In Proceedings of the 14th International IFIP Symposium on Protocol Specification, Test-
ing, and Verification, pages 339-346, Chapmann & Hall, 1994

Compositional Specification and Verification of
High-Speed Transfer Protocols

Peter Herrmann, Heiko Krumm

Dept. of Computer Science, Dortmund University, D-44221 Dortmund, Germany

Abstract

Transfer protocols are composed from basic protocol mechanisms and accordingly a complex
protocol can be verified by a series of relatively simple mechanism proofs. Our approach applies
L. Lamport’s Temporal Logic of Actions (TLA). It is based on a modular compositional TLA-
style and supports the analysis of flexibly configured high-speed transfer protocols.

Keyword Codes: C.2.2; F.3.1; D.3.3
Keywords: Protocol Verification; TLA; Composition

1 Introduction

Flexible application-driven protocol configuration can help to enhance the performance of
high-speed networks [3, 10]. Therefore efficient means for the analysis of protocol spectra
are needed. Our approach reflects that the composition of transfer protocols from basic
protocol mechanisms corresponds to a structuring of service requirements into different
service properties. It applies decomposition and structures the protocol verification into
separated and easy-to-understand mechanism proofs.

The approach is based on L. Lamport’s Temporal Logic of Actions (TLA [5]) and
refers to the concepts of refinement mappings [1] and formal composition by logical con-
junction [2]. TLA is well-suited for the needs of practical protocol verification. Protocol
designers are familar with state transition based models. The definition and verification
of interesting liveness properties is supported by TLA.

Nevertheless, TLA is a very fundamental approach and does not provide for special
means which are tailored to the modelling of concurrent process systems. Therefore, we
designed a compositional specification style for TLA which is oriented at CCS [7] and
Lotos [4]. In comparison with [2], the processes do not interact via shared variables but
perform joint actions. This stateless way of interaction has different benefits. Especially
resource-oriented processes as well as constraint-oriented processes can be represented
(cf. [9]). Furthermore, the style supports decompositional proofs. A system is the logical
conjunction of its processes and the style conventions assure the absence of contradictions
in the system formula. Therefore process properties directly are inherited to the system.

We applied the compositional style and the decompositional verification method to
different transfer protocols. The applications were supported by existing general TLA-

tools (syntax-directed editor, browser, interpreter, model checker, predicate logic theorem
prover frontend) which not yet have been tailored to the style. Yet we made the experience
that it is possible to verify complex protocols within few man-month (e.g., the verification
of XTP [8] needed 7 weeks, 3 weeks for the design of specifications and proof ideas, 4 weeks
for the formal theorem proofs).

At first the paper introduces the style and the verification method. Thereafter some
views to the verification of XTP are given in order to examplify the application and to
give an impression of the reduced verification complexity. The reader is assumed to be
familar with TLA and refinement mappings [5, 1].

2 Compositional specification style

As in CCS and Lotos, a process in principle is an open subsystem but a single process
specification can be interpreted for its own. In this case it reflects a closed system con-
sisting of the process and an evironment which is universal in the sense that it does not
constrain the process. A process P is defined by a canonical TLA-formula P:

P= P.Init AO[3p € Pptype, : Pacty(p)V ..V 3p € P.plype, : P.act,(p)lpy
NYp € P.ptype; : WFpy(P.eact,(p)) A.. AN\Np € P.ptype; : WEpy(P.eact;(p))
NYp € P.ptypey : SEpy(P.eacty(p)) A .. A\Vp € P.ptype; - SFpy(P.eact(p)).

The initial predicate P.Init describes the set of starting states. P.V stands for the tuple
of private state variables of P. P.act;(p : P.ptype;) are the different actions of P which
constitute its next-state relation. The actions may be parametrized by data parameters
supporting the communication of values between the process and its environment. By
style conventions, the actions only affect private variables and must be mutually disjoint
in their non-stuttering subrelations.

The liveness properties are described by fairness assumptions on conditioned actions
P.eact;(p : ptypei)éP.acti(p) A p € e; where a P.eact; is the conjunction of the action
P.act; and an environment condition. e; stands for an additional state variable called
environment readiness variable. It is assumed to be set by the environment of P: if
p € e;, the environment can tolerate the action act;(p) in the next step. Thus the formula
P A O(e; = Pptyper A .. A e, = P.ptype,) describes a separated process in an universal
environment.

