
Security Asset Elicitation for Collaborative Models ∗

Maria Vasilevskaya1

maria.vasilevskaya@liu.se
Linda Ariani Gunawan2

gunawan@item.ntnu.no

Simin Nadjm-Tehrani1
simin.nadjm-

tehrani@liu.se

Peter Herrmann2

herrmann@item.ntnu.no

1Department of Computer and Information Science, Linköping University, Linköping, Sweden
2Department of Telematics, Norwegian University of Science and Technology, Trondheim, Norway

ABSTRACT
Building secure systems is a difficult job for most engineers
since it requires in-depth understanding of security aspects.
This task, however, can be assisted by capturing security
knowledge in a particular domain and reusing the knowl-
edge when designing applications. We use this strategy and
employ an information security ontology to represent the se-
curity knowledge. The ontology is associated with system
designs which are modelled in collaborative building blocks
specifying the behaviour of several entities. In this paper, we
identify rules to be applied to the elements of collaborations
in order to identify security assets present in the design.
Further, required protection mechanisms are determined by
applying a reasoner to the ontology and the obtained assets.
We exemplify our approach with a case study from the smart
metering domain.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.10 [Software Engineering]: Design—Method-
ologies

General Terms
Design, Security

Keywords
Model, domain, assets, security, ontology, smart grid, tools

1. INTRODUCTION
Model-driven engineering (MDE) for security deals with de-
velopment of security-enhanced systems at the early phase.
Principles of MDE enable us to describe functionality and

∗(Does NOT produce the permission block, copyright
information nor page numbering). For use with
ACM PROC ARTICLE-SP.CLS. Supported by ACM.

security enforcement mechanisms as separate concerns. This
in turn allows the system and security engineers to work in-
dependently. However, the decision to select an appropriate
enforcement mechanism and to apply it, still requires addi-
tional knowledge about the security domain from a system
engineer.

The SecFutur project [4] addresses this problem by develop-
ing a process that leverages domain-specific modelling. The
process includes two main phases: (I) Capturing security
knowledge (by a security engineer) and (II) applying it to
a functional system specification in a certain domain (by a
system engineer).

In this paper we refine the phase of applying the captured
security knowledge. This phase consists of the following
steps: (1) The system model is analysed to elicit present
assets using a set of rules. (2) A system engineer enumer-
ates a subset among all elicited assets to be protected. (3)
For each selected asset from step 2, the captured (domain-
specific) security knowledge is consulted to obtain available
security properties. (4) A system engineer chooses a subset
among all security properties, identified in step 3, according
to system security requirements derived, e.g., from threat
analysis. (5) Available enforcement mechanisms satisfying
the chosen security properties are inferred from the captured
(domain-specific) security knowledge.

The outcome of these steps is a list of enforcement mech-
anisms, which are subsequently integrated into a system
model. In this paper we elaborate on steps 1, 3, and 5.
In particular, we use the model-based engineering technique
SPACE [10] and its tool-set Arctis [13] to provide step 1.
Furthermore, we support the above steps by extending ex-
isting tools with new ones.

In the following, we describe SPACE and Arctis by means
of a case study. Sect. 3 outlines the phase of capturing se-
curity knowledge in a particular domain. As a solution for
step 1, we present an asset elicitation technique in Sect. 4.
Thereafter, the implementation of steps 3 and 5 is explained
in Sect. 5. Sect. 6 sketches the developed tool support. We
end this paper with a summary of some related works fol-
lowed by concluding remarks.

2. COLLABORATIVE MODELS

«system» Metering Data Collection
tsmc

s: Sensor c: Collector
dataIn:
Metering

dataOut:
Metering

ackIn:
Boolean

start

collect:
Metering
ackOut:
Boolean

reading:
Metering

start
t: Reliable Transfer

tsm

r: Reactive Buffer
init

add:
Metering

empty

out:
Metering

next

tempget

delete

tempset

temp: Metering

true

false

Reliable Transfer
sender receiver

start

dataOut:
Metering

ackIn:
Boolean

start

dataIn:
Metering

Figure 1: Metering data collection scenario

To design both functional and security aspects, we employ
collaboration-oriented models that are based on UML ac-
tivities [16]. Distributed system specifications are composed
from collaborative building blocks [10] describing local be-
haviour within components as well as their interaction. This
specification style is suitable for specifying security proto-
cols because such mechanisms are inherently collaborative.
Moreover, since a large part of an application specification
(on average about 70% [11]) is taken from reusable build-
ing blocks, the specification style also facilitates rapid sys-
tem development. The models have a formal semantics [12]
which enables verification of relevant properties, e.g., the
correct integration of building blocks into activities, by the
model checker included in the tool-support Arctis [13]. Fur-
thermore, as will be shown later in Sect. 4 the semantics
enables the formulation of rules for security asset elicitation.

