
In Proceedings of the 14th International IFIP Symposium on Protocol Speci�cation, Test-ing, and Veri�cation, pages 339{346, Chapmann & Hall, 1994Compositional Speci�cation and Veri�cation ofHigh-Speed Transfer ProtocolsPeter Herrmann, Heiko KrummDept. of Computer Science, Dortmund University, D-44221 Dortmund, GermanyAbstractTransfer protocols are composed from basic protocol mechanisms and accordingly a complexprotocol can be veri�ed by a series of relatively simple mechanism proofs. Our approach appliesL. Lamport's Temporal Logic of Actions (TLA). It is based on a modular compositional TLA-style and supports the analysis of
exibly con�gured high-speed transfer protocols.Keyword Codes: C.2.2; F.3.1; D.3.3Keywords: Protocol Veri�cation; TLA; Composition1 IntroductionFlexible application-driven protocol con�guration can help to enhance the performance ofhigh-speed networks [3, 10]. Therefore e�cient means for the analysis of protocol spectraare needed. Our approach re
ects that the composition of transfer protocols from basicprotocol mechanisms corresponds to a structuring of service requirements into di�erentservice properties. It applies decomposition and structures the protocol veri�cation intoseparated and easy-to-understand mechanism proofs.The approach is based on L. Lamport's Temporal Logic of Actions (TLA [5]) andrefers to the concepts of re�nement mappings [1] and formal composition by logical con-junction [2]. TLA is well-suited for the needs of practical protocol veri�cation. Protocoldesigners are familar with state transition based models. The de�nition and veri�cationof interesting liveness properties is supported by TLA.Nevertheless, TLA is a very fundamental approach and does not provide for specialmeans which are tailored to the modelling of concurrent process systems. Therefore, wedesigned a compositional speci�cation style for TLA which is oriented at CCS [7] andLotos [4]. In comparison with [2], the processes do not interact via shared variables butperform joint actions. This stateless way of interaction has di�erent bene�ts. Especiallyresource-oriented processes as well as constraint-oriented processes can be represented(cf. [9]). Furthermore, the style supports decompositional proofs. A system is the logicalconjunction of its processes and the style conventions assure the absence of contradictionsin the system formula. Therefore process properties directly are inherited to the system.We applied the compositional style and the decompositional veri�cation method todi�erent transfer protocols. The applications were supported by existing general TLA-1

tools (syntax-directed editor, browser, interpreter, model checker, predicate logic theoremprover frontend) which not yet have been tailored to the style. Yet we made the experiencethat it is possible to verify complex protocols within few man-month (e.g., the veri�cationof XTP [8] needed 7 weeks, 3 weeks for the design of speci�cations and proof ideas, 4 weeksfor the formal theorem proofs).At �rst the paper introduces the style and the veri�cation method. Thereafter someviews to the veri�cation of XTP are given in order to examplify the application and togive an impression of the reduced veri�cation complexity. The reader is assumed to befamilar with TLA and re�nement mappings [5, 1].2 Compositional speci�cation styleAs in CCS and Lotos, a process in principle is an open subsystem but a single processspeci�cation can be interpreted for its own. In this case it re
ects a closed system con-sisting of the process and an evironment which is universal in the sense that it does notconstrain the process. A process P is de�ned by a canonical TLA-formula P :P �= P:Init ^ 2[9p 2 P:ptype1 : P:act1(p) _ :: _ 9p 2 P:ptypen : P:actn(p)]P:V^8p 2 P:ptypei : WFP:V (P:eacti(p)) ^ :: ^ 8p 2 P:ptypej : WFP:V (P:eactj(p))^8p 2 P:ptypek : SFP:V (P:eactk(p)) ^ :: ^ 8p 2 P:ptypel : SFP:V (P:eactl(p)):The initial predicate P:Init describes the set of starting states. P:V stands for the tupleof private state variables of P . P:acti(p : P:ptypei) are the di�erent actions of P whichconstitute its next-state relation. The actions may be parametrized by data parameterssupporting the communication of values between the process and its environment. Bystyle conventions, the