
Formalizing Collaboration-Oriented Service
Specifications using Temporal Logic

Frank Alexander Kraemer and Peter Herrmann
Department of Telematics

Norwegian University of Science and Technology (NTNU)
7491 Trondheim, Norway

{kraemer, herrmann}@item.ntnu.no

Abstract

In our highly automated engineering approach, reactive services are
specified using UML 2.0 collaborations and activities. This enables to
focus on complete behaviors between of a set of participants in isolation,
and to decompose systems according to the functionalities it should
offer. Of course, precise semantics for the specifications are necessary,
as we use them as input for model checking and automatic synthesis
of components for implementation. For this reason we formalize the
concept of collaborations in the temporal logic cTLA by defining the
specification style cTLA/c. Collaborations are hereby represented as
cTLA processes, and the composition of collaboration can be reduced
to process couplings. While cTLA/c is general to capture the semantics
of different languages, we show in detail how UML 2.0 activities are
mapped to cTLA/c by a set of cTLA processes and production rules.

1 Introduction

A networked service is a system offering certain functionalities that
are used by concurrently acting entities in its environment. The service
functions often render a reactive behavior in the sense that they “main-
tain some interaction with their environment” [25]. From a physical
point of view, such a system naturally decomposes into its components,
that means the distributed entities providing the system functionality.
In the setting of a model-driven development approach, the compo-
nents may be expressed for example by SDL processes and blocks [11],

or UML state machines and composite structures [24]. These compo-
nent descriptions form the input for automatic code generation tools
(see, e.g., [3, 7, 30]).

For a system offering a whole bunch of functionalities to its environ-
ment, such a component-based view leads to complex specifications as
each component model describes partial aspects of various functional-
ities. Instead, we desire a specification style in which a specification
block models all aspects of a single functionality facilitating the indi-
vidual development, deployment, invocation and maintenance of sepa-
rate functionalities. As a functionality is basically a service spanning
over several components, we therefore need specifications describing the
collaboration of various components. Modeling languages like UML in-
teractions [24], MSC [12] and Use Case Maps [4] offer a solution by en-
abling the description of both partial and collaborative behaviors. We
apply UML 2.0 collaborations to express static properties and UML 2.0
activities to model collaborative behavior [9, 16, 17].

Of course, the need for component models remains as, in the end,
the components are the entities which have to be created and deployed
on different devices to realize the system. Consequently, we often find
system models utilizing diagrams of several types which describe a sys-
tem from different viewpoints. This, however, imposes the challenge of
keeping the diagrams consistent. Given the need to build services and
to adjust their system functions rapidly, approaches that rely on the dis-
cipline of its developers to maintain the diagrams manually are rather
naive. A consequent way to go is therefore to let developers create only
one group of diagrams and infer the others completely automatically,
for example by means of model transformations.

Several examples [5, 9, 16, 17, 26, 28] illustrate how the notion of
collaborations can be used to specify services. All these specifications
have in common that they decompose a system according to its tasks,
delay the construction of components to a later stage, and identify
only participants relevant for the modeled functionality. Such tasks (or
sub-functionalities resp. sub-services) often show up in more than one
application. They typically have a concise objective or function, result-
ing in building blocks which can be used for various service descriptions
in a particular application domain.

With our approach for the specification by activities, collaborations

Executable System
Service Application Code
Execution Framework

Service Components
UML State Machines,
Composite Structures

Service Specifications
UML Collaborations,
Activities

Composition

cTLA/e

cTLA/c

Library
Reusable
Building Blocks

Generation

 Code

Transformation
 Model

Figure 1: The SPACE Engineering Approach

and executable state machines (SPACE), we develop a tool-supported
process that analyzes and transforms collaborative service specifications
in a highly automated way [17]. The approach is outlined in Fig. 1. Of-
ten, a new service can be composed from already existing collaboration
patterns that may be adapted to the operations and data types spe-
cific for the application under construction. An engineer therefore may
consider a library of reusable building blocks which are subsequently
composed obtaining a composite service specification. To come to an
executable system, the service specifications in terms of UML 2.0 activ-
ities and collaborations are then transformed into UML 2.0 components
and state machines, as detailed in [19]. From this representation, code
generation is quite straightforward, as for example explained in [20]. In
this way, the engineer just works on the creation of the service specifica-
tions, while the rest of the approach is automated, so that consistency
is ensured by construction. Tool support for the SPACE approach ex-
ists in form of two integrated Eclipse-based tool sets [14]. Arctis offers
support for collaborative service specifications, their analysis and trans-
formation into executable state machines. These can then be further
analyzed by Ramses, which also offers code generators to create imple-
mentations based on Java.

Of course, to guarantee the precise understanding of the models and
the correctness of the transformations, the approach requires formal
reasoning on the semantics of the languages used, the transformation
tools, and the consistency of building blocks and their composition.
Temporal logic is a suitable instrument for that. In particular, the
principle of superposition supported by cTLA [8, 10] makes it possible to
describe systems from different viewpoints by individual processes that
are superimposed (see Sect. 3.2). Therefore, the development approach
in Fig. 1 is complemented by formal reasoning (shown on the left side).
In a first step, we formalized the behavior of the state machines with
cTLA/e [20]. This cTLA style defines a set of constraints for cTLA
specifications that directly reflect the special properties of the state
machines needed to enable the generation of efficiently executable code.
Due to this foundation of the state machines, we can ensure that the
generated program code is compliant with the behavior described in the
state machines (see [20]).

In this paper, we focus on the definition of cTLA/c, a style of cTLA
that allows us to formalize the collaborative service specifications given
by UML 2.0 activities. By expressing collaborations as cTLA processes,
we can ensure that a composed service maintains the properties of the
individual collaborations it is composed from. The semantic definition
presented here enables us to prove formally that the transformation
from activities to state machines is correctness-preserving. As sketched
in [19], this corresponds to substitute that an activity modeled by the
cTLA/c specification A is always transformed to a state machine de-
scribed by cTLA/e model S which is a correct refinement of A (i.e.,
S ⇒ A holds).

The semantic definition of collaborations and activities in form of
temporal logic is implemented as a transformation tool [29] which pro-
duces TLA+ modules from activities. These modules may then be used
as input for the model checker TLC [32]. The tool also generates a
number of theorems, so that collaborations may be analyzed for more
advanced properties than simple syntactic checks allow.

In Sect. 2, we introduce service specifications based on collaborations
and activities by means of an example. An introduction to general
cTLA in Sect. 3 is followed by the presentation of the specification style
cTLA/c in Sect. 4. Thereafter, Sect. 5 is devoted to the formal definition

awning

living room

lightlightsoundtemperature

locationaccess
serverserver

garden
zonezone

Figure 2: Illustration for a system configuration

of the UML 2.0 activities used in our approach. For that, special cTLA
specification blocks to model the behavioral features of the activity
nodes are used. In addition, we define a set of production rules guiding
the creation of the final cTLA/c specifications according to the nodes
and edges of an activity. In Sect. 6, we discuss how these specifications
modeling elementary service collaborations can be composed to specify
also composite specifications and service descriptions that may handle
several users and multiple sessions at a time.

2 Specifications in SPACE

As an example, we consider a system for home automation, which allows
the residents of a house to control various devices with their mobile
phones. Devices may be heaters and volume controls, lights, motors of
awnings, or the intercom with the door bell. The house is organized
in zones covering different possibly overlapping areas. Each device is
assigned to a zone manager, as illustrated in Fig. 2 with a zone for the
living room and one for the garden. To make the user interface easier,
the control options offered by a mobile phone should depend on its
current location, so that one may adjust the room temperature of only
the room one currently stays in, or roll out the awnings when one is on
the terrace. For this reason, we assume that the position of the phones
can be determined by a location server with sufficient accuracy (e.g., by
equipping them with WLAN capabilities). Via this channel, the mobile
phones may also communicate to the zone managers. In addition to the
location server, an access server keeps record of the user authorizations
and access rights, for example, to grant guests and children only limited
control.

Mobile Home Control

z: Zone
Manager [1..*]

l: Location
Server

a: Access
Server

p: Phone
[0..*]

h: Heater
[0..*]

«system»

t: Temperature
Update

1

access
server

server
location

phone

zonemanager
zonemanager

heaterz: Zone
Session

Figure 3: System collaboration

2.1 UML 2.0 Collaborations

Figure 3 shows a UML 2.0 collaboration specifying the structure of the
system. For each participant it declares a collaboration role, i.e., a and
l for the access and location server, p representing the phones, z for
the zone managers and h for a set of heaters1. With the stereotype
�system� we express that Fig. 3 documents the highest system level,
and that its collaboration roles should be realized as separate compo-
nents2. In addition to the type information, the collaboration roles
specify the multiplicity of the components. While access server and lo-
cation server have default multiplicity “1”, there may be any number of
phones in the system and an arbitrary number of zones, which in turn
may be connected to several heaters. The multiplicity of the connector
end right to the zone manager is “1”. This tells us that a heater is only
connected to one zone manager while one zone manager is connected
to many devices.

Collaborations may refer to other collaborations by means of collab-
oration uses, so that a specification may reuse existing building blocks
or be decomposed to reduce complexity. In this way, the specifica-
tion in Fig. 3 expresses that a zone communicates with the heaters by
collaboration Temperature Update, which is bound to the system by col-
laboration use t. Whenever a phone enters a zone, the location server
starts a zone session collaboration between the phone and the entered
zone, represented by collaboration use z. The labels at the lines which
connect the ellipse of the collaboration use describe to which collabo-

1To keep the example manageable, we look here only at heaters as devices.
2For this reason, we also include the type names (like ZoneManager) which will

be taken as type names for the components to be generated.

heater

read value
else

changed

zone manager
Temperature Update

set value

update display

update device

i1

m1

t1

f1

d1

z1

z2
e2

e0

e4
e3

e6
o1

e7

o2

e9e8

e5 e1

Figure 4: Activity describing the control of the temperature

ration roles of the referring collaboration the collaboration roles of the
referred collaboration are bound.

2.2 Activities for Elementary Collaborations

As mentioned in the introduction, SPACE uses activities to describe the
behavior of collaborations. Activities can be understood as token flows,
similar to Petri nets. Let us first consider the activity for the elementary
collaboration given in Fig. 4 for the control of the room temperature
with a heater. The activity has two partitions, zone manager and
heater, one for each collaboration role. At startup, a token is emitted
from the initial node i1, which then finds its way through merge node
m1 towards timer t1, where it starts the timer and rests. When the
timer expires, the token is emitted and duplicated within the fork node
f1. One token is then redirected via merge node m1 back to the timer,
which starts again. The other token flows via operation read value to
decision node d1. If the temperature changed, the token is sent to the
zone manager. For the transmission, we assume a queue place on edges
that cross partitions (in the following called transfer edges), so that
the token first rests within the queue before it is read out by the zone
manager. If the change of temperature is insignificant and does not
need to be reported to the zone manager, the token flow is ended in
the flow final node z1. A second flow starts at the input parameter
node update device, forwards to the heater, causes a value change as
expressed by the operation o2, and finally terminates at node z2.

location server

u: Update

Zone Session

a: Authenticate

g: Get
Access Rights

access server phonemanager
zone

Figure 5: Collaboration for a phone within a zone

2.3 Activities for Compositional Collaborations

The zone session referred from the collaboration in Fig. 3 is further
detailed in Fig. 5. It is in turn a composite collaboration with the col-
laboration roles for the location and access server, a zone manager and
a phone as its participants. All collaboration roles have their default
multiplicity “1”, so that this collaboration describes the cooperation of
exactly one phone and one zone manager, covering the behavior when-
ever a phone is within a certain zone. For that, collaboration uses a,
u and g refer to collaboration describing the retrieval of access rights
from a server, the authentication of the phone, and the bidirectional
update mechanisms between zone and phone. The detailed coupling of
these collaboration uses is described by Fig. 6. It has again one activity
partition for each of the collaboration roles. In addition, the collabo-
ration uses of Fig. 5 are represented as call behavior actions g, a and
u. They refer to other activities that describe their detailed behavior.
Their pins are used to couple them together, using some additional logic
in the zone manager and the phone. The collaboration starts when the
location server detects that a phone enters a zone, via input parame-
ter node enter3. Upon that, the zone manager simultaneously invokes
via the fork node the sub-collaborations g to retrieve the access rights
as well as a to request an authentication from the phone. Once the
access right information arrives, a token is placed into the waiting de-
cision node. This is an extension of a normal decision node with the
difference that a token rests in it until one of the downstream joins
may fire [19]. This is the case when the authentication finishes. De-

3Activity parameter nodes are represented by pins owned by a call behavior
actions when their activity is referred to by another activity.

g: Get Access
Rights

a: Authenticate
failed ok

compute
options

register
options

register
phone

u: Update

zone manager

phone

access serverlocation
server

Zone Session

remove
phone stop

update display

update device

enter

leave

update displayupdate device

Figure 6: Collaboration for entering and leaving a zone

pending on the outcome, either the left join node may eventually fire,
which causes the flow to stop, as the user is not authenticated. Upon
a successful authentication, the right join fires and the zone manager
computes the options that are offered to the phone. After the phone has
registered the options, the zone manager registers the phone enabling
it to handle updates. Collaboration u is started which manages the
update handling, so that the phone may send updates to the devices
and vice versa.