The model of our case study from the smart metering do-
main is depicted in the upper part of Fig. 1. It is an appli-
cation for collecting metering data stored in a Trusted Sen-
sor Module (TSM) by a TSM Collector (TSMC). These two
physical components are modelled by the partitions tsm and
tsmc of the activity diagram. The delivery of the metering
data is specified by the collaborative block t: Reliable Trans-
fer. In contrast to all other activity node types which are
mapped to exactly one partition, these collaborative blocks
span across several ones. The rest of the system behaviour is
modelled by two local building blocks, which are located on
a single partition each. Block s: Sensor models the electric-
ity meter device which periodically reports electricity con-
sumption. Block c: Collector encapsulates the behaviour of
storing the metering data. The blocks contain pins at their
frames which enable to link them by activity edges with
other nodes. Each block refers to an activity diagram that
describes a detailed internal behaviour as shown in the lower
part of Fig. 1 for block t.

Due to its Petri net-like semantics, an activity models a be-
haviour as control and object flows of tokens along its nodes
and edges. A system start is marked by a token flowing
from each of the initial nodes (•). In the upper part of
Fig. 1, it means blocks s, t, and c are started. When me-
tering data is available on the tsm entity, its value, which is
encapsulated as an object of type Metering, is carried by a
token emitted from the sensor block via pin reading and for-

Figure 2: Security ontology (left) and its UML rep-
resentation (right)

warded to the transfer block through pin dataIn. As shown
in the lower part of the figure, block Reliable Transfer con-
tains block r: Reactive Buffer used to store metering data
temporarily, when there is other data being sent but not yet
acknowledged. If data is received (via pin add) when the
buffer is empty, it is emitted (via pin out) immediately; oth-
erwise it is buffered. Subsequent data, if any, is retrieved
when a token flowing into pin next. A token carrying meter-
ing data flows from pin out of block r and passes operation
set temp which stores a copy of the data to variable temp
as well as a merge node (�). Thereafter, the token is sent to
the other entity as depicted by the edge crossing the parti-
tion border. As shown in the upper part of Fig. 1, block c
receives the data through pin collect and emits a token via
ackOut containing an acknowledgment, which is, thereafter,
forwarded to block t. The lower part of the figure depicts
that the token reaches a decision node (�) with two labelled
outgoing edges. The edge labelled with false is followed
when the measurement is not approved by the tsmc, i.e., it
has not passed a validation test. Here, the previous meter-
ing value is retrieved from variable temp and resent. The
true edge means a successful transfer of metering data. In
this case, operation delete, which removes the value of vari-
able temp, is called and consecutive data is obtained from
the buffer.

3. CAPTURING SECURITY KNOWLEDGE
As already mentioned, our approach aims to support engi-
neers who are not security experts in developing protected
systems. To achieve this goal, security-related knowledge
in a particular application domain, which is typically pos-
sessed by security experts, needs to be captured, stored, and
presented to enable its application and reuse. To represent
security concepts and their relationships, we employ ontol-
ogy technologies. Since most developers are familiar with
the UML [16], we use a class diagram to express a security
ontology. Hence, security knowledge in a particular domain
is essentially an instance of a class diagram, i.e., an object di-
agram. We call it Domain-Specific Security Model (DSSM)
and store it in a library for reuse. A DSSM, essentially, ex-
tends the concepts in our ontology with rules and assertions.
Thus, we can reason on a DSSM and obtain from it security
relevant information (see Sects. 5 and 6).