A system S composed of processes Pi, Ps, .., P, is described by a TLA-formula S = P, A
P, NN P, ANCC. The different P; denote the process formulas. Additionally, there is
another conjunctive term, the coupling constraint C'C'. ('C' is an invariant and describes
the specific coupling of the system. It can be structured into a conjunction of participation
constraints P;C' of the different processes: CCéD(Plc A .. A PLC). A participation
constraint again is a conjunction of two parts: P;C=P;CON A P;RED.

P,CON constrains the occurrence of Pj-steps in system executions. It is a disjunction
of Unchanged(P;.V) and of action terms Jp € P.ptype; : (Pj.act,(p) A PeerActions) A
StutteringRest which are introduced for each action P;.act; of P;.

PeerActions is a conjunction of actions of other processes which shall contribute to
the same joint action: PeerActionséPk.acto(p) A .. A Pract,(p). If P;.act; is an internal
action, i.e., if it is not involved in joint actions, then PeerActions equals to true.

StutteringRest is a conjunction of Unchanged-statements for processes P,, .., P; which
are not involved in a joint action with P;.act;. It describes the interleaving atomicity of
P;.act; and may be set to true if parallelism shall be tolerated with respect to logically
non-connected actions as well. Furthermore, it is possible to postulate the interleaving
atomicity of P;.act; only with respect to some subset of the other processes. In order to
keep the system formula simple, we recommend to introduce interleaving as strict as it is
possible with respect to a specific system of interest.

The other part of P;C, P;RED states the substitution of the environment readiness
variables P;.e;. It has to be chosen in accordance with the joint action terms of P,C'ON
and is a conjunction of equations. For each interface action Pj.act; of P;, an equation
P;.e; = {p : Enabled(Py.act,(p)) A .. A Enabled(Pr.act,(p))} has to be introduced where
the processes and actions referenced are those of Peer Actions of the corresponding action
term. For internal actions Pj.act; the equation P;.e; = P;.type; is introduced.

By style convention, we claim that the different fairness assumptions of the process
actions, contributing to the same joint action, fit together, i.e., all process actions of the
same joint action must either be weak fair, strong fair, or without any fairness condition.

The compositional system formula SEP,APyA..AP, ANCC can be transformed
syntactically into an equivalent ‘flat” canonical formula

SZ S.Init AD[Tp € plype; : S.acty(p) V..V Ip € ptype, : S.act,(p)lsv
NYp € ptype; : W Fsy(S.eacti(p)) A.. AN¥p € ptype; : W Fsy(S.eact;(p))
NYp € ptypey : SFsv(S.eactiy(p)) A .. A¥p € ptype; : SFsv(S.eact(p))

S.Init is the conjunction of the processes’ Init-predicates. The actions S.act; are con-
junctions of process actions and Unchanged-statements (guided by the P;CON). Due to
the style conventions the fairness assumptions of system actions are inherited from the
process actions’ fairness.

The specification style is defined in terms of TLA4 [6] and takes profit from TLA+
modules. A tool can support the definition of system structures (e.g., interactive graphical
editing of coupling constraints) and can compute the flat formula.

3 Structured verification

To prove that a protocol P implies a service S, decompositions PC and SC' can be used.
PC' is composed of a set of protocol mechanisms PP;: PCE2PP,APP,A..ANPP,APCC.
Correspondingly, SC is composed of a set of service properties SP;: SCZSP, A SPy A
AN SP, ANSCC. Each single protocol mechanism P P; provides for one functional service
property SP;.

The protocol verification has to prove the implications P = PC, PC = SC, and
SC = S. The proof of the decomposition correctness (P = PC and SC = 9) is
easy since both sides of the implications are strongly related. Moreover, P = PC can
be splitted (PC is a conjunction). The difficult task of the verification is the proof of
PC = SC. Due to the corresponding decompositions, this proof can be structured into
n mechanism proofs PP, = SP; and one additional coupling proof PCC = SCC. The
coupling proof is a pure safety proof and can be performed quite mechanically because
one can profit from those intermediate results of mechanism proofs which describe the

action-structure of the refinement mapping. The mechanism proofs are much simpler than
a monolithical proof because only a subset of variables and actions has to be regarded.
Furthermore, the multitude of present transfer protocols is faced by a relatively small
number of basic mechanisms. Therefore mechanism proofs can be re-used respectively
can be replaced by references to former proofs.