2.4 Multi-Session Collaborations

Within one occurrence of a zone session, each collaboration role was
considered only once, and each collaboration use was executed only
once at a time. The collaboration for the entire system, Mobile Home
Control in Fig. 3, however, has several zones, heaters and phones. As
a consequence, the collaborations z for the zone sessions and t for the
temperature updates are executed with several executions (also called
sessions) at the same time. The one location server is invoked in several
sessions of a zone session (with different zone managers and phones).
One zone manager is connected to many heaters, and maintains there-

z: Zone Session

PosUpdate

extract
phone

extract
zone

else

leave

enter

«multi-session»

z: Zone Session

(phone, access server)
enter

leave

location server
Mobile Home Control

zone manager

t: Temperature
Update

heater

update device

update display update display

update device

select one : id=zone

select one : id=device
select one :

id=zone,phone

«system»

Figure 7: Activity composing the entire system

fore several temperature update collaboration instances with them at
the same time. We emphasize this by adding a shadow-like border to
the call behavior actions within those activity partitions that can choose
from different collaboration instances. In Fig. 7 this is the entire zone
session, as both zone manager and location server have to handle sev-
eral instances. For the temperature update, the collaboration is multi-
ple only within the zone manager (which may be connected to several
heaters) but is single within the heater partition, as one heater par-
ticipates in only one temperature update session as it is connected to
only one zone manager. The activity of Fig. 7 starts within the location
manager that waits for the reception of position updates. Once a po-
sition update arrives, it extracts the phone and zone information from
the update and decides, if the change of location should be interpreted
as the entering or the leaving of a zone. If the phone enters a zone, a
zone session is started, if it leaves a zone, the corresponding ongoing
zone session is informed (and stopped). In both cases, the token has to
enter a specific zone session instance. UML activities may handle sev-
eral execution at the same time, that means, a call behavior action may
refer to several executions that go on at the same time. However, UML
does not provide means to distinguish the different session from each
other, so that we may compose them in a more advanced manner. We
therefore introduced an selection operator, that distinguishes different
session instances by a set of filters (see [16]). To enter the zone session,
we take the zone and the phone as ID identifying the corresponding
session. More filters that also take data within the session instances
into consideration, are described in [16].

3 Temporal Logic and cTLA

Temporal logic enables to specify behavior which, according to Kurki-
Suonio, is the “abstraction of reactive executions” [21]. Since networked
services are reactive by nature, temporal logics are therefore suited to
model the service behavior formally. One can distinguish temporal
logics in linear time logics (LTL), which express behaviors by sets of
infinite sequences of states, and in branching time logics (BTL) mod-
eling state orders by tree structures. While the latter concept offers a
higher degree of expressiveness, LTLs often lead to easier understand-
able specifications.

A well-known LTL is Leslie Lamport’s Temporal Logic of Actions
(TLA, [23]) in which behavior is described by special state transition
systems as well as fairness properties. The TLA coupling method by
means of states common to several element specifications [1], however,
makes it difficult to create constraint-oriented models in which not sin-
gle physical components but properties reflecting partial system behav-
ior spanning several components are specified [31]. As our collaboration-
oriented models demand exactly this specification style, we use the com-
positional Temporal Logic of Actions (cTLA, [8, 10]). This is a variant
of TLA which provides couplings based on jointly executed transitions
enabling to glue interacting constraints nicely. Moreover, cTLA makes
the description of state transition systems in a process-like style pos-
sible. A cTLA process can either be in a simple form, modeling the
state transition systems directly, or in a compositional form combining
several process instances which interact by the jointly fired transitions.
In the following, we introduce both process types in detail.

3.1 Simple cTLA Processes

Simple cTLA processes are used to model single resources or constraints
of a system. Figure 8 depicts a simple process which specifies a timer
node of an UML 2.0 activity. In the process header, the process name
and a list of process parameters are listed. The parameters enable
to model several shapes of process instances by a single process type.
For example, the process parameter TT describes the signature4 of the

4Like in colored Petri nets (see [13]), we assume activity tokens to contain special
data sets to specify the forwarding of data.

PROCESS Timer(TT: Any)
VARIABLES

i: {"idle", "active"};
tv: TT;

INIT
∆
= i = "idle" ∧ tv ∈ TT;

ACTIONS
start(it: TT)

∆
=

i = "idle" ∧ i ′ = "active" ∧ tv ′ = it;

expire(ot: TT)
∆
=

i = "active" ∧ ot = tv ∧ i ′ = "idle" ∧ unchanged(tv);

expireAndRestart(it, ot: TT)
∆
=

i = "active" ∧ ot = tv ∧ tv ′ = it ∧ unchanged(i);

END

Figure 8: cTLA process for Modeling Activity Timers

tokens modeled by a particular UML activity so that we can use the
process Timer for various token formats. As said, a cTLA process
models a state transition system, the state of which is described by
variables. In the example process, we use the variables i distinguishing
if the timer is idle or active and tv storing the data of an activity
token passing it. The set of initial states which hold in the beginning of
executing a process are defined by the predicate INIT. Here, the variable
i is initially idle while tv contains any data set from TT.

The transitions are specified by actions (e.g., start) which are pred-
icates on a pair of a current and a next state. Variable identifiers in
simple form (e.g., i) refer to the current state while variables describing
the successor state occur in the primed form (e.g., i′). The conjuncts
of an action referring only to variables in the current state specify the
enabling condition while those with primed variable identifiers express
the state change. Thus, the action start is enabled if variable i is “idle”
while its execution leads to a new process state change in which i carries
the new value “active”. Actions may have parameters modeling transfer
between processes. For instance, start has the parameter it of type TT
describing the data set of a token arriving at the timer which is stored in
the variable tv. Actions can be distinguished into two classes. External
actions denoted by the keyword ACTIONS may be coupled with actions of
other processes. In contrast, internal actions defined in a compartment
headed with INTERNAL ACTIONS must not be joined with actions of the
process environment so that they express purely local process behavior.

In the process Timer we use only externally visible actions. Moreover,
we may provide the actions with fairness assumptions guaranteeing a
lively behavior. Since we concentrate in this paper on safety aspects
only, we do not discuss that in detail.

Formally, a cTLA process can be expressed as a TLA-formula, the
so-called canonical formula C :

C , INIT ∧ �[∃it, ot ∈ TT : start(it) ∨ expire(ot) ∨
expireAndRestart(it, ot)]〈i,tv〉

The conjunct at the left side of the formula states that the predicate
INIT holds in the first state of every state sequence modeled by C.
The conjunct on the right side starts with the temporal operator �
(“always”) specifying that the expression right to it has to hold in all
states of all state sequences. The TLA expression [pp]〈i,tv〉 defines that
either the pair predicate pp holds or that a stuttering step5 takes place
in which the annexed variable identifiers do not change their state (i.e.,
i′ = i ∧ tv′ = tv holds). As pair predicate pp we listed the disjunction
of the process actions in which the process parameters are existentially
quantified. This models that a state change in the process always corre-
sponds to the execution of one of its actions using any action parameters
of the set TT. Thus, the cTLA process specifies that the first process
state fulfills INIT and that all state changes follow the process actions
or are stuttering steps.

As outline above, cTLA processes are special TLA formulas which,
however, follow certain constraints facilitating the cTLA-based action
couplings. Mainly, a process action may access only variables of the pro-
cess, it is defined in, and, like in DisCo [21], the actions can be uniquely
identified which enables a reference of process actions in compositional
descriptions. Some other conventions are necessary for guaranteeing
liveness properties and are introduced in [8].

3.2 Compositional cTLA Processes

Compositional cTLA processes specify systems and subsystems as com-
positions of simple cTLA process instances which cooperate by means
of synchronously executed process actions. Data transfer between the

5Stuttering steps are necessary for carrying out refinement proofs.

PROCESS TemperatureUpdate
(TT: [[temp: NATURALS, ANY]] ;
VT: [[tsTemp, tsOldTemp: NATURALS; tsChg: BOOLEAN; ANY]])

CONSTANTS
ET = {"e1", "e2", "e3", "e4", "e5", "e6", "e7", "e8", "e9"};
nv1 = [n ∈ VT × TT → VT

7→ [[n.1 EXCEPT !.tsOldTemp = n.1.tsTemp
EXCEPT !.tsChg = n.1.tsTemp 6= n.1.tsOldTemp];

nt1 = [n ∈ TT × TT → TT 7→ [[n.2 EXCEPT !.temp = n.1.tsTemp]]];
nv2 = [n ∈ VT × TT → VT 7→ [[n.1 EXCEPT !.tsTemp = n.2.temp]]];
nt2 = [n ∈ TT × TT → TT 7→ n.2];
gu1 = [n ∈ 1..2 × VT × TT → BOOLEAN

7→ IF n.1 = 1 THEN n.2.tsChg ELSE NOT n.2.tsChg];
PROCESSES

i1: Initial(TT);
t1: Timer(TT);
o1: Operation(nv1,nt1);
d1: Decision(2,gu1);
e6: Transfer(TT);
e8: Transfer(TT);
o2: Operation(nv2,nt2);

ACTIONS
act3(it: TT; ot: [ET → TT], iv: VT, ov: [ET → VT],

is: TT, os: SUBSET TT, last: SUBSET ET)
∆
=

i1.start(it)
∧ t1.start(it)
∧ os = {}
∧ ov = ["e0" 7→ iv, "e1" 7→ iv]
∧ ot = ["e0" 7→ it, "e1" 7→ it]
∧ last = {"e1"}
∧ e6.Stutter ∧ e8.Stutter;
. . .

END

Figure 9: cTLA Process describing the activity Temperature Update

simple processes is modeled by aligning the parameters of the coupled
process actions. Since the variables of the simple processes are encapsu-
lated and cannot be read or modified by other processes, a system state
is defined as the vector of the process variables. The system transi-
tions are modeled by the synchronously executed process actions. Each
stateful simple process (i.e., each process in which variables are defined)
contributes to a system action by either exactly one process action or
by a stuttering step modeling concurrency as interleaving. In conse-
quence, a system action is a conjunction of process actions and process

stuttering steps.
Figure 9 models the cTLA specification of the UML activity Tem-

perature Update (see Fig. 4) as a compositional cTLA process with the
same name. The cTLA process is composed from the process instances
listed in the section PROCESSES. For example, t1 is an instance of the
process type Timer introduced above. The process parameter TT of
t1 is instantiated with the process parameter TT defined as a process
parameter in the compositional process. The external and internal sys-
tem actions are specified in the blocks ACTIONS and INTERNAL ACTIONS
as conjunctions of process actions and process stuttering steps. We de-
picted the system action act3 modeling the flow from the initial UML
activity node i1 to the timer t1. The action is a coupling of the actions
start in both composed processes i1 and t1 while the processes e6 and
e8 perform stuttering steps6.