Herzog et al. [8] defined an extensive information security
ontology, which is suitable for our approach since it uses
assets as its core concept. We adapted this ontology to
accommodate protection mechanisms that are modelled as
Security Building Blocks (SBBs). Our ontology has three
basic concepts in common with Herzog et al. [8], namely, as-
set, security goal, and defense strategy (see the left part of

Figure 3: A fragment of the metering DSSM

Fig. 2). Within a system model, assets are objects of value
to be protected. There are two types of assets, i.e., station-
ary assets resting on a physical component, and assets in
transit, which refer to objects being communicated among
several components. A security goal like confidentiality is
achieved when an asset is protected with a countermeasure.
Defense strategy describes how a countermeasure is applied,
e.g., prevention or detection.

We introduce Abstract SBB to model general countermea-
sures (e.g., cipher) and concrete SBB for their implemen-
tations (e.g., AES). An abstract SBB protects an asset by
using a defense strategy, and therefore, provides a particular
security goal. A concrete SBB implements an abstract SBB
and may create other assets, e.g., an AES key when AES
cipher is used. In addition to SBBs, we add two new con-
cepts, namely domain and security property. The domain
concept represents application domains. Each abstract SBB
belongs to a domain. Security property is the core concept in
our ontology aggregating the three notions of asset, security
goal, and defense strategy. A concrete SBB satisfies a secu-
rity property. Note that we do not focus on the concept of
threats since enforcing a security property inherently works
against any threat that would violate that security property.

The representation of the ontology in an UML class diagram
is depicted in the right part of Fig. 2. The four elements as-
set, abstract SBB, concrete SBB, data stationary, and data
in transit are directly mapped to corresponding elements in
the UML representation. So do relations implements and
protects. The is-a relation is modelled as the generalisa-
tion link. Instances of security goal and defense strategy of
the ontology are represented as enumerations (not shown in
Fig. 2). The uses and provides relations and their related
concepts are mapped as the usesStrategy and providesGoal
attributes of the class AbstractSBB. The creates relation is
represented as an association class, whose attribute required-
Goal implements the relation requires from the ontology.
The second attribute of the class (i.e., externalDSSM) refers
to another domain if a created asset needs protection pro-
vided by a concrete SBB from another domain. The name of
an object diagram (i.e., DSSM) expresses our domain con-
cept, since we can say that all abstract SBBs defined within
a certain DSSM belong to this domain. The security prop-
erty concept of the ontology is essentially represented by the
triple of asset, security goal, and defense strategy. Therefore,
we can directly extract this information from DSSM with-
out introducing any dedicated UML representation for it.
Finally, a new attribute referenceToModel of the class Con-
creteSBB refers to the Arctis collaborative building block
that implements the corresponding protection mechanisms.

A fragment of the metering DSSM associated with our col-
lection scenario (Fig. 1) is shown in Fig. 3. This association
is done based on matching of system and security knowledge
domains. This DSSM contains two assets: StoredMeasure-
ment (i.e., data stationary) and TransmittedMeasurement
(i.e., data in transit). The assets are protected by two ab-
stract SBBs, namely, Cipher and DigitalSignature. Cipher
provides confidentiality as a security goal, while DigitalSig-
nature maintains integrity and data authenticity. DES and
AES are concrete SBBs that implement Cipher. The other
two objects are concrete SBBs for DigitalSignature.

4. ASSET ELICITATION
We define asset elicitation as identification of assets within
a system model and their matching assets described in an
associated DSSM. Rules in Sect. 4.1 are applied (as illus-
trated in Sect. 4.2) to a collaborative-based system model to
identify available assets in the specification and to classify
the assets according to the ontology described in the previ-
ous section. The application of these rules is automated and
presented as assets analyser in Sect. 6.

4.1 Rules for Assets Identification
According to the SPACE semantics [12], an activity is a
directed graph with a set of activity nodes V and connecting
edges E. Fig. 4 presents identification rules R1-R7. In the
rules, we use the following functions:

• Two functions mapping an activity node and edge to
their particular types, i.e., kindV : V → KV and
kindE : E → KE , where KV = {operation, local,
collaboration, merge, join, fork, decision, other} and
KE = {object, control}

• Two functions mapping a given node to the set of its
incoming and outgoing edges, i.e., inE : V → 2E and
outE : V → 2E .

• Two functions that return an object flowing to (reps.
from) a given node through an edge, i.e., inO : E×V →
ON and outO : V ×E → ON , where ON is the set of
all object nodes of a given activity.