4 Example

Some aspects of the data transfer of XTP [8] shall exemplify the approach. As it is
outlined in Fig. 1, the transfer service S can be specified by a FIFO message queue per
transfer direction. The action submit models the request of the transfer of a message ¢
from site s to site d which is represented by an enqueuing operation. The parameter node
denotes the ‘no data corruption control’ flag. The dequeuing action deliver models the
indication at site dest.

submit Tdeliver (s,d,i)

s,d,i,nodc
e

Figure 1: Monolithical Service

The compositional service specification SC'is composed of service constraint processes
No Corruption, No Gaps, and No Duplicates. To simplify the verification, we have chosen
already refined models of service constraints. They reflect a protocol-near distribution of
variables over the three parties transmitter, medium, and receiver.

submit deliver (s,d ki)
(s,d,i,k,nodc) remove
send (s,d,k,i) receive (s,d,k,i)

Figure 2: Service Constraint No Corruption

Fig. 2 outlines the service constraint process No Corruption. It tolerates various
transfer errors but does only permit corruptions if the parameter nodec is set. The set-
type state variables sbuff, tbuff, and rbuff represent message buffers of the three parties.
Messages are represented by tuples of transmitter address s, receiver address d, message
identification key k, and user data ¢« As in Fig. 1, the actions submit and deliver model
transfer requests and indications now by set insertion and member selection operations
to tolerate reordering and duplication. The other actions are internal. They model loss
and the forwarding of buffer elements.

£%
deliver (s,dk)

receive (s,d,k)

submit (s,d,k

remove

Figure 3: Service Constraint No Gaps

In Fig. 3, the second service constraint process No Gaps is outlined. At first it models
the safety aspect of the absence of loss, namely that the sequence of packets delivered is
free from gaps. Indications are controlled by the receive counter retr. Secondly the liveness
aspect is reflected by exclusion of the loss of non-delivered packets (remove restrictions)
in connection with fairness assumptions.

submit (s,d,k i deliver (s,d,k)

Figure 4: Service Constraint No Duplicates

The third service constraint process No Duplicates is outlined in Fig. 4. The send
counter sctr assigns keys k to the messages so that the receiver can detect duplications.

The compositional service specification SC can be built now by a composition of the
three constraint processes, the coupling of which defines the equally-named actions of the
processes to be performed jointly. SC'implies the monolithic queue model. The main task
of the proof is the design of an invariant which relates the buffer contents and counter
variables. The idea behind this invariant guides the design of the refinement mapping as
well.

After describing XTP by a monolithical protocol specification P we design a compo-
sitional protocol system PC. P(C'is a composition of three subsystems P Py¢, PPy¢, and
P Pyxp which correspond with the three service constraints No Corruption, No Gaps, and
No Duplicates. Two of the PP, again are compositions, namely of a model of the under-
lying network Wire and models of the protocol mechanisms Buffers, Selective Repeat, and
Keep Order. PPn¢ consists of Wire and Buffers; PPyg of Wire, Buffers, and Selective
Repeat; and PPyp of Keep Order. To simplify this example, Wire is reliable besides of
loss and the protocol mechanisms are not structured further.

The proof of P = PC' is straightforward and consists of the proof of the four im-
plications P = PP, and P = PCC (since the PP, are compositions the proof of each
P = PP, can be splitted again).

To give some impression on the essential tasks of the verification, we now look at basic
components of the protocol system. So Wire is described as follows (canonical process
formula omitted).

Wire

type Adr, Packet
var inq : array [Adr] of queue of Packet

init V x € Adr : inq[x] = empty
action send(p : Packet, src, dest : Adr) 2
A inq[dest]’ = enqueue(inq[dest],p)

A p.src=src A p.dest =dest

action receive(p : Packet, src, dest : Adr) =

A p = firstqueue(inq[dest])
A inq[dest]’ = dequeue(inq[dest])
A p.src=src A p.dest =dest

action loss = 3 x € Adr : inq[x]” = dequeue(inq[x])
|

The network model consists of an array of message queues ing/dest], keeping the dest-
directed XTP-PDUs. The actions send and receive model the transfer request and transfer
indication of PDUs. The loss of PDUs is expressed by the action loss, removing PDUs
non-deterministically from the queues.