Formally, a compositional cTLA process corresponds to the conjunc-
tion of the canonical formulas of the composed simple processes and an
additional coupling constraint CC :

C , i1.C ∧ t1.C ∧ . . . ∧ o2.C ∧ CC

The coupling constraint defines the conjunction of the process actions
to system actions. Moreover, it defines some constraints on the process
action fairness properties which, together with the encapsulation of the
process variables, guarantee that the cTLA composition principle fulfills
the superposition property (see [8]). Superposition [2] ensures that each
property of a simple cTLA process holds also for each compositional one
including it. As mentioned in the introduction, this is an important
ingredient to describe systems from different viewpoints since we can
define elementary service functions as separate simple cTLA processes
and compose these easily to both collaborative and component-oriented
system models. In addition, this property facilitates the formal proofs
vastly that component models realize collaboration-based ones.

A compositional cTLA process can be transformed to an equivalent
process in simple form as proven in [10]. Basically, the simple process
comprises the local variables of the included process instances as its
variable set while the transitions are modeled by the expanded system
actions. As an example, Fig. 10 depicts the process Temperature Update

6The processes d1, o1 and o2 are not referred to since they are stateless.

PROCESS TemperatureUpdate
(TT : [[temp : NATURALS, ANY]] ;
VT : [[tsTemp, tsOldTemp : NATURALS; tsChg : BOOLEAN; ANY]])

CONSTANTS
ET = {"e1", "e2", "e3", "e4", "e5", "e6", "e7", "e8", "e9"};

VARIABLES
i1xi : {"init","active"};
t1xi : {idle, active};
t1xtv: TT;
e6xq : QUEUE(TT);
e8xq : QUEUE(TT);

ACTIONS
act3(it: TT; ot: [ET → TT], iv: VT, ov: [ET → VT],

is: TT, os: SUBSET TT, last: SUBSET ET)
∆
=

i1xi = "init" ∧ it ∈ TT ∧ i1xi ′ = "active"
∧ t1xi = "idle" ∧ t1xi ′ = "active" ∧ t1xtv ′ = it
∧ ov = ["e0" 7→ iav, "e1" 7→ iv]
∧ ot = ["e0" 7→ it, "e1" 7→ it]
∧ last = {"e1"}
∧ unchanged(e6xq,e8xq);
. . .

END

Figure 10: Simple form of cTLA Process Temperature Update

in simple form. This transformation from compositional to simple cTLA
processes is essential for our UML activity modeling approach as we
discuss in Sect. 5.

4 Formalizing Collaborations

The concept of UML 2.0 collaborations as introduced in Sect. 2 is
rather structural and as such “describes a structure of collaborating
elements” [24]. Although UML enables collaborations, being so-called
behaviored classifiers, refer to behaviors in form of interactions, state
machines or activities, the coordination of these behaviors is not elabo-
rated in detail. For our approach, however, in which we want to specify
systems completely by composing collaborations, the behavioral part
and the coordination of behavioral descriptions are essential. Therefore,
we understand collaborations first and foremost as processes jointly ex-
ecuted by a set of participants. Composing systems from collaborations
corresponds then to the task of synchronizing these processes. This de-

p1
p2

C a2

a1
a3

Figure 11: External view of a collaboration C

mands for a precise formal semantics describing both the behavior of
collaborations as well as their composition. This does by far not ex-
clude UML; on the contrary, such a well-defined formal basis enables
us to use different UML diagrams, utilizing their specific advantages
where appropriate. For this reason, we defined the cTLA style cTLA/c
used to model collaborations in a way that several diagram types can
be formalized.

To illustrate cTLA/c, Fig. 11 depicts a collaboration from an ab-
stract, external viewpoint. It is a process between its participants p1

and p2. While most of the behavior may be executed internally to the
collaboration, we need some mechanism to couple the collaborations
with others during composition. For example, the end of one collab-
oration could trigger the start of another one, or collaborations may
exchange data. For this, two principle solutions exist: communication
by variables and synchronously executed actions. Only relying on the
first one (i.e., allowing only producer/consumer synchronization) im-
plies buffering, so that it would always take two execution steps for
a collaboration to influence another one. In some cases, however, fol-
lowing the idea of constraint-oriented modeling (see Sect. 3), we may
want to describe that events happen at the same time in several collab-
orations. Thus, both interaction principles can be useful, and cTLA/c
is laid out to support both of them. For synchronous couplings, we
simply conjoin the cTLA actions of different collaborations, while for
buffered communication, we assume that the collaborations are linked
to a special collaboration modeling the buffered communication. Both
approaches use the cTLA coupling principle of joint actions [8, 10] (see
also [21]). In Fig. 11, the externally visible cTLA actions a1, a2 and a3

can be used to couple C1 with other collaborations.

4.1 Elementary Collaborations

A collaboration that is not composed of other collaborations but de-
scribes its behavior directly by its actions and variables is called an
elementary collaboration. For this, we use a simple cTLA process,
as introduced in Sect. 2.1. Ignoring fairness assumptions and pro-
cess parameters, a simple cTLA process can bee seen as a tuple
Psimple = 〈Actint, Actext, V ar, Init〉, which declares the set of its vari-
ables, internal and external actions and an initial statement. To de-
scribe collaborations, we impose additional invariants on how cTLA
processes are written. This basically defines the style of cTLA/c. For
an elementary collaboration, we use the tuple

Cel = 〈Actint,Actext, Init,Varloc,Varcom,Part, pvar, pact, NT 〉.

Actint, Actext and Init have the same meaning as in Psimple. In
addition, we define the participants of a collaboration by the set
Part = {p1 . . . pn}. As these participants describe behavior to be exe-
cuted by separate, physically distributed components, we assume only
buffered communication between the different participants. This com-
munication is expressed by special communication variables defined by
the set V arcom while the state variables of the participants by Varloc

(in which Varloc ∩Varcom = {} holds and Varloc ∪Varloc forms the set
of all variables Var). Function pvar , [Var → Part] maps each variable
to exactly one participant.

• A local variable vl can be read and written only by the participant
assigned to it via the function pvar. These variables are used to
model local data, status of timers or the history of what has hap-
pened so far, to synchronize interactions with other participants.

• A communication variable vc is a bag. It can be read by one
participant only while the other participants may add elements.
We attach vc to the partition which can read it and constrain the
function pvar accordingly.

The actions modeling interaction with the environment of the collab-
oration are described by the set actext, while actint models behavior
that is not visible from the outside. Similarly to the variables, each ac-
tion is attached to a participant via function pact , [Act → Part]. An

local variable

vnv2
v1

ai

vn

a1

a2p1

a3

v3
p2 v4

an internal action

participant

collaboration

a2

a1

variable
communication

a3

Cel

a1 external action

Figure 12: A cTLA/c process for an elementary collaboration Cel

action ai attached to participant pi may access local variables that are
assigned to pi as well. In addition, it may add elements to all commu-
nication variables of the neighboring collaborations, and receive from
communication variables assigned to pi. These definitions implied by
cTLA/c on elementary collaborations are illustrated in Fig. 12. It is
basically a bipartite graph showing the relationships between actions,
participants and local and communication variables.

For the execution of components, we use state machines as expressed
by cTLA/e, where actions correspond to state machine transitions that
are triggered either by the expiration of a timer or the arrival of a signal.
To enable an easier mapping from the actions of cTLA/c to the actions
of cTLA/e in form of an implication ScTLA/e =⇒ ScTLA/c, we require
also cTLA/c actions to be triggered. As the exact mode of triggering
depends highly on the particular concepts of the diagrams formalized,
we simply take the tuple element NT to mark all actions that are not
triggered. Internal actions have always to be triggered such that NT
may only include external actions.

4.2 Compositional Collaborations

A compositional collaboration refers to other collaborations and com-
poses their behavior to describe its own behavior. For the description

of a compositional collaboration, we use the tuple

Ccomp = 〈Actint,Actext,Part, pact,Cu, bind,NT 〉

As for the elementary collaboration, Ccomp declares a set of internal and
external actions, a set of participants, and a function pact that assigns
each action to one participant. In addition, there is the set Cu of col-
laboration uses. The participants of the instantiated collaborations are
mapped to the participants of the collaboration under construction by
function bind , [Part → Part]. This enables us to use different parti-
tion names for the elementary and for the compositional collaborations
which can be mapped into each other. Fig. 13 gives an illustration.
For formal simplicity, there are no variables defined directly within a
compositional collaboration. Coupling logic that needs variables and
cannot be expressed by action couplings only, can be included by using
dedicated collaborations.

As mentioned before, we use joined actions to couple collaborations.
In cTLA/c there are some restrictions concerning the topology of the
collaborations, and taking into account that internal actions must be
triggered. Each action within a compositional collaboration is a con-
junction of one action of each the n collaborations listed in Cu:

act =
∧

i=1...n

ai

with ai being an external action or a stuttering step of collaboration
use i. For the action coupling the following constraints must hold:

• Only actions mapped to the same participant may be coupled with
each other. Collaborations not bound to the same collaboration
role must stutter.

• Within each set of coupled actions, at most one action may be
triggering.

• If none of a set of coupled actions has a link to the environment of
the composite collaboration Ccomp, the joint action act is internal.
In this case, exactly one of the bound actions must be triggered.

• If one of a number of bound actions is linked to the environment
of Ccomp, the joint action is external. Here, either one or none of
the joined actions must be triggered.

p1

p3

Ccomp

p2

c1
c2

c3

c4 c5

p4

a1

a2

action coupling
c6

Figure 13: A cTLA/c process for a compositional collaboration Ccomp

Following composition concept of cTLA, the compositional cTLA/c
tuple Ccomp can be expanded to an elementary collaboration such that
hierarchical collaboration structures are possible.

We abstain from describing a special syntax for the constraints intro-
duced by cTLA/c as we consider it only as a semantic concept behind
other languages, such as UML activities, as described in the follow-
ing. Once a specification semantically has the form of cTLA/c, it can
be taken by our transformators and code generators to create an exe-
cutable system.

5 Activities for Elementary Collaborations

In SPACE, we use UML 2.0 activities to express the behavior of col-
laborations as introduced in Sect. 2. A UML 2.0 collaboration is com-
plemented by an activity which uses one separate activity partition for
each collaboration role. In the terms of cTLA/c, an activity partition
corresponds to a collaboration participant.

As already pointed out in Sect. 2, the semantics of UML 2.0 activities
is based on Petri nets [24]. Thus, an activity basically describes a state
transition system, with the token movements as the transitions and the
placement of tokens within the graph as the states. In consequence, the
variables of a cTLA/c specification model the actual token placement on
the activity while its actions specify the flow of tokens between places.
Activity edges may cross partition borders. According to the cTLA/c

definition and due to the fact that the partitions are implemented by
distributed components, flows moving between partitions are modeled
by means of communication buffers while places assigned to activity
nodes are represented in cTLA/c by local variables.

We discussed above that certain variables of a cTLA/c collabora-
tion may be triggers. For activities, triggers are represented by initial
nodes starting a flow in the beginning, timer nodes which trigger a flow
upon expiration, and edges crossing a partition border in which a token
in the corresponding communication buffer is triggered to forward in
the receiving partition7. Moreover, a token may be triggered from the
activity environment which is expressed by flows passing pins at the
border of call behavior actions. This leads to flows which — from a
local view of a single activity — are non-triggered. Of course, in order
to achieve lively flows, non-triggered partial flows have to be connected
with other flows in a way that in the system description all flows start
at a triggering node.