• A function mapping a given asset to a class from our
ontology, i.e., class : A → KA, where KA = {transit,
stationary} and A is the set of assets constructed from
elements of the set ON .

• A function mapping a node to the partition, which it
belongs to, i.e., part : V → 2P , where 1 ≤ |2P | ≤ 2 and
P is a set of all partitions of a given activity diagram.
The case where |2P | = 2 corresponds to a collaboration
node (e.g., see the t node in Fig. 1).

• Two functions that return the source and target nodes
of a given edge, i.e., s : E → V and t : E → V
respectively.

• A function mapping a merge node and the set of its in-
coming object edges to its outgoing object, i.e., fMerge :
V ×2E → ON . Likewise, we define function fJoin for
a join node. According to the SPACE semantics, only
one outgoing edge is allowed for merge and join nodes
(see the rule OUT1 in [12]).

• A function mapping a fork node, its incoming object
edge, and one of its outgoing edges to an object flowing
through this outgoing edge, i.e., fFork : V × 2E ×
E → ON . Likewise, we define function fDecision for
a decision node. For the sake of generality we allow
that the second argument of fFork and fDecision
is a set of edges. However, according to the SPACE
semantics [12], fork and decision nodes can have only
a single incoming edge (see the rule IN3 in [12]).

R1:
q ∈ V, e ∈ inE(q), kindE(e) = object,

kindV (q) ∈ {operation, local, collaboration}
∃ast ∈ A : asset = inO(e, q), class(ast) = stationary

R2:
q ∈ V, e ∈ outE(q), kindE(e) = object,

kindV (q) ∈ {operation, local, collaboration}
∃ast ∈ A : ast = outO(q, e), class(ast) = stationary

R3:

e ∈ E, kindE(e) = object, |part(s(e))| = |part(t(e))| = 1,

part(s(e)) 6= part(t(e)), q ∈ V,

kindV (q) ∈ {operation, local}, e ∈ outE(q)

∃ast ∈ A : ast = outO(q, e), class(ast) = transit

R4:

e ∈ E, kindE(e) = object, |part(s(e))| = |part(t(e))| = 1,

part(s(e)) 6= part(t(e)),m ∈ V, kindV (m) = merge,

e ∈ outE(m), q ∈ V, inE(m) ∩ outE(q) 6= ∅,
kindV (q) ∈ KV \ {other}
∃ast ∈ A : ast = fMerge(m, inE(m)),

class(ast) = transit,

R5:

e ∈ E, kindE(e) = object, |part(s(e))| = |part(t(e))| = 1,

part(s(e)) 6= part(t(e)), d ∈ V, kindV (d) = decision,

e ∈ outE(d), q ∈ V, inE(d) ∩ outE(q) 6= ∅,
kindV (q) ∈ KV \ {other}
∃ast ∈ A : ast = fDecision(d, inE(d), e),

class(ast) = transit

R6:

e ∈ E, kindE(e) = object, |part(s(e))| = |part(t(e))| = 1,

part(s(e)) 6= part(t(e)), j ∈ V, kindV (j) = join,

e ∈ outE(j), q ∈ V, inE(j) ∩ outE(q) 6= ∅,
kindV (q) ∈ KV \ {other}
∃ast ∈ A : ast = fJoin(j, inE(j)), class(ast) = transit

R7:

e ∈ E, kindE(e) = object, |part(s(e))| = |part(t(e))| = 1,

part(s(e)) 6= part(t(e)), f ∈ V, kindV (f) = fork,

e ∈ outE(f), q ∈ V, inE(f) ∩ outE(q) 6= ∅,
kindV (q) ∈ KV \ {other}
∃ast ∈ A : ast = fFork(f, inE(f), e),

class(ast) = transit

Figure 4: Rules for asset identification

The rules R1 and R2 express that for an operation, local,
or collaboration node q the stationary data asset (i.e., ast)
is observed if this node has an incoming (R1) resp. outgo-
ing (R2) edge e of the kind object. The rules R3 to R7 are
applied to an object flow crossing a border of two partitions,
which corresponds to the data in transit concept. R3 de-
scribes the case that an object leaves an operation node and
goes directly to another partition. By the rules R4 to R7,
we cover the cases that a flow passes a merge, join, decision,
or fork node before crossing a partition border. Figs. 5.(a) to