actions only a�ect private variables and must be mutually disjointin their non-stuttering subrelations.The liveness properties are described by fairness assumptions on conditioned actionsP:eacti(p : ptypei) �=P:acti(p) ^ p 2 ei where a P:eacti is the conjunction of the actionP:acti and an environment condition. ei stands for an additional state variable calledenvironment readiness variable. It is assumed to be set by the environment of P : ifp 2 ei, the environment can tolerate the action acti(p) in the next step. Thus the formulaP ^ 2(e1 = P:ptype1 ^ :: ^ en = P:ptypen) describes a separated process in an universalenvironment.A system S composed of processes P1; P2; ::; Pm is described by a TLA-formula S �=P1^P2 ^ :: ^ Pm ^ CC. The di�erent Pj denote the process formulas. Additionally, there isanother conjunctive term, the coupling constraint CC. CC is an invariant and describesthe speci�c coupling of the system. It can be structured into a conjunction of participationconstraints PjC of the di�erent processes: CC �=2(P1C ^ :: ^ PmC). A participationconstraint again is a conjunction of two parts: PjC �=PjCON ^ PjRED.PjCON constrains the occurrence of Pj-steps in system executions. It is a disjunctionof Unchanged(Pj :V) and of action terms 9p 2 Pj:ptypei : (Pj:acti(p) ^ PeerActions) ^StutteringRest which are introduced for each action Pj:acti of Pj .PeerActions is a conjunction of actions of other processes which shall contribute tothe same joint action: PeerActions �=Pk:acto(p) ^ :: ^ Pl:actq(p). If Pj :acti is an internalaction, i.e., if it is not involved in joint actions, then PeerActions equals to true.2

StutteringRest is a conjunction of Unchanged-statements for processes Pr; ::; Ps whichare not involved in a joint action with Pj :acti. It describes the interleaving atomicity ofPj :acti and may be set to true if parallelism shall be tolerated with respect to logicallynon-connected actions as well. Furthermore, it is possible to postulate the interleavingatomicity of Pj :acti only with respect to some subset of the other processes. In order tokeep the system formula simple, we recommend to introduce interleaving as strict as it ispossible with respect to a speci�c system of interest.The other part of PjC, PjRED states the substitution of the environment readinessvariables Pj:ei. It has to be chosen in accordance with the joint action terms of PjCONand is a conjunction of equations. For each interface action Pj:acti of Pj , an equationPj :ei = fp : Enabled(Pk:acto(p)) ^ :: ^ Enabled(Pl:actq(p))g has to be introduced wherethe processes and actions referenced are those of PeerActions of the corresponding actionterm. For internal actions Pj:acti the equation Pj:ei = Pj :typei is introduced.By style convention, we claim that the di�erent fairness assumptions of the processactions, contributing to the same joint action, �t together, i.e., all process actions of thesame joint action must either be weak fair, strong fair, or without any fairness condition.The compositional system formula S �=P1 ^ P2 ^ :: ^ Pm ^ CC can be transformedsyntactically into an equivalent `
at' canonical formulaS �= S:Init ^2[9p 2 ptype1 : S:act1(p) _ :: _ 9p 2 ptypen : S:actn(p)]S:V^8p 2 ptypei : WFS:V (S:eacti(p)) ^ :: ^ 8p 2 ptypej : WFS:V (S:eactj(p))^8p 2 ptypek : SFS:V (S:eactk(p)) ^ :: ^ 8p 2 ptypel : SFS:V (S:eactl(p))S:Init is the conjunction of the processes' Init-predicates. The actions S:acti are con-junctions of process actions and Unchanged-statements (guided by the PjCON). Due tothe style conventions the fairness assumptions of system actions are inherited from theprocess actions' fairness.The speci�cation style is de�ned in terms of TLA+ [6] and takes pro�t from TLA+modules. A tool can support the de�nition of system structures (e.g., interactive graphicalediting of coupling constraints) and can compute the