The properties on the triggering of flows lead to constraints on the
alignment of places to activity nodes since not every flow could be
triggered if a token can rest at any node. In general, we allow places
only on nodes modeling either entities that can trigger or locations in
which a token has to wait for another flow to synchronize. The first
group comprises initial nodes, timer nodes, and crossing points of edges
through partition borders while the second one covers the following
cases:

• a join node in which a token must wait if the other incoming edges
are not yet filled,

• a waiting decision node (see Sect. 2) enabling a token to leave via
different joins (see [19]), where are token has to wait if none of the
succeeding joins can fire.

In contrast, tokens do not rest within call operation actions. This is
not useful as no trigger is available which may lead a flow to leave the
call operation action after the invoked operation is finished (see [20]).
Instead, we consider the execution of the operation “on-the-fly” by a
token passing its call operation action.

7This definition results from the need to transform activities to the special UML
state machines forming the input of our code generators (see [19]).

In the following, an activity is given by the tuple

A , 〈nodes, edges, type, part, location, guard〉

with nodes as the set of activity nodes. edges ⊆ subset nodes×nodes8

describes the set of activity edges, while the function type ∈ [nodes →
Type] assigns to each activity node the node type which is an el-
ement of the set Type = {initial, fork, join, merge, decision, wait-
ing, timer, receive, send, input, output, operation, callBehavior, input-
Pin, outputPin}. part models the set of partitions, while location ,
[nodes ∪ edges → subset part\{}] assigns each node and edge a
non-empty set of partitions. Here, all nodes except for call behav-
ior actions must only be mapped to exactly one partition while edges
may belong to several partitions as they can arbitrarily cross partition
borders. Guards are assigned to all edges following a decision node by
function guard , [edges → Guards∪{}]. In addition to the tuple A, we
define functions outgoing and incoming as , [node → subset edges]
that give us the set of incoming and outgoing edges of a node. In par-
ticular, only decision and fork nodes have more than one outgoing edge,
and only merge and join nodes have more than one incoming edge.

To define the semantics of activities using cTLA/c, we opted for an
approach that makes directly use of the composition mechanisms of
cTLA.

1. We describe for some node types9 of an activity a separate cTLA
process which are introduced in Sect. 5.1. This already helps to
understand the semantics of the nodes.

2. To obtain a cTLA/c representation CA for an activity A, we define
CA as a compositional cTLA process and include for every activity
node an instance of the corresponding cTLA process modeling the
node.

3. Thereafter, we create the actions of CA specifying A’s flows of
tokens. In particular, we traverse the edges of the activity. At a
starting point of a flow, a new cTLA action is created which is

8subset S is also called power set of S
9For merges, forks, and final nodes special cTLA processes are not necessary as

we will discuss later.

amended successively when the traversal passes an activity node.
The creation and amendment of the actions is guided by a set of
production rules introduced in Sect. 5.2. In Sect. 5.3 we clarify the
action creation with an example.

4. As CA is yet a compositional cTLA specification, we finally expand
it to an equivalent simple process as discussed in Sect. 3.2. The
result of this transformation is the formal model of the activity.

5.1 cTLA Processes for Activity Elements

As mentioned above, we model flows passing partition borders by
buffered queues. In consequence, the communication variables used
for the communication between the participants in the cTLA/c defini-
tion are described by buffers storing tokens. Thus, in the tuple Cel,
introduced in Sect. 4, we define the element Varcom as the set of queues
of tokens containing a separate element for each crossing of an edge
through a partition border. Each queue is located at the partition en-
tered by the edge and the tuple element pvar is accordingly defined.
The places on the activity nodes on which tokens may rest can store
at most one token each. For input nodes, timers and waiting decisions,
we assign one place for the overall node while joins are provided with a
separate place for each incoming edge not leaving a waiting decision. In
our cTLA/c processes, every place is described by a boolean flag each
modeling if the place is filled by a token or not. Moreover, UML activ-
ities enable to use auxiliary variables to express data. As tokens can
store data in local signatures10, we further need variables storing their
current signature if they rest on a place. In consequence, we define the
set Varloc of local states as the union of the flags describing the places
and the cTLA representations of the auxiliary variables resp. token sig-
nature stores. Each place and the assigned signature store are directly
linked with an activity node local to a particular partition. In addition,
we assume that each auxiliary variable is also local to a partition, so
that we can define the mapping pvar in a straightforward manner.

The cTLA process types modeling the different activity node types
have to fulfill these constraints. Thus, initial nodes, joins (including
waiting decisions), timers and receive nodes are represented by cTLA

10This implies UML object flows [24], which we do not consider here in detail.

processes defining their places and token signature stores. The cTLA
process modeling edges crossing partition borders defines meanwhile
the communication queue specifying the partition change. In addition,
for each partition, we describe a cTLA process storing the local auxil-
iary variables. Decision, sending and operation nodes are represented
as stateless cTLA processes since that helps to encapsulate their spe-
cific properties. For brevity, we introduce only the cTLA processes for
initial nodes, decisions, timers, operations as well as for transfer edges
which are necessary to understand the example sketched in Sect. 5.3. A
complete documentation comprising the cTLA processes for all activity
nodes is provided in [18].

Before discussing the cTLA processes in detail, we introduce some
generic data types used as process parameters. VT describes the types
of all auxiliary variables in a partition. Here, we assume that a list of
variables is expressed by a single record element. The signature set of
the tokens is represented by the type TT, while ET is an enumeration
providing each edge in an activity a unique identifier.

Initial Nodes The variable i is the flag describing the place at an
initial node. The place is only filled in the initial system state (value
“idle”) while it will remain empty when the activity is running (value
“active”). The leaving of the token from the initial node is modeled
by the action start which must only be executed if the token is in its
place (i.e., i = “idle”) and removes the token (i’ = “active”). The
action parameter t specifies the signature of the token. Since that is
not defined explicitly, it may contain any correct value of set TT. start
is a trigger action modeling the start of a new token flow.
PROCESS Initial(TT: Any)
VARIABLES i: {"init","active"};

INIT
∆
= i = "init";

ACTIONS
start(t: TT)

∆
= i = "init" ∧ t ∈ TT ∧ i ′ = "active";

END

Timer Nodes A timer node11 contains also a place on which a token
may rest. In the corresponding cTLA process that was already intro-

11Technically, a timer node is a UML accept event action with a time event as its
trigger.

duced in Fig. 8, we use a boolean flag i and a store tv for the token
signature. An idle timer is activated by an arriving token, represented
by the cTLA action start. This action uses the parameter it to model
the parameters of the arriving token. It is enabled if the place is empty
(i.e., i = “idle”) which will, consequently, being filled with the token
(i.e., i’ = “active” ∧ tv’ = it). As we do not model time explicitly
yet, the timer can expire at any time, described by the action expire
which can only be executed if the place is filled. Here, i is set to “idle”
and the parameter ot specifying the signature of the leaving token is
assigned with tv. The third action, expireAndRestart models that the
timer expires but is restarted within the same step. This extra action is
needed, as a conjunction of action start and expire would assign con-
tradicting values to the state which would block it forever. expire and
expireAndRestart are trigger actions.

Transfer Edges The queue modeling the transfer of a token from
one partition to another one is modeled by the variable q. It stores
for every received token the corresponding signature and delivers this
information in FIFO order. The arrival of a token with the signature
it at the partition border is specified by the action send while receive
models the consumption of a token with signature ot. According to
this definition, the action start is assigned to the partition from which
the edge leads to the partition border while receive is part of the one
consuming the token. receive is a trigger action.

PROCESS Transfer(TT : Any)
VARIABLES

q: Queue(TT);

INIT
∆
= q = EMPTY;

ACTIONS
send(it: TT)

∆
= q ′ = append(q,it);

receive(ot: TT)
∆
= q 6= EMPTY ∧ ot = first(q) ∧ q ′ = tail(q);

END

Call Operation Actions An operation may change the values of lo-
cal auxiliary variables of the partition, in which it is defined, as well as
the signature of the token flowing through it. We describe operations
by the stateless cTLA process Operation, which takes two functions as
parameters nv and nt. These parameters reflect that a call operation

action may change both the signature of the tokens and the auxiliary
variables. Consequently, nv is a function that describes the operation’s
effect on the values of the auxiliary variables. Similarly, nt describes the
deriving of new token values. The method execute models the compu-
tation of new values according to these functions. As action parameters
it uses iv expressing the auxiliary variable setting and it specifying the
token signature before executing the operation. The new value of the
auxiliary variables and the new token signature are described by the
action parameters ov resp. ot.

PROCESS Operation(nv: [VT × TT → VT]; nt: [VT × TT → TT])
ACTIONS

execute (iv: VT; it: TT; ov: VT; ot: TT)
∆
=

ov = nv[iv,it] ∧ ot = no[iv,it];
END

Decision Nodes A decision is specified by a stateless cTLA process,
too. It may have n outgoing edges modeled by the process parameter
of the same name. The other parameter is a function characterizing
the guards of the outgoing edges. Its domain set is a tuple defining
the identifier of the guard as a number between 1 and n as well as
the current value of the auxiliary variables and the token signature.
The tuples are mapped to boolean values. The action decide reflects a
semantics according to which exactly one guard of a decision node has
to be true. The parameter e refers to the number of the checked guard
and the action may only be executed for this guard if all guards with
smaller numbers ed are not executable and either the guard of e holds
or e is the highest number. The latter condition reflects that one guard
should always contain the value else.

PROCESS Decision (n: NATURALS; gu: [1..n × VT × TT] → BOOLEAN])
ACTIONS

decide(e: 1..n; av: VT; t: TT)
∆
=

∀ ed ∈ {1..n}:
ed < e ⇒ ¬ gu[ed,av,t] ∧ e = n ∨ gu[e,av,t];

END

5.2 Production Rules for cTLA/c Actions

The processes for the activity nodes explained in the last section are
instantiated as part of the cTLA process for the activity CA and con-

stitute the state space for this process. They also declare actions for
their respective nodes, which, in the following, have to be coupled in
accordance with the activity edges building the system edges of CA.

We decided to present the way producing the system actions from
the local process actions as a set of rules, so that each activity element
can be discussed separately. There are two types of rules:

• Rules that create a new action. These rules treat triggering nodes
like timers or incoming transfer edges. As well as edges starting at
an input or output pin of a call behavior action. They simply start
the construction of a new action in CA.

• Rules that replace an existing action. These rules model the con-
tinuation of a flow. They start at an edge that is not trigger-
ing, take the already produced action act for the upstream graph
and add a conjunct c to the existing action, so that a new action
act? = act ∧ c is created. This new action replaces the existing
one. Except for the special case in which a flow reaches the activ-
ity node that triggered it, this replacement corresponds to a cTLA
process composition. The existing action is encapsulated as exter-
nal action within a process and then composed in a compositional
process together with another process encapsulating the additional
sub-action c. The result can then be expanded to a simple cTLA
process, which is equivalent to a (maybe more intuitive) replace-
ment of the action. If a flow reaches the node from which it started,
we have to replace the action specifying the triggering by another
one modeling both the triggering and the consumption of a token.
E.g., for a timer, the action expire defined in process Timer (see
Fig. 8) has to be exchanged by expireAndRestart. In this case, we
have a genuine replacement.

Each production rule is presented in two parts. The first compart-
ment collects the preconditions of the rule. It refers to the structure of
an activity and defines the activity edges resp. nodes for which the rule
can be used. Moreover, the cTLA action to be replaced is listed. As
an additional precondition, we need to remember when traversing an
activity which of its edges have still to be visited. In a production rule,
we therefore use the function toV isit ∈ [Act → subset ET] storing
for a particular cTLA action the edges still to be passed.

The second compartment shows the effect of the rule. It gives in-
structions whether a new action should be created or an existing one
should be replaced, and how the emerging action is constructed. It
also declares any changes to the function toV isit by updating the set
of edges still to be visited for an action.