(a) Simple case (R3) (b) Merge case (R4)

(c) Decision case (R5) (d) Join case (R6)

(e) Fork case (R7) (f) Sequential case

Figure 5: Illustration of rules

function traverseBlocks (Activity A)
∀v ∈ V :

R1−R2
if kindV (v) = local then

traverseBlocks(v)
endif
if kindV (v) = collaboration then

traverseEdges(v),
traverseBlocks(v)

endif
function traverseEdges (Activity A)

∀e ∈ E :
R3−R7

Figure 6: Functions to traverse a system model

5.(e) illustrate the cases of R3 to R7 respectively. Fig. 5.(f)
depicts an example of a sequential case, which is implicitly
covered by R3 to R7, i.e., when more than one control node
precede an edge crossing a border.

4.2 Application of Rules
The functions traverseBlocks and traverseEdges in Fig. 6
outline the application of R1 to R7 to a system model,
where each activity A is represented by a tuple of nodes and
edges (V,E). The function traverseBlocks goes through
the nodes V of a certain activity A and applies rules R1
and R2. Thereafter, in the case that a considered node is
a local block, traverseBlocks is recursively applied to its
internal behaviour. Likewise, a collaborative block requires
application of both the traverseBlocks and traverseEdges

functions. For example, this is the case for the analysis of
block t in our scenario in Fig. 1. Here, the function tra-

verseEdges applies rule R4 to the merge before the crossing
edge from partition sender to receiver in the activity on the
bottom of Fig. 1. For the decision node before the cross-
ing edges in the opposite direction, rule R5 is used. As a
result, four data in transit assets are elicited: two assets
ackIn incoming to the get and delete nodes; two assets temp
outgoing from the get and set nodes.

5. SECURITY PROPERTY AND SBB
Each DSSM is used to extend our ontology with a set of rules
and assertions for the corresponding concepts described in

Sect. 3. We refer to such an ontology as the extended on-
tology. Therefore, the search for suitable security properties
(step 3 introduced in Sect. 1) and concrete SBBs (step 5)
for a specific asset and domain can be realised as ontology
inference. To achieve this, we formulate (1) a query to find
available security properties for a given asset and (2) a query
to retrieve concrete SBBs that satisfy certain security prop-
erties (step 4). Thereafter, these queries are used as inputs
to an ontology reasoner that returns a list of security prop-
erties and concrete SBBs respectively.

We employ the HermiT reasoner [1]. To formulate the queries,
we use the Manchester syntax [3] where and and only are
the syntax keywords denoting sets intersection and universal
quantifier respectively. The rest of words in the queries are
names of corresponding concepts and relations (see Fig. 2).

Security properties, which are available for a given asset (i.e.,
the query (1) above), are accessed in the extended ontology
executing the following query:

SecurityProperty and has only [Asset]1

For example, one of the identified assets in Fig. 1 is temp. It
corresponds to the TransmittedMeasurement asset from the
metering DSSM. We execute the query for the Transmitted-
Measurement (TM) asset. It returns the following triples:
SP1: [TM, Confidentiality, Prevention]

SP2: [TM, Integrity, Detection]

SP3: [TM, Authentication, Detection]

A system engineer chooses a subset out of all available se-
curity properties (i.e., step 4 in Sect. 1) and proceeds with
a search for concrete SBBs.

Concrete SBBs that satisfy certain security properties in a
given domain (i.e., the query (2) above) are accessed in the
extended ontology executing the following query:

ConcreteSBB and satisfies only [SecurityProperty]

and belongsTo only [Domain]

For our data collection scenario, we execute this query for
the selected property SP1 and the metering domain. This
returns the concrete SBBs AES and DES, defined by the ab-
stract SBB Cipher, and their related Arctis building blocks,
i.e., AESCipher resp. DESCipher. Thereafter, a system
engineer selects one alternative based on, e.g., resource con-
straints. The formalisation of the basis and assistance for
such decisions is not in the scope of this paper.