Buffers

parm Station : Adr
type Adr, Info, Packet, Key

var SB : array [Adr,Key] of [[i : Info U {L}1]
RB : array [Adr,Key] of [[i : Info U {L}]]

init V x € Key, a € Adr: SB[a,x].i=L A RB[ax].i=1
action submit(i : Info, dest : Adr, k : Key) £ SB[dest.k].i=_L A SB[dest,k].i’ =i
action deliver(i : Info, src : Adr, k : Key) 2 RB[sre,k]l.i=i
action send_info(p : Packet, dest : Adr, k : Key) =

A SB[dest k].i#£ L

A p.src = Station A p.dest =dest A p.he.key =k

A p.type =info A p.info = SB[dest k].i
action send_ctrl(p : Packet, dest : Adr) =

p.src = Station A p.dest =dest A p.type = ctrl
action rec_info(p : Packet, src : Adr, k : Key) =

A RBJ[sre,k].i=1

A RB[src,k].i’” = p.info

A p.src=src A p.dest = Station A p.type=info A p.he.key =k
action rec_ctrl(p : Packet, src : Adr) =

p.stc =src A p.dest = Station A p.type = ctrl
action sendremove(dest : Adr, k : Key) = SB[dest,k].iL A SB[dest,k].i’ =L
action rcvremove(sre : Adr, k : Key) = RBJ[src,kl.i% L A RB[sre,k].i’ =L |

The process Buffers describes one basic XTP protocol entity and will be parametrized
by the address Station of the site assigned to. It contains a send buffer SB and a receive

buffer BB including messages which are indexed by the address of the station, the address
of the transfer partner, and the message key. 1 denotes empty buffer elements. The
communication with the user of the protocol is described by the actions submit and
deliver. Because XTP distinguishes between control and information packets, sending

and receiving is split into actions send_info, send_ctrl, rec_info, and rec_ctrl. The removal
of buffer elements is described by the actions sendremove and rcvremouve.
RM = A sbuff = { [[src,dest,k,il] : S[src].SB[dest, k] =1}
A tbuff = { [[src,dest k,il] :
dp: A inqueue(ing[dest],p) A p.src=src
A p.hekey =k A p.info=1i A p.type =info}
A rbuff = { [[src,dest,k,ill : S[dest].RB[src,k] =i}
The composition of the mechanisms Wire and Buffers builds P Py¢c and can be proved to
imply the service constraint No Corruption by means of the refinement mapping above.
The variables of a station st are identified by the qualifier S/st/.

The mechanism Selective Repeat detects lost data and performs selective-repeat re-
transmission. The specification is not shown in detail here. It provides for the saving of
copies of messages sent, a receive counter, span-list acknowledgements, notification, and
time-out based loss-detection.

action S[src].send_info(p : Packet, dest : Adr, k : Key, rseq : BOOL) =
A Wire.send(p,src,dest)
A Buffers(src).send_info(p,dest,k)
A SelectiveRepeat(src).send_info(p,dest,k,rseq)
action S[src].send_info(p : Packet, dest : Adr, k : Key, rseq : BOOL) =
S[src].SB[dest k].i#£ L
inq[dest]” = enqueue(ing[dest],p)
(timeout(S[src].t[dest]) = rseq)
S[src].t[dest]” =1TF rseq THEN start ELSE S[src].t[dest]
p.stc =src A p.dest =dest A p.he.key =k A p.type=info
p.info = S[src].SB[dest k].i A p.tr.f.rseq = rseq