The construction of an action begins with one of the starting points
of an activity, that means at initial nodes, at the exit of timers (which
means expiration), when an edge enters a partition, or when an exter-
nal signal arrives. The rules Initial, TimerExpire, TransferEnter
and Receive introduced below describe hereby how the action is writ-
ten. Afterwards, other rules are applied to it guided by the nodes and
edges that follow in the activity graph. A new action is created by
adding conjuncts to the original one. In case we reach a decision or
join node, the action created from the incoming graph is replaced by
an entire set of actions. The construction of an action is finished when
a new stable state is reached in the activity partition, that means that
we either leave the partition, rest in a join or waiting decision, set a
timer or reach a final or receiving node. Moreover, the leaving of a flow
through the pin of a call behavior action is also a stopping point.

The actions under construction have the signature

act(it: TT; ot: [ET → TT]; iv: VT; ov: [ET → VT];
is, os: SUBSET TT; last: SUBSET ET)

The parameter it specifies the value of the token when the flow starts.
While the function ot describes the token signature after leaving a par-
ticular edge. Similarly, parameters iv and ov describe the values of
the local variables after the flow starts and after traversing a particular
edge. Signals sent within an action are described with parameter os,
and signals received by is. Parameter last keeps track of the edges in an
action after those the flow stops. This is needed to support the storage
of the auxiliary variables discussed in Sect. 5.1.

In the following we will show the rules for initial nodes, merges, forks,
timers, operations, transfer edges as well as decisions and flow final
nodes. The remaining rules are listed in [18].

Initial Nodes As an initial node is a trigger, it is the startpoint for
the production of an action. The rule is enabled for an initial node i
with an outgoing edge e. It creates action act, which is coupled with

action start to the process instance corresponding to the initial node,
pi. As the flow is not yet finished, last is empty. The node neither
produces any output signals (os = {}) and does not change the value
of the variables or token, so that ov and ot remember their respective
initial values for this edge. As we continue the production of the action
with whatever comes after edge e, we store it as still to be visited.

Initial

∃ i,e: type(i)=“initial”

outgoing(i)={e} e
i

→ Create act with

act(it: TT; ot: [ET → TT]; iv: VT; ov: [ET → VT];

is, os: SUBSET TT; last: SUBSET ET)
∆
=

pi.start(it)
∧ ov = [e 7→ iv] ∧ ot = [e 7→ it]
∧ os = {} ∧ last = {}

toV isit′=[toV isit except ![act?]={e}]

Transfer Edges Edges crossing partition borders are handled by two
rules, TransferLeave modeling the leaving of the current partition,
and TransferEnter for edges entering a partition. TransferLeave
is a rule that adds a conjunct invoking send on process pt modeling the
buffered communication. As the flow ends where it leaves the partition,
the edge is removed from the edges that must be visited but entered to
the set last describing final edges. The rule for receiving (not shown) is
similar to the expiration of a timer or an initial node. It creates a new
action referring to the triggered action receive of the transfer process.

TransferLeave

∃ e,p1,p2,act: e ∈ edges

location(e)=〈p1,p2〉

e ∈ toV isit[act]
e

p1 p2

→ Replace act by act? with

act?(. . .)
∆
= ∃ lasto: act(it, ot, iv, ov, is, os, lasto)

∧ pt.send(ot[e]) ∧ last = lasto ∪ {e}

toV isit′=[toV isit except ![act?]=toV isit[act]\{e}]

Flow Final Nodes Flow final nodes simply terminate a token flow.
The original action is finished by noting its last edge.

FlowFinal

∃ z,e,act: type(z)=“flowFinal”

incoming(z)={e}

e ∈ toV isit[act]

e

z

→ Replace act by act? with

act?(. . .)
∆
= ∃ lasto: act(it, ot, iv, ov, is, os, lasto)

∧ last = last ∪ {e}
toV isit′=[toV isit except ![act?]=toV isit[act]\{e}]

Call Operation Actions As described above, operations are mod-
eled as functions that assign new values to the token passing through it
as well as the variables, modeled by the cTLA process Operation with
its action execute. This action is coupled with the original one, and
the production continues with the outgoing edge of the operation. The
values ot and ov for the outgoing edge j reflect the changes carried out
by the operation which are described by the action parameters newv

and newt.

Operation

∃ op,e,j,act: type(op)=“operation”

incoming(op)={e}

outgoing(op)={j}

e ∈ toV isit[act]

op
e

j

→ Replace act by act? with

act?(. . .)
∆
= ∃ oto, ovo, newv, newt:

act(it, oto, iv, ov, is, os, last)
∧ po.execute(ivo[e],oto[e],newv,newt)
∧ ov = [ovo EXCEPT !j 7→ newv]
∧ ot = [oto EXCEPT !j 7→ newt]

toV isit′=[toV isit except ![act?]=toV isit[act]∪{j}\{e}]

Timer For a timer, three rules determine the creation and coupling
of actions. The expiration of a timer triggers an action. Rule Timer-

Expire defines therefore the creation of a new action that starts with
the outgoing edge of the timer, similarly to an initial node. It couples
the expire action of the timer process pt, so that this action is only
enabled if the timer is active.

TimerExpire

∃ t,e: type(t)=“timer”

outgoing(f)={e} e
t

→ Create act with

act(. . .)
∆
=

pt.expire(it)
∧ ov = [e 7→ iv] ∧ ot = [e 7→ it]
∧ os = {} ∧ last = {}

toV isit′=[toV isit except ![act?]={e}]

To start a timer, action pt.start() is conjoined with the action mod-
eling the rest of the subgraph. It must only be used if the flow started
from another element than the timer itself. In the precondition, this
is stated by adding the condition t /∈ visited[act] describing that the
timer t is not in the list of visited nodes.

TimerStart

∃ t,e,act: type(t)=“timer”

incoming(f)={e}

e ∈ toV isited[act]

t /∈ visited[act]

e
t

→ Replace act by act? with

act?(. . .)
∆
=

∃ lasto: act(it, ot, iv, ov, is, os, lasto)
∧ pt.start(ot[e])
∧ last ′ = last ∪ {e}

toV isit′=[toV isit except ![act?]=toV isit[act]\{e}]

Rule TimerExpireRestart (not shown) is used instead of Timer-
Start if a timer expires and is restarted within the same action. This
is stated in the precondition by t ∈ visited[act]. For the result, the only
difference is that action expireAndRestart instead of just expire or
start is called.

Merge Nodes Merge nodes copy the behavior following the node
to the behavior started before the node. The rule is applied to all
actions already produced for each of the incoming edges. As an merge
does neither change the token signature nor the values of the auxiliary
variables, ot and ov are set to the same values for j as for the incoming
edge ep.

Merge

∃m,ep,j,act: type(m)=“merge”

ep ∈ incoming(m)

outgoing(m)={j}

ep ∈ toV isit[act]

e1 e2 en

mj

...

→ Replace act by act? with

act?(. . .)
∆
=

∃ ovo, oto: act(it, oto, iv, ovo, is, os, last)
∧ ov = [ovo EXCEPT !j 7→ ovo[ep]]

∧ ot = [oto EXCEPT !j 7→ oto[ep]]

toV isit′=[toV isit except ![act?]=toV isit[act]∪{j}\{ep}]

Decision Nodes Decision nodes multiply the incoming actions by
the number of its outgoing edges (the alternatives). Therefore, the in-
coming action is replaced by a set of actions. The original content of the
incoming action is maintained, it is just expanded with the additional
call of the decision action of the decision process.

Decision

∃ d,e,act: type(d)=“decision”

incoming(d)={e}

outgoing(d)={i1...jn}

e ∈ toV isit[act]
j1 j2 jn

de

...

→ Replace act by actp for all p ∈ {1 . . . n} with

actp(. . .)
∆
= ∃ ovo, oto: act(it, oto, iv, ovo, is, os, last)

∧ pd.decide(p, ov[e], ot[e])
∧ ov = [ovo EXCEPT !jp 7→ ovo[e]]

∧ ot = [oto EXCEPT !jp 7→ oto[e]]

toV isit′=[toV isit except ![actp]=toV isit[act]∪{jp}\{e}]

Fork Nodes Forks multiply a token and emit one token on each out-
going edge. All the behaviors implied until all tokens rest, are executed
within one step, so that the whole behavior has to be modeled within
one action. Therefore, all outgoing edges are added to the edges still
to be visited for the action under construction. Since the fork does
not change the value of the tokens or variables, the functions for token
and variable values are updated to match the incoming values for each
outgoing edge.

Fork

∃ f,e,{j1...jn},act: type(f)=“fork”

incoming(f)={e}

outgoing(f)={j1...jn}

e ∈ toV isit[act]
j1 jn...

e
f

→ Replace act by act? with

act?(. . .)
∆
= ∃ ovo, oto: act(it, ot, iv, ov, is, os,last)

∧ ov = [ovo EXCEPT !j1 7→ ovo[e] EXCEPT ! · · ·
EXCEPT !jn 7→ ovo[e]]

∧ ot = [oto EXCEPT !j1 7→ oto[e] EXCEPT ! · · ·
EXCEPT !jn 7→ oto[e]]

toV isit′=[toV isit except ![act?]=toV isit[act]∪{j1,...,jn}\{e}]

The produced action couplings conform to the constraints in cTLA/c.

• The production of an action always stays within the partition where
the production started. Edges leaving a partition terminate the
production of an action by a corresponding send action of a transfer
process. Consequently, all produced actions can be assigned to
exactly one participant of the cTLA/c process under construction.

• Actions are by default internal (i.e., ∈ Actint). Only if they pass
an input or output node (such as update display or update device
in Fig. 4), they are declared external.

• Just for flows starting at an input or output node, actions are
created that do not contain a trigger. According to the definition
above, however, these actions are external and the cTLA/c claims
for non-triggered actions are met. These actions are added to the
set NT listing the non-triggered actions. Due to the structure of

activities and the layout of the rules, a sub-graph corresponding to
an action can never contain more than one trigger12.

5.3 Example

We will now use the rules to produce parts of the cTLA/c process for
the activity Temperature Update given in Fig. 4. First, we instantiate
processes i1, t1, o1, d1, e6, e8 and o2 for the corresponding activity
nodes, as shown in the corresponding cTLA process in Fig. 9. In the
following, we will stepwise create some of the actions for the partition
of the heater.

Step 1: We choose to start with the initial node i1 and apply rule
Initial to edge e0, which leads to the construction of action act1. As
no signal has yet been sent, os is empty. There is no final edge, as the
flow continues. The variables did not change with the initial node, such
that ov notes the original value iv for edge e0. The same applied for
the value of the token managed by ot.

act1(it: TT; ot: [ET → TT]; iv: VT; ov: [ET → VT];

is, os: SUBSET TT; last: SUBSET ET)
∆
=

i1.start(it)
∧ ov = ["e0"7→ iv] ∧ ot = ["e0"7→ it]
∧ os = {} ∧ last = {}

Step 2: We continue with this flow by applying rule Merge to edge
e1 and the already created action act1. It is replaced by act2, which is
an extension of act1. A merge does not change tokens or variables, so
ov and ot are complemented with an entry for edge e1.

act2(. . .)
∆
=

∃ ovo, oto: act1(it, ovo, iv, oto, os, is, last)
∧ ov = [ovo EXCEPT !"e1"7→ ovo("e0")]
∧ ot = [oto EXCEPT !"e1"7→ oto("e0")]

We expand act2 by replacing act1 with its actual definition:
12In faulty activities, sub-graphs may exist that have neither a triggering element

nor a connection via a parameter node. These constructs would not cause an action
to be produced, as none of the actions could be applied in the first place. These
situations may be detected by syntactic inspections. As such sub-graphs do not
express any useful behavior, they are forbidden.

act2(. . .)
∆
=

∃ ovo, oto:
i1.start(it)

∧ ovo = ["e0"7→ iv] ∧ oto = ["e0"7→ it]
∧ os = {} ∧ last = {}

∧ ov = [["e0"7→ iv] EXCEPT ! "e1"7→ ["e0"7→ iv]("e0")]
∧ ot = [["e0"7→ it] EXCEPT ! "e1"7→ ["e0"7→ it]("e0")]

We can replace the existentially quantified terms ovo and oto by the
equal function definitions. Further, [”e0” 7→ x](”e0”) is of course x, so
that we can simplify act2:

act2(. . .)
∆
=

i1.start(it)
∧ os = {} ∧ last = {}
∧ ov = ["e0"7→ iv, "e1"7→ iv]
∧ ot = ["e0"7→ it, "e1"7→ it]

Step 3: Rule TimerStart is now applicable to act2 and edge e1.
It extends act2 by adding action t1.start from the timer process and
updates last.

act3(. . .)
∆
=

∃ lasto: act2(it, ot, iv, ov, is, os, lasto)
∧ t1.start(ot["e1"])
∧ last = lasto ∪ {"e1"}

After expansion of act2 and removal of true conjuncts, we get

act3(it: TT; ot: [ET → TT]; iv: VT; ov: [ET → VT];

is, os: SUBSET TT; last: SUBSET ET)
∆
=

i1.start(it)
∧ os = {}
∧ ov = ["e0"7→ iv, "e1"7→ iv]
∧ ot = ["e0"7→ it, "e1"7→ it]
∧ t1.start(it)
∧ last = {"e1"}

No more rules can be applied to act3, as there are no more edges to
visit for this action. The action is complete now and can be added to
the cTLA process describing Temperature Update (see Fig. 9).