at formula.3 Structured veri�cationTo prove that a protocol P implies a service S, decompositions PC and SC can be used.PC is composed of a set of protocol mechanisms PPj : PC �=PP1^PP2^ ::^PPn^PCC.Correspondingly, SC is composed of a set of service properties SPj : SC �=SP1 ^ SP2 ^::^ SPn ^ SCC. Each single protocol mechanism PPi provides for one functional serviceproperty SPi.The protocol veri�cation has to prove the implications P) PC, PC) SC, andSC) S. The proof of the decomposition correctness (P) PC and SC) S) iseasy since both sides of the implications are strongly related. Moreover, P) PC canbe splitted (PC is a conjunction). The di�cult task of the veri�cation is the proof ofPC) SC. Due to the corresponding decompositions, this proof can be structured inton mechanism proofs PPi) SPi and one additional coupling proof PCC) SCC. Thecoupling proof is a pure safety proof and can be performed quite mechanically becauseone can pro�t from those intermediate results of mechanism proofs which describe the3

action-structure of the re�nementmapping. The mechanism proofs are much simpler thana monolithical proof because only a subset of variables and actions has to be regarded.Furthermore, the multitude of present transfer protocols is faced by a relatively smallnumber of basic mechanisms. Therefore mechanism proofs can be re-used respectivelycan be replaced by references to former proofs.4 ExampleSome aspects of the data transfer of XTP [8] shall exemplify the approach. As it isoutlined in Fig. 1, the transfer service S can be speci�ed by a FIFO message queue pertransfer direction. The action submit models the request of the transfer of a message ifrom site s to site d which is represented by an enqueuing operation. The parameter nodcdenotes the `no data corruption control'
ag. The dequeuing action deliver models theindication at site dest. e eq- 6submit(s,d,i,nodc) deliver (s,d,i)Figure 1: Monolithical ServiceThe compositional service speci�cation SC is composed of service constraint processesNo Corruption, No Gaps, and No Duplicates. To simplify the veri�cation, we have chosenalready re�ned models of service constraints. They re
ect a protocol-near distribution ofvariables over the three parties transmitter, medium, and receiver.e eQQQQQk�����3 6remove��sbu����� ��rbu�������tbu�����- 6? 6submit(s,d,i,k,nodc)send (s,d,k,i) deliver (s,d,k,i)receive (s,d,k,i)Figure 2: Service Constraint No CorruptionFig. 2 outlines the service constraint process No Corruption. It tolerates varioustransfer errors but does only permit corruptions if the parameter nodc is set. The set-type state variables sbu�, tbu�, and rbu� represent message bu�ers of the three parties.Messages are represented by tuples of transmitter address s, receiver address d, messageidenti�cation key k, and user data i. As in Fig. 1, the actions submit and deliver modeltransfer requests and indications now by set insertion and member selection operationsto tolerate reordering and duplication. The other actions are internal. They model lossand the forwarding of bu�er elements. 4

e eQQQQQk�����3 6removedatareceived datadelivered��sbu����� ��rbu�������tbu�����- 6? 6submit (s,d,k)send (s,d,k) deliver (s,d,k)receive (s,d,k)rctr�Figure 3: Service Constraint No GapsIn Fig. 3, the second service constraint process No Gaps is outlined. At �rst it modelsthe safety aspect of the absence of loss, namely that the sequence of packets delivered isfree from gaps. Indications are controlled by the receive counter rctr. Secondly the livenessaspect is re
ected by exclusion of the loss of non-delivered packets (remove restrictions)in connection with fairness assumptions.e esubmit (s,d,k) deliver (s,d,k)sctr - rctr�Figure 4: Service Constraint No DuplicatesThe third service constraint process No Duplicates is outlined in Fig. 4. The sendcounter sctr assigns keys k to the messages so that the receiver can detect duplications.The compositional service speci�cation SC can be built now by a composition of thethree constraint processes, the coupling of which de�nes the equally-named actions of theprocesses to be performed jointly. SC implies the monolithic queue model. The main taskof the proof is the design of an invariant which relates the bu�er contents and countervariables. The idea behind this invariant guides the design of the re�nement mapping aswell.After describing XTP by a monolithical protocol speci�cation P we design a compo-sitional protocol system PC. PC is a composition of three subsystems PPNC, PPNG, andPPND which correspond with the three service constraints No Corruption, No Gaps, andNo Duplicates. Two of the PPx again are compositions, namely of a model of the under-lying