring to the support of complicated contextual changes in the spa-
tiotemporal aspects of mCPS. Further, our approach supports the collaborative nature
of mCPS for which we need an application- and high-level view to adapting the whole
mCPS, rather than individual devices. We achieve this by introducing a new software ar-
chitectural model for dynamic mCPS systems, which is based on the idea of virtualizing
the adaptation services at the application level through a Virtulization Services Adapta-
tion Framework (VASF) and then interpreting the process to actual low-level adaptation
actions performed on selected devices. We use BeSpaceD for modeling and reasoning,
while the framework components and the self-configuration model are demonstrated
for the DiddyBorg robots with Raspberry Pi boards using OSGi. As our future plan, we
will develop a generic version of the VASF and use it in a variety of mCPS environ-
ments. As an demonstrator, we will apply the adaptation framework to a bottling plant
deployed in the RMIT’s advanced manufacturing precinct.

References

1. B. Bennett, A. G. Cohn, F. Wolter, and M. Zakharyaschev. Multi-Dimensional Modal Logic
as a Framework for Spatio-Temporal Reasoning. Applied Intelligence, 17(3), 2002.

2. A. Benveniste et al. Multiple Viewpoint Contract-based Specification and Design. In Formal
Methods for Components and Objects, 2008.

3. J. O. Blech et al. BeSpaceD: Towards a Tool Framework and Methodology for the Speci-
fication and Verification of Spatial Behavior of Distributed Software Component Systems.
ArXiv e-print, abs/1404.3537, 2014.

4. J. O. Blech et al. Efficient Incident Handling in Industrial Automation through Collabora-
tive Engineering. In Emerging Technologies Factory Automation (ETFA), 2015 IEEE 20th
Conference on, 2015.

5. G. Brataas, S. O. Hallsteinsen, R. Rouvoy, and F. Eliassen. Scalability of Decision Models
for Dynamic Product Lines. In SPLC (2). Kindai Kagaku Sha, 2007.

6. L. Caires. Spatial-behavioral Types for Concurrency and Resource Control in Distributed
Systems. Theoretical Computer Science, 2008.

7. D. Conan et al. Scalable Processing of Context Information with COSMOS. In Distributed
Applications and Interoperable Systems, LNCS 4531. Springer-Verlag, 2007.

8. L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2008.

9. Eclipse. Eclipse Equinox Framework. http://www.eclipse.org/equinox/, 2016.
10. J. Eidson, E. Lee, S. Matic, S. Seshia, and J. Zou. Distributed Real-Time Software for Cyber-

Physical Systems. Proceedings of the IEEE, 100(1), 2012.
11. F. Fouquet et al. A Dynamic Component Model for Cyber Physical Systems. In Proc. of

15th ACM Symposium on Component Based Software Eng. (CBSE ’12). ACM, 2012.
12. G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard,

T. Dang, and O. Maler. SpaceEx: Scalable Verification of Hybrid Systems. In Computer
Aided Verification (CAV), 2011.

13. S. Fritsch et al. Time-bounded Adaptation for Automotive System Software. In Software
Engineering, 2008. ICSE ’08. ACM/IEEE 30th Conf. on, 2008.

14. S. Fritsch et al. Time-bounded adaptation for automotive system software. In Software
Engineering, 2008. ICSE ’08. ACM/IEEE 30th International Conference on, 2008.

12 A. Taherkordi, P. Herrmann, J. O. Blech, Á. Férnandez

15. I. Gerostathopoulos et al. Meta-adaptation strategies for adaptation in cyber-physical sys-
tems. In Software Architecture: 9th European Conference, ECSA 2015, 2015.

16. I. Gerostathopoulos et al. Self-adaptation in software-intensive cyberphysical systems: From
system goals to architecture configurations. Journal of Systems and Software, 2016.

17. S. Graf et al. Contract-based Reasoning for Component Systems with Rich Interactions. In
Embedded Systems Development, volume 20 of Embedded Systems. Springer, 2014.

18. F. Han et al. Model-Based Engineering and Analysis of Space-Aware Systems Communi-
cating via IEEE 802.11. In Computer Software and Applications Conference (COMPSAC),
2015 IEEE 39th Annual, volume 2, 2015.

19. P. Herrmann et al. A Model-based Toolchain to Verify Spatial Behavior of Cyber-Physical
Systems. International Journal of Web Services Research (IJWSR), 13(1):40–52, 2016.

20. D. Hirschkoff et al. Minimality Results for the Spatial Logics. In Foundations of Software
Technology and Theoretical Computer Science, LNCS 2914. Springer, 2003.

21. S. Hordvik et al. A Methodology for Model-based Development and Safety Analysis of
Transport Systems. In 11th Int. Conf. on Evaluation of Novel Approaches to Software Engi-
neering (ENASE), 2016.

22. N. Huber et al. Model-based Self-adaptive Resource Allocation in Virtualized Environments.
In SEAMS ’11, 2011.

23. S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park, and J. Song. SeeMon: Scalable
and Energy-efficient Context Monitoring Framework for Sensor-rich Mobile Environments.
In MobiSys ’08. ACM, 2008.

24. M. Lauer, S. Lange, and M. Riedmiller. Calculating the Perfect Match: An Efficient and
Accurate Approach for Robot Self-localization. In RoboCup 2005: Robot Soccer World Cup
IX, LNCS 4020. Springer, 2006.

25. E. Lee. Cyber Physical Systems: Design Challenges. In Object Oriented Real-Time Dis-
tributed Computing (ISORC), 2008 11th IEEE International Symposium on, 2008.

26. W. Y. Lum and F. C. M. Lau. A Context-Aware Decision Engine for Content Adaptation.
IEEE Pervasive Computing, 1(3), 2002.

27. V. Nallur and R. Bahsoon. A Decentralized Self-Adaptation Mechanism for Service-based
Applications in the cloud. Software Engineering, IEEE Transactions on, 39(5), 2013.

28. OSGi Alliance. OSGi Service Platform. http://www.osgi.org/, 2016. accessed:
2016-01-22.

29. S. Patterson and B. Bamieh. Leader Selection for Optimal Network Coherence. In 49th
IEEE Conference on Decision and Control, pages 2692–2697, 2010.

30. PiBorg. DiddyBorg Raspberry Pi Robot. http://www.piborg.org/diddyborg,
2016.

31. A. Platzer. Differential Dynamic Logic for Hybrid Systems. Journal of Automated Reason-
ing, 41(2), 2008.

32. J. S. Rellermeyer and G. Alonso. Concierge: A Service Platform for Resource-constrained
Devices. SIGOPS Oper. Syst. Rev., 41(3), 2007.

33. A. C. Santos et al. Specifying Adaptations through a DSL with an Application to Mobile
Robot Navigation. In SLATE’13, 2013.

34. D. Sykes et al. From goals to components: A combined approach to self-management. In
SEAMS ’08, 2008.

35. H. Tajalli et al. Plasma: A plan-based layered architecture for software model-driven adap-
tation. In Proc. the IEEE/ACM Conf. on Automated Software Engineering, ASE ’10, 2010.

36. D. Weyns et al. On decentralized self-adaptation: Lessons from the trenches and challenges
for the future. In SEAMS’10, 2010.

37. J. White et al. R&D Challenges and Solutions for Mobile Cyber-Physical Applications and
Supporting Internet Services. Journal of Internet Services and Applications, 1(1), 2010.