Step 4: Rule TimerExpire can be applied to edge e2, which results
in the creation of act4:

act4(. . .)
∆
=

t1.expire(it)
∧ ov = ["e2"7→ iv]
∧ ot = ["e2"7→ it]
∧ os = {} ∧ last = {}

Step 5: Edge e2 flows into fork f1, so that rule Fork may be applied
to act4. It replaces act4 by act5 (here with act4 already expanded).

act5(. . .)
∆
=

t1.expire(it)
∧ ov = ["e2"7→ iv, "e3"7→ iv, "e4"7→ iv]
∧ ot = ["e2"7→ it, "e3"7→ it, "e4"7→ it]
∧ os = {} ∧ last = {}

toV isit[act5] contains now both outgoing edges, e3 and e4.

Step 6: Following edge e3 into m1, rule Merge is applicable. It
simply complements ov and ot with entries for edge e1.

act6(. . .)
∆
=

t1.expire(it)
∧ ov = ["e2"7→ iv, "e3"7→ iv, "e4"7→ iv, "e1"7→ iv]
∧ ot = ["e2"7→ it, "e3"7→ it, "e4"7→ it, "e1"7→ it]
∧ os = {} ∧ last = {}

Step 7: Continuing edge e1 we enter timer t1. As the currently tra-
versed activity flow started at this node, we apply rule TimerSetEx-
pire instead of rule TimerSet. Therefore, the action expire of process
t1 is replaced by expireAndRestart that handles a flow immediately
restarting the timer from which is was triggered.

act7(. . .)
∆
=

t1.expireAndRestart(it, it)
∧ ov = ["e2"7→ iv, "e3"7→ iv, "e4"7→ iv, "e1"7→ iv]
∧ ot = ["e2"7→ it, "e3"7→ it, "e4"7→ it, "e1"7→ it]
∧ os = {} ∧ last = {"e1"}

Step 8: To handle the operation by following edge e4, we replace
act7 with act8 that adds the conjuncts according to rule Operation.
The operation is a function o1nav that computes new values for all the
variables in the partition, and an o1nto that computes the value of a
new token.

act8(. . .)
∆
=

t1.expireAndRestart(it, it)
∧ ov = ["e2"7→ iv, "e3"7→ iv, "e4"7→ iv, "e1"7→ iv,

"e5"7→ o1nav[iv,it]]
∧ ot = ["e2"7→ it, "e3"7→ it, "e4"7→ it, "e1"7→ it,

"e5"7→ o1nto[iv,it]]
∧ os = {} ∧ last = {"e1"}
∧ op.execute(iv, it, o1nav[iv,it], o1nto[iv,it])

Step 9: We apply rule Decision. It replaces action act8 with one
action for each outgoing branch. For the branch of edge e6 we get act9,
for the e7 branch we get act10

act9(. . .)
∆
=

t1.expireAndRestart(it, it)
∧ ov = ["e2"7→ iv, "e3"7→ iv, "e4"7→ iv, "e1"7→ iv,

"e5"7→ o1nav[iv,it], "e6"7→ o1nav[iv,it]]
∧ ot = ["e2"7→ it, "e3"7→ it, "e4"7→ it, "e1"7→ it,

"e5"7→ o1nto[iv,it], "e6"7→ o1nto[iv,it]]]
∧ os = {} ∧ last = {"e1"}
∧ op.execute(iv, it, o1nav[iv,it], o1nto[iv,it])
∧ d1.decide(1,o1nav[iv,it], o1nto[iv,it])

act10(. . .)
∆
=

t1.expireAndRestart(it, it)
∧ ov = ["e2"7→ iv, "e3"7→ iv, "e4"7→ iv, "e1"7→ iv,

"e5"7→ o1nav[iv,it], "e7"7→ o1nav[iv,it]]
∧ ot = ["e2"7→ it, "e3"7→ it, "e4"7→ it, "e1"7→ it,

"e5"7→ o1nto[iv,it], "e7"7→ o1nto[iv,it]]]
∧ os = {} ∧ last = {"e1"}
∧ op.execute(iv, it, o1nav[iv,it], o1nto[iv,it])
∧ d1.decide(2,o1nav[iv,it], o1nto[iv,it])

Step 10: When we continue with action act9 and edge e6, we apply
rule TransferSend and replace it by action act11, that simply adds
an conjunction sending the token. As the set of edges to visit is empty
for this edge, this is an action present in the final process.

act11(. . .)
∆
=

t1.expireAndRestart(it, it)
∧ ov = ["e2"7→ iv, "e3"7→ iv, "e4"7→ iv, "e1"7→ iv,

"e5"7→ o1nav[iv,it], "e6"7→ o1nav[iv,it]]
∧ ot = ["e2"7→ it, "e3"7→ it, "e4"7→ it, "e1"7→ it,

"e5"7→ o1nto[iv,it], "e6"7→ o1nto[iv,it]]
∧ os = {} ∧ last = {"e1", "e6"}
∧ op.execute(iv, it, o1nav[iv,it], o1nto[iv,it])

i1

m1

t1

e0

e1

read value
changed

t1

f1

d1

e2
e4

e6
o1

e5

m1

e3

e1

read value
else t1

f1

d1

z1
e2

e4

o1

e7 e5

m1

e3

e1

act3: act11:

act12:

Figure 14: The subgraphs covered by the produced actions

∧ d1.decide(1,o1nav[iv,it], o1nto[iv,it])
∧ e6.send(o1nto[iv,it])

Step 11 Also act10 may be finalized by applying rule FlowFinal
with edge e7. We obtain action act12, which is like act3 and act11 one
of the final coupling actions.

act12(. . .)
∆
=

t1.expireAndRestart(it, it) this has input and output
∧ ov = ["e2"7→ iv, "e3"7→ iv, "e4"7→ iv, "e1"7→ iv,

"e5"7→ o1nav[iv,it], "e7"7→ o1nav[iv,it]]
∧ ot = ["e2"7→ it, "e3"7→ it, "e4"7→ it, "e1"7→ it,

"e5"7→ o1nto[iv,it], "e7"7→ o1nto[iv,it]]]
∧ os = {} ∧ last = {"e1", "e7"}
∧ op.execute(iv, it, o1nav[iv,it], o1nto[iv,it])
∧ d1.decide(2,o1nav[iv,it], o1nto[iv,it])

Above, we sketched the production of the three actions act3, act11
and act12 modeling the flows listed in Fig. 14. In a similar way, we can
produce the other cTLA actions modeling flows in the activities of our
Mobile Home Control example.

All-in-all, the production rules give a powerful means to formalize
UML 2.0 activities as they are used in SPACE. If necessary, the gener-
ation process can be automated as done in [29] for checking activities
with the model checker TLC13 [32].

13As TLC is based on the TLA modeling language TLA+, Sl̊atten had to modify
the cTLA descriptions which, due to the foundation of cTLA (see Sect. 3), was
straightforward.

A
A0

A1
A2
A3

c0 c1
c2
c3

Cp2

p3p1

p0

Figure 15: Mapping activities to a compositional cTLA/c process C

6 Composing Collaborations by Activities

Following the style of cTLA/c, a composite activity A referring to n
sub-activities A1, . . . , An is modeled by a compositional cTLA/c tuple
Ccomp as described in Sect. 4.2. For each collaboration use (and conse-
quently call behavior action of A) that is declared in the UML specifi-
cation, Ccomp.Cu contains the elementary cTLA/C tuples cel1 , . . . , celn .
The compositional cTLA process C realizing Ccomp includes the cTLA
process instances c1, . . . , cn specifying the elementary collaborations.
Besides the behavior within the call behavior actions, there may be ar-
bitrary complex logic in A, coupling the referred sub-activities. This
behavior of A without its sub-activities is an activity itself represented
in C as its own cTLA/c process c0. Thus, if A contains n call behav-
ior actions, the composite collaboration Ccomp.Cu has n + 1 processes
as elements, c0, . . . , cn. As an example, we refer to the activity Zone
Session depicted in Fig. 6. The mapping from the activity to a compo-
sitional cTLA/c process is illustrated in Fig 15. Activity A is cut into
the activities modeled by the call behavior actions g ≡ A1, a ≡ A2, and
u ≡ A3 as well as the one surrounding the call behavior actions A0.
These are expressed by simple cTLA/c processes.

The participants Ccomp.Part of the compositional cTLA/c process
correspond to the activity partitions resp. collaboration roles of the
UML collaboration. Following the collaboration role binding of the
UML collaboration resp. the topology and partition mapping of the
corresponding activity, the function Ccomp.bind maps each external ac-
tion of c0, . . . , cn to a participant in Ccomp.Part.

6.1 Synchronous Coupling

The link between an activity (like A0) and an activity referred from
it (like A1) is described by the input and output pins of call behav-
ior actions. An input pin models a flow of tokens from A0 to another
activity Ai while an output pin specifies an opposite flow. Every pin
has exactly one incoming as well as one outgoing edge which makes
the formal definition of the coupling straightforward. Due to the pro-
duction rules introduced in Sect. 5.2, an edge heading to a pin can
be modeled by an arbitrary number of cTLA actions outp1, . . . , outpk

while an edge leaving a pin is modeled by a number of cTLA actions
inp1, . . . , inpl. These actions use the action parameter signature in-
troduced in Sect. 5.2. Assuming that an input or output pin of the
call behavior action hosting activity Ai is reached by an edge with the
marking eo and left by the edge ei, we define k · l-many system actions
actq,r with q ∈ {1..k}, r ∈ {1..l} of the corresponding cTLA process c
as follows14 (v, w ∈ {0, i}, v 6= w):
C.actq,r(it: TT; ot: [ET → TT]; iv: VT; ov: [ET → VT];

is, os: SUBSET TT; last: SUBSET ET)
∆
=

∃ oto, ovo, iso, oso, lasto, oti, ovi, isi, osi, lasti:
Cv.outpq(it,oto,iv,ovo,iso,oso,lasto)

∧ Cw.inpr(oto["eo"],oti,ovo["eo"],ovi,isi,osi,lasti)
∧ ot = FMERGE(oto,oti) ∧ ov = FMERGE(ovo,ovi)
∧ is = iso ∪ isi ∧ os = oso ∪ osi
∧ last = (lasto ∪ lasti) \ {"eo"};

Given that the activities are syntactically correct and consistent with
the UML collaborations they complement, these couplings produce valid
cTLA/c process couplings.

• Due to the fact, that the pins are unambiguously allocated to one
partition p, all output and input actions belong to p as well. Thus,
we can assign the system action c.actq,r to p as well which will be
reflected in the function pact of tuple Ccomp.