network Wire and models of the protocol mechanisms Bu�ers, Selective Repeat, andKeep Order. PPNC consists of Wire and Bu�ers; PPNG of Wire, Bu�ers, and SelectiveRepeat; and PPND of Keep Order. To simplify this example, Wire is reliable besides ofloss and the protocol mechanisms are not structured further.The proof of P) PC is straightforward and consists of the proof of the four im-plications P) PPx and P) PCC (since the PPx are compositions the proof of eachP) PPx can be splitted again).To give some impression on the essential tasks of the veri�cation, we now look at basiccomponents of the protocol system. So Wire is described as follows (canonical processformula omitted). 5

Wiretype Adr, Packetvar inq : array [Adr] of queue of Packetinit 8 x 2 Adr : inq[x] = emptyaction send(p : Packet, src, dest : Adr) �=^ inq[dest] 0 = enqueue(inq[dest],p)^ p.src = src ^ p.dest = destaction receive(p : Packet, src, dest : Adr) �=^ p= �rstqueue(inq[dest])^ inq[dest] 0 = dequeue(inq[dest])^ p.src = src ^ p.dest = destaction loss �= 9 x 2 Adr : inq[x] 0 = dequeue(inq[x])The network model consists of an array of message queues inq[dest], keeping the dest-directed XTP-PDUs. The actions send and receivemodel the transfer request and transferindication of PDUs. The loss of PDUs is expressed by the action loss, removing PDUsnon-deterministically from the queues. Bu�ersparm Station : Adrtype Adr, Info, Packet, Keyvar SB : array [Adr,Key] of [[i : Info [f?g]]RB : array [Adr,Key] of [[i : Info [f?g]]init 8 x 2 Key, a 2 Adr: SB[a,x].i =? ^ RB[a,x].i =?action submit(i : Info, dest : Adr, k : Key) �= SB[dest,k].i =? ^ SB[dest,k].i 0 = iaction deliver(i : Info, src : Adr, k : Key) �= RB[src,k].i = iaction send info(p : Packet, dest : Adr, k : Key) �=^ SB[dest,k].i 6=?^ p.src = Station ^ p.dest = dest ^ p.he.key = k^ p.type = info ^ p.info = SB[dest,k].iaction send ctrl(p : Packet, dest : Adr) �=p.src = Station ^ p.dest = dest ^ p.type = ctrlaction rec info(p : Packet, src : Adr, k : Key) �=^ RB[src,k].i =?^ RB[src,k].i 0 = p.info^ p.src = src ^ p.dest = Station ^ p.type = info ^ p.he.key = kaction rec ctrl(p : Packet, src : Adr) �=p.src = src ^ p.dest = Station ^ p.type = ctrlaction sendremove(dest : Adr, k : Key) �= SB[dest,k].i 6=? ^ SB[dest,k].i 0 =?action rcvremove(src : Adr, k : Key) �= RB[src,k].i 6=? ^ RB[src,k].i 0 =?The process Bu�ers describes one basic XTP protocol entity and will be parametrizedby the address Station of the site assigned to. It contains a send bu�er SB and a receivebu�er RB including messages which are indexed by the address of the station, the addressof the transfer partner, and the message key. ? denotes empty bu�er elements. Thecommunication with the user of the protocol is described by the actions submit anddeliver. Because XTP distinguishes between control and information packets, sending6

and receiving is split into actions send info, send ctrl, rec info, and rec ctrl. The removalof bu�er elements is described by the actions sendremove and rcvremove.RM �= ^ sbu� = f[[src,dest,k,i]] : S[src].SB[dest,k]= ig^ tbu�= f[[src,dest,k,i]] :9 p : ^ inqueue(inq[dest],p) ^ p.src = src^ p.he.key = k ^ p.info = i ^ p.type = infog^ rbu�= f[[src,dest,k,i]] : S[dest].RB[src,k] = igThe composition of the mechanismsWire and Bu�ers builds PPNC and can be proved toimply the service constraint No Corruption by means of the re�nement mapping above.The variables of a station st are identi�ed by the quali�er S[st].The mechanism Selective Repeat detects lost data and performs selective-repeat re-transmission. The speci�cation is not shown in detail here. It provides for the saving ofcopies of messages sent, a receive counter, span-list acknowledgements, noti�cation, andtime-out based loss-detection.action S[src].send info(p : Packet, dest : Adr, k : Key, rseq : BOOL) �=^ Wire.send(p,src,dest)^ Bu�ers(src).send info(p,dest,k)^ SelectiveRepeat(src).send info(p,dest,k,rseq)action S[src].send info(p : Packet, dest : Adr, k : Key, rseq : BOOL) �=^ S[src].SB[dest,k].i 6=?^ inq[dest] 0 = enqueue(inq[dest],p)^ (timeout(S[src].t[dest])) rseq)^ S[src].t[dest] 0 = IF rseq THEN start ELSE S[src].t[dest]^ p.src = src ^ p.dest = dest ^ p.he.key = k ^ p.type = info^ p.info = S[src].SB[dest,k].i ^ p.tr.f.rseq= rseqPPNG is a composition of Wire, Bu�ers, and Selective Repeat and implies the serviceproperty No Gaps. The speci�cation above re