As mentioned in Sect. 3, integrating a concrete SBB may
create new assets as expressed by the creates and requires
relations in our ontology. Hence, a further search is needed
to fulfil also the security goals required for these new assets.
For this purpose, we apply the following strategy: First,
we search for security properties available for created assets
using query (1). Thereafter, those security properties that
have the goals stated in the attribute requiredGoal are se-
lected (see Fig. 2). Afterwards, we search for concrete SBBs
that satisfy the security properties within a domain specified
by the externalDSSM attribute using query (2). This may

1Values in square brackets denote parameters of queries.

Figure 7: Tool support

lead to recursive execution of the queries (1) and (2) until
all security goals of all created assets are fulfilled.

6. TOOL SUPPORT
Fig. 7 depicts a set of tools to support capturing and ap-
plication of security knowledge. The grey boxes denote the
components developed within the presented work.

Capturing. A security engineer creates DSSMs as object
diagrams using any UML editor supporting the XMI for-
mat [16]. In our work, we use MagicDraw [2]. Thereafter,
the information captured by these diagrams (i.e., DSSMs)
extends the ontology. Omitting details, the ontology trans-
former converts elements of a DSSM and their relations to
corresponding axioms on classes, relations, and individuals.

Application. A system engineer uses a modelling tool (in
our case the Arctis tool [13]) to create a functional model of
a given system, i.e., UML activities and collaborations. Af-
terwards, the model is analysed by our assets analyser that
implements the rules presented in Section 4. The outcome
of the step is a set of elicited assets. This information goes
to our concrete SBBs searcher that is based on the queries
presented in Sect. 5, where a system engineer makes a choice
on considered assets, security properties, and domain. The
outcome is a set of all concrete SBBs captured by DSSMs
that protect the assets. Thereafter, an engineer may select a
subset of these SBBs and proceed to integrate these concrete
SBBs using the (Arctis) modelling tool capabilities.

7. RELATED WORKS
Several model-based approaches have been proposed to inte-
grate security aspects into a system design, e.g., UMLsec [9]
and SecureUML [14]. UMLsec [9] is a UML profile, which
helps to incorporate the security-related functionality into
a system model and to verify satisfaction of certain secu-
rity requirements. SecureUML [14] deals with design and
verification of role-based access control systems. Security
patterns [17] is another well-known methodology, which is a
general approach to capture security solutions for reoccur-
ring security problems. According to Nhlabatsi et al. [15],
SecureUML and UMLsec are examples of languages to ex-
press and apply security patterns. In this paper we exploit
the SPACE method [12] to describe and integrate security
building blocks into a system design. Earlier, this method
has been already applied for security aspects [7].

An important step preceding actual integration of security
building blocks is the selection of such. We have observed
that the model-based approaches mentioned above do not
address this task in detail. However, approaches to select
a security mechanism are elaborated in the context of se-

curity patterns [17]. A fundamental principle to assist in
selection of security patterns is their sufficient classification.
Such classification can be built of three classes (Fernandez
et al. [6]) or be represented as a multi-dimensional matrix
of classes (VanHilst et al. [18]) including such categories as
an architectural layer (e.g., network), lifecycle stage (e.g.,
design), domain (e.g., enterprise systems), etc. In our work
the basis for selection of concrete SBBs are domain, secu-
rity goal, defense strategy, and asset. Thus, there are some
overlapping concepts in our work compared to the dimen-
sions elaborated for security patterns.

Washizaki et al. [19] develop the dimensional graph (DG)
concept to formalise the multi-dimension classification of se-
curity patterns. Each DG uses a UML object diagram to
show relations of a pattern to a set of dimensions of in-
terest. We formalise our categories as the ontology, which
allows utilising advantages of its reasoning capabilities for
selection of SBBs.

Asset identification is an essential stage for many risk analy-
sis methods that precedes selection of security mechanisms ,
e.g., as in the CORAS method [5]. Identification of assets is
normally done by a security expert through informal analysis
of a system model or other (often informal) representation.
We have proposed to automate this task in presence of a
formal system model. Thus, we have defined the rules for
traversing a system model expressed as SPACE collaborative
activities to identify assets and classify them in accordance
with knowledge captured within the ontology.