• In addition, c.actq,r contains a trigger if and only if cv.outpq con-
tains a trigger, too (i.e., c.actq,r ∈ Ccomp.NT ⇔ cv.outpq ∈ cv.NT
holds).

14FMERGE is a function merging two functions with mutually exclusive domains
to one that is defined on the union of these domains and preserves both original
mappings.

• If the edge modeled by both outpq and inpr is only attached to the
pin linking them and to no other one, actq,r will be internal and is
consequently added to Ccomp.Actint. Otherwise, it is an external
action and added to Ccomp.Actext.

• If outpq is not attached to another link, it is triggered according
to the production rules. Thus, actq,r is triggered as well if it is an
internal action. So, the synchronous coupling follows the cTLA/c
constraint that internal actions must have triggers.

Besides of the process actions modeling the coupling of activities by
input and output pins, the local activities A0 to An may have also
internal local actions and A0 may have actions describing its links to
the pins of the call behavior action in which it is defined. For each of
these actions, a system action is defined in C guaranteeing that they are
also executed in C. Moreover, these actions are added to Ccomp.Actint

or Ccomp.Actext.

6.2 Asynchronous Coupling

The synchronous coupling of collaborations is possible whenever the ac-
tions that should be coupled are bound to the same collaboration role in
the enclosing collaboration. This means that, in a component-oriented
specification produced by model transformation, they can be imple-
mented within the same state machine and hence be executed within
the same state machine transition. For implementation purposes, how-
ever, we may want that also partitions bound to the same collaboration
role may be realized by different state machines of the same compo-
nent. A reason for that might be, for example, to let different parts
of a collaboration be executed on different operating system threads
to prevent long-running operations from blocking other behaviors. As
passing events between different state machines is always buffered in
our approach (see [20]), this implies an asynchronous coupling between
the processes.

In this case, we can add a stereotype to call behavior actions that
should be coupled asynchronously. For the cTLA/c model we assume
that activities A0 and Ai to be linked via buffers are not coupled directly
but via a collaboration B modeling the buffering of tokens. B is speci-
fied by a cTLA process cB similar to Transfer from Sect. 5.1. In contrast

to Transfer, however, both actions send and receive are associated to
the same partition P in which the pin is located. Assuming k differ-
ent output actions outp1, . . . , outpk and l input actions inp1, . . . , inpl,
the buffered coupling from activity v to activity w is specified by the
k+ l-many system actions assigned to C specified in the following (with
q ∈ {1..k}, r ∈ {1..l}):

C.sendq(. . . , ot : [ET → TT], . . .) ,
cv.outpq(. . . , ot, . . .) ∧ cB .send(ot(”eo”))

C.receiver(it : TT, . . .) ,
cB .receive(it) ∧ cw.inpr(it, . . .)

 v, w ∈ {0, i},
v 6= w

The l actions C.receiver have a trigger. In contrast, the actions C.sendq

are only trigger actions if the bound action Cv.outpq is also triggered
(i.e., C.sendq ∈ Ccomp.NT ⇔ cv.outpq ∈ Celv .NT holds). The other
settings of Csendq

and Creceiver
in the cTLA/c tuple Ccomp are similar

to those of the synchronous case.

6.3 Asynchronous Multi-Session Coupling

To make our approach SPACE versatile for the development of real
services, we must be able to deal with a number of different compo-
nents providing identical functionality. For instance, the Mobile Home
Control specification depicted in Fig. 7 is only useful if it specifies an
arbitrary number of zone managers and telephones. To model several
entities of a particular type, in the UML 2.0 collaborations the com-
ponents may contain multiplicities (e.g, arbitrary many entities of the
phone p and heater h as well as at least one entity of the zone manager
z may occur). To achieve this multiplicity for the behaviors, cTLA/c
may contain not only simple collaborations but also collaboration ar-
rays each defining a whole number of identical simple collaborations.
In cTLA/c, an collaboration array with multiplicity m corresponds to
m-many simple collaboration instances each providing the same behav-
ior. We express multiple occurrences of a collaboration by cTLA array
processes as shown below for the zone session:

PROCESS ZoneSessionMult (m: INTEGER; . . .)
ARRAY

id: 1..m OF z: ZoneSession(. . .);
END

In general, this cTLA array operator (see also [8]) defines for each vari-
able v of type V Type an array variable zXv of type [1..m → vType]
keeping m-many values of v. Likewise, every action of z gets a new
parameter id : 1..m describing which occurrence of zXv is accessed. In
this way, we can specify several concurrent sessions of a certain collab-
oration by one cTLA array process.

To determine the number of instances of a collaboration (i.e., the
parameter m in the array process), we have to analyze the multiplicities
of the participants bound to it. A meaningful solution is to provide a
collaboration instance for each combination of participant instances. In
the example, this is done for the activity Zone Session. If Np is the
number of phones modeled and Nz the number of zone managers, we
create, as the other participating collaboration roles are not defined
multiple, Np · Nz-many instances of the zone session collaboration15.
For the activity Temperature Update, however, a similar determination
of the number of instances would not be useful since one heater is only
connected to one zone manager. Therefore it is sufficient to provide
only on activity instance for each heater in the system.

On the other side, it could be useful to create more than one instance
for every combination of collaboration roles. This is not possible to ex-
press in standard collaborations, as UML does not foresee multiplicities
on collaboration uses. In these cases we therefore add a stereotype as
part of our profile [15] to the collaboration use marking that it can be
execute several times among the same participants. The multiplicity
of the collaboration use is then multiplied with that of its participants,
and the ID for the session takes the sequence number as an additional
field.

Every activity referred by an call behavior action that represents a
multi-session collaboration is formally modeled by one cTLA array pro-
cess. For the activity describing the surrounding part of the call behav-
ior actions, we face the problem that its partitions may have a different
multiplicity. For instance in Fig. 3, we have one location server, Nz zone
managers and Nh heaters. Thus, we cannot describe all partitions with
a single activity process as in the singular case from Sect. 6.1. Instead,

15The formal existence of a session instance does not necessarily imply an ongoing
behavior or demand real system resources, as an execution platform may instantiate
needed state machines only when the behavior actually starts.

we define a separate activity process for every partition expressed by
an cTLA/c tuple. Formally, the partitions representing a collaboration
role with multiplicity larger than “1” are also specified by cTLA array
processes.

The multiplicity of the collaborations has consequences for the cou-
pling. In some cases we may still apply the couplings from the previous
sections even if the originating collaboration role is multiple. This is the
case if from a partition P only one activity instance Ai can be reached
(e.g., it holds for the heaters, as each of them is only connected to one
zone manager activity). In consequence, the decision how to traverse
between P and the call behavior action hosting Ai is unambiguous and
we can use the synchronous or asynchronous couplings discussed in the
preceding subsections. In the activities, this situation is made visible
by the lack of the shadow-like border around the call behavior action.

In contrast to that, shadow-like borders of call behavior actions high-
light crossovers in which selections are necessary. This is generally only
the case for flows into a call behavior action, as every outgoing flow is
univocal due to the fact that an activity instance is non-ambiguously
attached to an instance of all partition instances to which it is attached.
For input flows, we use the special statement select [16] already men-
tioned in Sect. 2.4. This statement is attached to each flow entering a
call behavior action when there are multiple sessions to choose from.
The statement simply describes a list of filters that can be applied
successively to find those collaboration instances that should be noti-
fied. Filters can access data within the token or within the variables
of the current partition and may also depend on the data within the
individual sessions that it chooses among, which is possible as they are
implemented within the same component and only requires read-access.

In cTLA/c, we model this coupling by linking the two collaborations
via a special collaboration Cs implemented in cTLA as follows:
PROCESS SelectActivity(mc, mp: INTEGER;

select: [AVT × TT → SUBSET {1..mc}])
CONSTANTS PartId

∆
= [{1..mc} → {1..mp}];

VARIABLES
q : [1..mc → QUEUE(TT)];

INIT
∆
= ∀ i ∈ {1..mc}: q[i] = EMPTY;

ACTIONS
send(id: {1..mp}; iav: AVT; it: TT)

∆
=

q ′ = [c ∈ {1..mc} 7→

IF (PartId[c] = id ∧ c ∈ select[iav,it])
THEN APPEND(q[c],it) ELSE q[c]] ;

receive(id: {1..mc}; ot: TT)
∆
=

q[id] 6= EMPTY ∧ ot = FIRST(q[id])
∧ q ′ = [q EXCEPT! id 7→ TAIL(q[id])];

END

The parameters of the process are mc describing the number of in-
stances of the activity Ai bound in the call behavior action, mp as the
number of instances for the partition P , and select as a function de-
scribing the select statement assigned to the input pin. In particular,
select maps settings of the auxiliary variables in P and the signature of
the token traversing through the pin to the set of the instance identifiers
which should get a copy of the token. PartId is a function mapping the
identifier of Ai’s instance to those of P . The process has a queue for
every instance of Ai as specified by the array variable q. The action
send models the appending of tokens to the buffers according to the
select statement. Its parameter id refers to the identifier of the parti-
tion instance. Of course, a token may only be send to instances of the
activity in the call behavior action attached to P as expressed in the
condition PartId[c] = id. Moreover, it has to follow the select state-
ment as specified by c : in : select[iav, it]. The action receive describes
the consumption of an element from the queue by an instance of Ai

with the identifier id.
In consequence, send is coupled with each of the k actions

outp1, . . . , outpk of the cTLA array process c0m generated from c0 mod-
eling the flow eo towards the input buffer. Here, the parameter id of
the action created by the cTLA array operator is mapped to id in send.
In the same way, the action receive is joined with the l-many actions
inp1, . . . , inpl of the process cim specifying the downstream flow ei of
the pin (with q ∈ {1..k}, r ∈ {1..l}):

C.sendq(id : 1..mp; . . . ; ot : [ET → TT]; . . . ; ov : [ET → V T]; . . .) ,
com.outpq(id, . . . , ot, . . . , ov, . . .) ∧ cs.send(id, ot[”eo”], ov[”eo”])

C.receiver(id : 1..mc; it : TT, . . .) ,
cs.receiver(id, it) ∧ cim.inp(id, it, . . .)

For flows through an output pin, we have, as mentioned above, no
freedom to select an activity. Thus, this flow is specified by a simple
buffer as introduced in Sect. 6.1.

6.4 Final System Model

After composing all cTLA/c representations of the UML activities with
each other, we achieve a preliminary cTLA/c system description CpSys.
This model consists only of internal actions actpSys each having a ded-
icated trigger. This reflects that all call behavior actions are properly
bound and each pin has exactly one upstream and downstream link. In
the activities, we model the interaction of a service with its environ-
ment (e.g., the service user functionality) by means of special signals
expressed by send and receive nodes [17]. Formally, these signals are
described by the action parameters is and os which model the sets of
signals coming from resp. heading towards the environment.

To achieve the final cTLA/c system model CSys, we still have to spec-
ify the handling of the local auxiliary variables defined in the activities.
This is done that lately in order to enable the access of all auxiliary
variables defined for a component participant P from all activity parti-
tions, the collaboration roles of which are assigned to P . To model the
auxiliary variables, we use the process AuxVar :
PROCESS AuxVar (initavt: VT;

navt: [SUBSET ET × [ET → VT] → VT])
VARIABLES

store: VT;

INIT
∆
= store = initavt; ACTIONS

access (current: VT; finedge: SUBSET ET; new: [ET → VT])
∆
=

current = store ∧ store ′ = navt[finedge,new];
END

Here, the auxiliary variables are stored in a variable store which initially
carries the values expressed by the process parameter initavt. The ac-
cess to the store is modeled by the action access which in a single step
accesses the current value of the auxiliary variables (with action param-
eter current) and stores the new one reflecting the atomicity of a cTLA
action. The problem of handling auxiliary variables is that flows mod-
eled by an action may be forked and the resulting downstream flows
may pass different call operation actions which can create conflicting
variable assignments. To solve this problem, we defined a process pa-
rameter navt. It is provided by the set of final edges in a flow and
the corresponding variable settings from which a unique setting is com-
puted. This function is applied in the action access to calculate the new
value of the variable store.