>>>> > >

PPng is a composition of Wire, Buffers, and Selective Repeat and implies the service
property No Gaps. The specification above reflects a clipping of the flat form of PPy¢.
It shows the system action S[src/.send_info as joint action of process actions and its
expansion. The process action Buffers(src).send_info equals to the action send_info of
process Buffers under substitution of parameter Station by sre.
Inv £ V p,sre,dest k :
V S[src].SB[dest, k] £L A = S[src].SB.Keep[dest k]
V A inqueue(ing[dest],p) A p.src=src A p.dest =dest
A p.type=ctrl A p.tr.f.rseqresp A k € p.c
V (src,k) € S[dest].Rev
= S[dest].RB[src,k].i#L Vv S[dest].Rctrg[src] > k
RM £ A Vsre,dest : retrgfsre,dest] = S[dest].Retrg[src]
A sbuff = { [[src,dest,k]] : S[src].SB[dest,k].i#£ L}
A tbuff = { [[src,dest k1] :
dp: A inqueue(ing[dest],p) A p.src=src
A p.dest =dest A p.type=info A p.he.key =k}
A rbuff = { [[src,dest,k]] : S[dest].RB[src,k].i# L}
For the proof of PPyng = NoGaps we need the invariant Inv and the refinement mapping
RM as defined above. Inv assures that a message can only be confirmed to the transmitter
and removed from its send buffer if it is correctly received. The refinement mapping is
merely equal to that of the proof of No Corruption.
The protocol mechanism Keep Order simply contains two counters: Sectr assigns un-
ambiguous keys to submitted messages in incremental order, Rectr prevents the delivery

of reordered or duplicated messages. Due to the close relation to the service constraint,
the proof of PPyp = NoDuplication is very simple.

Finally, the coupling proof has to be performed to complete the verification. It can be
performed quite mechanically and is not outlined here.

5 Conclusion

We introduced a practicable approach for the compositional verification of transfer proto-
cols which provides a framework for the investigation of flexible protocol configurations.
Present work concentrates on the establishment of libraries of basic protocol mechanisms
PP, service properties SP;, and valid implications PP, = SP;. Therefore, the verifi-
cation of a specific protocol can be performed by the design of equivalent compositional
protocol and service specifications to which only the coupling proof has to be added.

A problem remains: often already a composition of protocol mechanisms is needed to
provide even a single service property (e.g., No Gaps in the XTP-example). Therefore,
a library of mechanism combinations would be of interest. Instead of introducing this
larger library of mechanism combinations, we are solving the problem on the service side.
We represent abstract service properties (e.g., No Gaps) by a composition of more basic
service constraints so that these service constraints correspond one-to-one with single
basic protocol mechanisms.

References

[1] M. Abadi and L. Lamport. The Existence of Refinement Mappings. Theoretical Computer
Science, 82(2):253-284, May 1991.

[2] M. Abadi and L. Lamport. Composing specifications. ACM Transactions on Programming
Languages and Systems, 15(1):73-132, Jan. 1993.

[3] Z. Haas. A protocol structure for high-speed communication over broadband ISDN. IEEF
Network Magazine, pages 64-70, Jan. 1991.

[4] ISO. LOTOS: Language for the temporal ordering specification of observational behaviour,
International Standard ISO/IS 8807 edition, 1987.

[5] L. Lamport. The Temporal Logic of Actions. Technical Report 79, DEC Digital Systems
Research Center, Palo Alto, May 1991. Research Report. To appear in ACM TOPLAS.

[6] L. Lamport. TLA4: Syntax and Semantics. To appear, Preliminary Version, DEC Digital
Systems Research Center, Palo Alto, Feb. 1992. Research Report.

[7] R. Milner. A Calculus for Communicating Systems. Lecture Notes in Computer Science 92.
Springer, Berlin, 1980.

[8] Protocol Engines, Incorporated. XTP Protocol Definition Revision 3.4, 1989.

[9] C. A. Vissers, G. Scollo, and M. van Sinderen. Architecture and specification style in
formal descriptions of distributed systems. In S. Agarwal and K. Sabnani, editors, Protocol
Specification, Testing and Verification, volume VIII, pages 189-204, Elsevier, 1988. IFIP.

10] M. Zitterbart, B. Stiller, and A. N. Tantawy. Application-driven flexible protocol configura-

g

tion. In N. Gerner, H.-G. Hegering, and J. Swoboda, editors, Kommunikation in Verteilten
Systemen, pages 144-158, 8. Fachtagung, Miinchen, Mar. 1993. GI/ITG, Springer-Verlag.