ects a clipping of the
at form of PPNG.It shows the system action S[src].send info as joint action of process actions and itsexpansion. The process action Bu�ers(src).send info equals to the action send info ofprocess Bu�ers under substitution of parameter Station by src.Inv �= 8 p,src,dest,k :_ S[src].SB[dest,k] 6=? ^ : S[src].SB.Keep[dest,k]_ ^ inqueue(inq[dest],p) ^ p.src = src ^ p.dest = dest^ p.type = ctrl ^ p.tr.f.rseqresp ^ k 2 p.c_ (src,k) 2 S[dest].Rcv) S[dest].RB[src,k].i 6=? _ S[dest].Rctrg[src]> kRM �= ^ 8 src,dest : rctrg[src,dest]= S[dest].Rctrg[src]^ sbu�= f[[src,dest,k]] : S[src].SB[dest,k].i 6=?g^ tbu�= f[[src,dest,k]] :9 p : ^ inqueue(inq[dest],p) ^ p.src = src^ p.dest = dest ^ p.type = info ^ p.he.key = kg^ rbu�= f[[src,dest,k]] : S[dest].RB[src,k].i 6=?gFor the proof of PPNG) NoGaps we need the invariant Inv and the re�nement mappingRM as de�ned above. Inv assures that a message can only be con�rmed to the transmitterand removed from its send bu�er if it is correctly received. The re�nement mapping ismerely equal to that of the proof of No Corruption.The protocol mechanism Keep Order simply contains two counters: Sctr assigns un-ambiguous keys to submitted messages in incremental order, Rctr prevents the delivery7

of reordered or duplicated messages. Due to the close relation to the service constraint,the proof of PPND) NoDuplication is very simple.Finally, the coupling proof has to be performed to complete the veri�cation. It can beperformed quite mechanically and is not outlined here.5 ConclusionWe introduced a practicable approach for the compositional veri�cation of transfer proto-cols which provides a framework for the investigation of
exible protocol con�gurations.Present work concentrates on the establishment of libraries of basic protocol mechanismsPPi, service properties SPj, and valid implications PPi) SPj . Therefore, the veri�-cation of a speci�c protocol can be performed by the design of equivalent compositionalprotocol and service speci�cations to which only the coupling proof has to be added.A problem remains: often already a composition of protocol mechanisms is needed toprovide even a single service property (e.g., No Gaps in the XTP-example). Therefore,a library of mechanism combinations would be of interest. Instead of introducing thislarger library of mechanism combinations, we are solving the problem on the service side.We represent abstract service properties (e.g., No Gaps) by a composition of more basicservice constraints so that these service constraints correspond one-to-one with singlebasic protocol mechanisms.References[1] M. Abadi and L. Lamport. The Existence of Re�nement Mappings. Theoretical ComputerScience, 82(2):253{284, May 1991.[2] M. Abadi and L. Lamport. Composing speci�cations. ACM Transactions on ProgrammingLanguages and Systems, 15(1):73{132, Jan. 1993.[3] Z. Haas. A protocol structure for high-speed communication over broadband ISDN. IEEENetwork Magazine, pages 64{70, Jan. 1991.[4] ISO. LOTOS: Language for the temporal ordering speci�cation of observational behaviour,International Standard ISO/IS 8807 edition, 1987.[5] L. Lamport. The Temporal Logic of Actions. Technical Report 79, DEC Digital SystemsResearch Center, Palo Alto, May 1991. Research Report. To appear in ACM TOPLAS.[6] L. Lamport. TLA+: Syntax and Semantics. To appear, Preliminary Version, DEC DigitalSystems Research Center, Palo Alto, Feb. 1992. Research Report.[7] R. Milner. A Calculus for Communicating Systems. Lecture Notes in Computer Science 92.Springer, Berlin, 1980.[8] Protocol Engines, Incorporated. XTP Protocol De�nition Revision 3.4, 1989.[9] C. A. Vissers, G. Scollo, and M. van Sinderen. Architecture and speci�cation style informal descriptions of distributed systems. In S. Agarwal and K. Sabnani, editors, ProtocolSpeci�cation, Testing and Veri�cation, volume VIII, pages 189{204, Elsevier, 1988. IFIP.[10] M. Zitterbart, B. Stiller, and A. N. Tantawy. Application-driven
exible protocol con�gura-tion. In N. Gerner, H.-G. Hegering, and J. Swoboda, editors, Kommunikation in VerteiltenSystemen, pages 144{158, 8. Fachtagung, M�unchen, Mar. 1993. GI/ITG, Springer-Verlag.8