For every single participant, we define an instance of AuxVar and for
every multiple partition one of the corresponding array process mod-
eling mp instances of the partition variables. Every action actpSysk

of
CpSys assigned to the partition P is linked with the action P.access stor-
ing the auxiliary variables for the instance id of partition P to which
actpSysk

is assigned:

actSysk
(id : 1..mp; is, os : SUBSET TT) ,

∃ : its, ots, ivs, ovs, lasts :
actpSysk

(id, its, ots, ivs, ovs, is, os, lasts)∧
P.access(id, ivs, lasts, ovs)

Besides the identifier id, the resulting system action actSysk
uses only is

and os as parameters modeling that the external signals are the means
to interact with the environment. The overall system specification CSys

defines now the formal semantics of the full service model described by
UML 2.0 collaborations and activities following the SPACE approach.

7 Concluding Remarks

We presented cTLA/c, a style of the compositional Temporal Logic of
Actions that captures the behavior of collaborative system specifica-
tions. We think of cTLA/c foremost as a background technique to un-
derstand the formalism of collaborative specifications expressed in other
languages, such as UML. For our approach SPACE, we use UML 2.0 col-
laborations in combination with activities, and have therefore presented
how they can be transformed to cTLA/c specifications and in this way
provide them with a non-ambiguous formal semantics. The provision of
a formal semantics does not end in itself but, in our opinion, is a central
ingredient for the automated development of high-quality software. It
is the basis for meaningful semantic checks as, for instance, to be done
with the model checking approach introduced in [29]. With such kind of
methods, one can analyze collaborative service specifications thoroughly
and ensure, for instance, that different views using distinct diagrams
describe one consistent execution model. Another application for the
formal semantics based on cTLA/c is model transformation. It provides
us with the means to verify formally that transformation tools gener-
ate target models that fulfill the behavioral constraints of the source

models. As presented in [19], we checked that the transformation from
UML activities to state machines is correctness-preserving.

In the moment, the service specifications in form of collaborations and
activities are the most abstract ones that are used in our approach. Nev-
ertheless, there may be further layers of abstraction in specifications.
These specifications could consider collaborations on higher abstraction
levels, which may be useful in early specification attempts when the
complete system behavior or aspects of distribution are not yet known
and must successively be elaborated. For that, notations like goal se-
quences [6, 27] or DisCo [22] may be useful. As cTLA resp. cTLA/c can
also be used to specify such abstract models, we can carry out formal
logic proofs to guarantee the correctness of the manual or automated
refinement steps from these very abstract specifications to those used in
SPACE. Thus, a complete formal and highly automated development
of distributed services all the way from very abstract scenario-based
descriptions to executable code will be feasible.

References

[1] Mart́ın Abadi and Leslie Lamport. Conjoining Specifications. ACM
Transactions on Programming Languages and Systems, 17(3):507–
535, May 1995.

[2] R. J. R. Back and R. Kurki-Suonio. Decentralization of Process
Nets with Centralized Control. Distributed Computing, 3:73–87,
1989.

[3] Rolv Bræk. Unified System Modelling and Implementation. In In-
ternational Switching Symposium, pages 1180–1187, Paris, France,
May 1979.

[4] R. J. A. Buhr and R. S. Casselman. Use Case Maps for Object-
Oriented Systems. Prentice-Hall, Inc., 1996.

[5] Humberto Nicolás Castejón and Rolv Bræk. A Collaboration-based
Approach to Service Specification and Detection of Implied Sce-
narios. ICSE’s 5th Workshop on Scenarios and State Machines:
Models, Algorithms and Tools (SCESM’06), 2006.

[6] Humberto Nicolás Castejón and Rolv Bræk. Formalizing Collab-
oration Goal Sequences for Service Choreography. In Elie Najm
and Jean-François Pradat-Peyre, editors, 26th IFIP WG 6.1 Intl.
Conf. on Formal Methods for Networked and Distributed Systems
(FORTE’06), volume 4229 of Lecture Notes in Computer Science.
Springer, September 2006.

[7] Jacqueline Floch. Supporting Evolution and Maintenance by Using
a Flexible Automatic Code Generator. In Proceedings of ICSE-17
– 17th International Conference on Software Engineering, Seattle,
April 1995.

[8] Peter Herrmann. Problemnaher korrektheitssichernder Entwurf
von Hochleistungsprotokollen. PhD thesis, Universität Dortmund,
1997. In German.

[9] Peter Herrmann and Frank Alexander Kraemer. Design of Trusted
Systems with Reusable Collaboration Models. In Sandro Etalle
and Stephen Marsh, editors, IFIP International Federation for In-
formation Processing, volume 238, pages 317–332. IFIP, Springer,
2007.

[10] Peter Herrmann and Heiko Krumm. A Framework for Modeling
Transfer Protocols. Computer Networks, 34(2):317–337, 2000.

[11] ITU-T. Recommendation Z.100: Specification and Description
Language (SDL), 2002.

[12] ITU-T. Recommendation Z.120: Message Sequence Charts (MSC),
2004.

[13] Kurt Jensen. Coloured Petri Nets: A High Level Language for
System Design and Analysis. In Proceedings of the 10th Interna-
tional Conference on Applications and Theory of Petri Nets, pages
342–416, London, UK, 1991. Springer-Verlag.

[14] Frank Alexander Kraemer. The Ramses and Arctis Tools.
http://www.item.ntnu.no/∼kraemer/tools.

[15] Frank Alexander Kraemer. UML Profile and Semantics for Service
Specifications. Avantel Technical Report 1/2007 ISSN 1503-4097,

Department of Telematics, NTNU, Trondheim, Norway, March
2007.

[16] Frank Alexander Kraemer, Rolv Bræk, and Peter Herrmann. Syn-
thesizing Components with Sessions from Collaboration-Oriented
Service Specifications. In E. Gaudin, Elie Najm, and Rick Reed,
editors, SDL 2007, volume 4745 of Lecture Notes in Computer Sci-
ence, pages 166–185. Springer–Verlag Berlin Heidelberg, 2007.

[17] Frank Alexander Kraemer and Peter Herrmann. Service Specifi-
cation by Composition of Collaborations — An Example. In Pro-
ceedings of the 2006 WI-IAT Workshops (2006 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology), pages 129–133, 2006. 2nd International Workshop on
Service Composition (Sercomp), Hong Kong.

[18] Frank Alexander Kraemer and Peter Herrmann. Semantics of UML
2.0 Activities and Collaborations in cTLA. Avantel Technical Re-
port 3/2007 ISSN 1503-4097, Department of Telematics, NTNU,
Trondheim, Norway, September 2007.

[19] Frank Alexander Kraemer and Peter Herrmann. Transforming Col-
laborative Service Specifications into Efficiently Executable State
Machines. In Karsten Ehring and Holger Giese, editors, Proceed-
ings of the 6th International Workshop on Graph Transformation
and Visual Modeling Techniques (GT-VMT 2007), volume 7, 2007.

[20] Frank Alexander Kraemer, Peter Herrmann, and Rolv Bræk.
Aligning UML 2.0 State Machines and Temporal Logic for the Effi-
cient Execution of Services. In R. Meersmann and Z. Tari, editors,
Proceedings of the 8th International Symposium on Distributed
Objects and Applications (DOA), 2006, Montpellier, France, vol-
ume 4276 of Lecture Notes in Computer Science, pages 1613–1632.
Springer–Verlag Heidelberg, 2006.

[21] Reino Kurki-Suonio. A Practical Theory of Reactive Systems.
Springer, 2005.

[22] Reino Kurki-Suonio and Tommi Mikkonen. Abstractions of Dis-
tributed Cooperation, their Refinement and Implementation. In

B. Krämer, N. Uchihira, P. Croll, and S. Russo, editors, Proceed-
ings of the International Symposium on Software Engineering for
Parallel and Distributed Systems, pages 94–102. IEEE Computer
Society, April 1998.

[23] Leslie Lamport. Specifying Systems. Addison-Wesley, 2002.

[24] Object Management Group. Unified Modeling Language: Super-
structure, version 2.1.1, February 2007. formal/2007-02-03.

[25] Amir Pnueli. Applications of Temporal Logic to the Specification
and Verification of Reactive Systems: A Survey of Current Trends.
Current Trends in Concurrency. Overviews and Tutorials, pages
510–584, 1986.

[26] Judith E. Y. Rossebø and Rolv Bræk. Towards a Framework of Au-
thentication and Authorization Patterns for Ensuring Availability
in Service Composition. In Proceedings of the 1st International
Conference on Availability, Reliability and Security (ARES’06),
pages 206–215. IEEE Computer Society Press, 2006.

[27] Richard Torbjørn Sanders. Collaborations, Semantic Interfaces
and Service Goals: a way forward for Service Engineering. PhD
thesis, Norwegian University of Science and Technology, 2007.

[28] Richard Torbjørn Sanders, Humberto Nicolás Castejón,
Frank Alexander Kraemer, and Rolv Bræk. Using UML 2.0
Collaborations for Compositional Service Specification. In ACM /
IEEE 8th International Conference on Model Driven Engineering
Languages and Systems, 2005.

[29] Vidar Sl̊atten. Model Checking Collaborative Service Specifica-
tions in TLA with TLC. Project Thesis, August 2007. Norwegian
University of Science and Technology, Trondheim, Norway.

[30] Eirik A. M. Vefsnmo. DASOM — A Software Engineering Tool for
Communication Applications Increasing Productivity and Software
Quality. In ICSE ’85: Proceedings of the 8th international con-
ference on Software engineering, pages 26–33, Los Alamitos, CA,
USA, 1985. IEEE Computer Society Press.

[31] Chris A. Vissers, Guiseppe Scollo, Marten van Sinderen, and Hen-
drik Brinksma. Specification Styles in Distributed System Design
and Verification. Theoretical Computer Science, 89:179–206, 1991.

[32] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model Check-
ing TLA+ Specifications. In L. Pierre and T. Kropf, editors, Pro-
ceedings of the 10th IFIP WG 10.5 Advanced Research Working
Conference on Correct Hardware Design and Verification Methods
(CHARME’99), volume 1703 of Lecture Notes in Computer Sci-
ence, pages 54–66. Springer-Verlag, 1999.

About the Authors

Frank Alexander Kraemer has a master’s degree (M.Sc.) in Information Tech-
nology and a diploma (Dipl.-Ing.) in Electrical Engineering from the University of
Stuttgart, Germany. After finishing his master’s thesis at the Department of Telem-
atics at the Norwegian University of Science and Technology (NTNU) in 2003, he
joined the networked systems research group. Since then, Frank is working on his
doctoral thesis with Professor Rolv Bræk and Professor Peter Herrmann as super-
visors.

Peter Herrmann studied Computer Science at the University of Karlsruhe, Ger-
many, and achieved his diploma in 1990. From 1990 to 1999 and from 2001 to
2005 he worked as a researcher at the University of Dortmund, Germany, and did
his doctorate in 1997 on problem-oriented correctness-guaranteeing design of high-
speed communication protocols. Since 2005, he is professor on Formal Methods
at the Department of Telematics (ITEM) of the Norwegian University of Science
and Technology (NTNU) in Trondheim. Peter works in the areas of formal speci-
fication, design, implementation and verification of distributed systems, networked
services and continuous-discrete technical systems, functional and security aspects of
distributed component-structured software, and trust management. He is author or
co-author of more than 50 journal and conference papers and editor of a special jour-
nal issue on security and trust in electronic commerce as well as of the proceedings
of the 3rd International Trust Management Conference. In 1999, he was awarded a
stipendium for two years as a postdoctoral researcher in the postgraduate research
program “Modelling and Model-Based Design of Complex Technological Systems”
of the University of Dortmund. He is a member of the IFIP Working Group 11.11
on Trust Management.