8. CONCLUDING REMARKS
In this paper, we have refined our approach for model-based
security engineering. In particular, we present a technique
for asset elicitation applied to a system model. The core of
this technique is a set of rules to traverse collaborative mod-
els. Elicited assets are used to guide the security building
blocks’ selection process. The task of SBBs selection was
formulated as ontology inference. The proposals are sup-
ported with a set of tools, which complement other mod-
elling tools used in our approach, i.e., the Arctis [13] and
MagicDraw modelling tools [2]. We used a fragment of the
smart metering system, which is currently under industrial
development, to exemplify the employed modelling language
and to illustrate the key aspects of our proposal.

We will continue applying and validating our technique and
tools for different parts of the case study mentioned above.
In addition to the smart metering system, we will consider
other complex and diverse industrial case studies presented
in the SecFutur project [4]. Moreover, our further work in-
cludes enhancing the set of rules with other semantics- and
context-dependent information to provide a more compre-
hensive list of elicited assets.

9. REFERENCES
[1] HermiT Reasoner. http://hermit-reasoner.com.

[2] MagicDraw. http://www.magicdraw.com.

[3] Ontology Language Manchester Syntax.
http://www.w3.org/TR/owl2-manchester-syntax/.

[4] The SecFutur project: Design of Secure and
Energy-efficient Embedded Systems for Future

Internet Application. http://www.secfutur.eu.

[5] F. Braber, I. Hogganvik, M. S. Lund, K. Stølen, and
F. Vraalsen. Model-Based Security Analysis in Seven
Steps – a Guided Tour to the CORAS Method. BT
Technology Journal, 2007.

[6] E. B. Fernandez, H. Washizaki, N. Yoshioka, A. Kubo,
and Y. Fukazawa. Classifying security patterns. In
10th Asia-Pacific web conference on Progress in
WWW research and development, 2008.

[7] L. A. Gunawan, F. A. Kraemer, and P. Herrmann. A
Tool-Supported Method for the Design and
Implementation of Secure Distributed Applications. In
I nternational Symposium on Engineering Secure
Software and Systems. Springer, 2011.

[8] A. Herzog, N. Shahmehri, and C. Duma. An Ontology
of Information Security. Journal of Techniques and
Applications for Advanced Information Privacy and
Security, IGI Global, 2007.

[9] J. Jürjens. Secure System Development with UML.
Springer-Verlag, 2005.

[10] F. A. Kraemer. Engineering Reactive Systems: A
Compositional and Model-Driven Method Based on
Collaborative Building Blocks. PhD thesis, Norwegian
University of Science and Technology, August 2008.

[11] F. A. Kraemer and P. Herrmann. Automated
Encapsulation of UML Activities for Incremental
Development and Verification. In I nternational
Conference on Model Driven Engineering, Languages
and Systems. Springer, 2009.

[12] F. A. Kraemer and P. Herrmann. Reactive Semantics
for Distributed UML Activities. In Formal Techniques
for Distributed Systems. Springer, 2010.

[13] F. A. Kraemer, V. Sl̊atten, and P. Herrmann. Tool
Support for the Rapid Composition, Analysis and
Implementation of Reactive Services. Journal of
Systems and Software, 2009.

[14] T. Lodderstedt, D. Basin, and J. Doser. SecureUML:
A UML-Based Modeling Language for Model-Driven
Security. In I nternational Conference on The Unified
Modeling Language, UML. Springer-Verlag, 2002.

[15] A. Nhlabatsi, A. Bandara, S. Hayashi, C. Haley,
J. Jurjens, H. Kaiya, A. Kubo, R. Laney,
H. Mouratidis, B. Nuseibeh, T. Tun, H. Washizaki,
N. Yoshioka, and Y. Yu. Security patterns: Comparing
modelling approaches. Software Engineering for
Secure Systems: Industrial and Research Perspectives,
IGI Global, 2010.

[16] Object Management Group. Unified Modeling
Language: Superstructure, version 2.4.1 .

[17] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson,
F. Buschmann, and P. Sommerlad. Security Patterns:
Integrating Security and Systems Engineering . John
Wiley and Sons, 2005.

[18] M. VanHilst, E. B. Fernández, and F. A. Braz. A
multi-dimensional classification for users of security
patterns. In I nternational Workshop on Security in
Information Systems, 2008.

[19] H. Washizaki, E. B. Fernandez, K. Maruyama,
A. Kubo, and N. Yoshioka. Improving the
classification of security patterns. In I nternational
Workshop on Database and Expert Systems
Application, 2009.

