Formal Analysis of Control Software
for Cyber-Physical Systems

Peter Herrmann
Norwegian University of Science and
Technology (NTNU), Trondheim, Norway
Email: herrmann@ntnu.no

Abstract—Modern Cyber-Physical Systems are often driven by
a plethora of controllers that are connected with each other and
their environment. To guarantee a safe and robust execution of
the systems, their control units have to strictly fulfill certain
properties which calls for the use of formal analysis methods in
the software development process. We present the combination
of the model-based engineering technique Reactive Blocks and
the spatiotemporal analysis tool BeSpaceD facilitating the formal
verification of controller software.

I. INTRODUCTION

Cyber-Physical Systems (CPS) play an increasing role in
several technical domains. One of these areas is the transport
sector in which autonomy of vehicles and their automatic
coordination are an important part of the agenda. Modern cars
are equipped by hundreds of Electronic Control Units (ECU)
that manage relevant functions [1]. These ECUs are connected
with each other and more or more also with other vehicles
and fixed stations forming so-called Cooperative Intelligent
Transport Systems (C-ITS) [2].

Of course, CPSs have to fulfill very strict requirements with
respect to safety, robustness, and reliability since any mal-
functioning may endanger the systems themselves and humans
in them or their vicinity. Therefore, the control software has
to be intensively tested for both, being functionally correct
and fulfilling certain Quality of Service (QoS) properties.
A good companion to classical testing is formal analysis
of control software that guarantees that software errors are
already detected in the engineering phase. To facilitate the
formal-based development of controllers, we have combined
the two tool-sets Reactive Blocks [3] and BeSpaceD [4] which
will be discussed in the rest of the paper.

II. REACTIVE BLOCKS AND BESPACED

The main concept of the model-based engineering technique
Reactive Blocks is the building block that allows us to model
sub-functionality in separation [3]. This has the advantage that
recurring functions can be specified once in a building block,
stored in a library of the tool, and easily reused in any system
model that needs this functionality.

In Fig. 1, we show a building block for an example in in-
dustrial automation (see [5]). Here, system behavior is realized
by UML activity graphs that offer an easily understandable
flow semantics close to Petri nets. The example consists of

Jan Olaf Blech
RMIT University
Melbourne, Australia
Email: joblech@gmail.com

SendStatus

b0: Robust MQTT

start & init: Parameters

ssssss

callCounter f& counter: int

stop

Ystopped

Fig. 1. An example block (taken from [5])

three inner building blocks Timer Periodic, Buzzer, and Robust
MQTT taken from the libraries. They are linked by edges and
typical UML activity nodes such as forks or timers defining
the control and data flows in the system [6]. In operations like
makeMessage, we add Java methods that are carried out when
a flow passes an operation.

The interface of a building block is realized by pins resp.
parameter nodes. For instance, a flow may head from our block
SendStatus to the inner block Robust MQTT through the pin
init of the inner block. At the edge of its activity, Robust
MQTT has a parameter node of the same name through which
the flow continues. Moreover, we use so-called External State
Machines (ESM) [7]. They describe in which execution state
a certain parameter node may be passed by a flow.

A building block has to realize a behavior fulfilling both,
its own ESM and the ones of its inner blocks. We provided
the UML activities and ESMs with formal semantics [6]. This
allowed us to integrate a model checker into the tool verifying
whether the ESMs are correctly realized and the system
fulfills other properties such as freedom of deadlocks [3]. The
UML models are automatically transformed into efficiently
executable Java code [8].

The verification tool BeSpaceD enables us to solve con-
straints and to carry out non-classical model checking par-
ticularly for spatiotemporal systems [4]. For that, it offers a
modeling language based on abstract data types and a library to
reason on models, e.g., by state-space exploration, abstraction,
or reduction. Further, BeSpaceD makes it possible to create
verification goals for SAT and SMT solvers.

BeSpaceD was developed in Scala making it compatible



Prototype Testing of Initial Software

Development of Extended Control Software

Software Analysis with BeSpaceD

Transformation into Executable Code

Fig. 2. The methodology (taken from [12])

with the Eclipse-based Reactive Blocks. Moreover, Scala can
be used to create models that are based on abstract data types.
This allows us to use SAT and SMT for much more concrete
models than their traditional inputs. BeSpaceD is typically
used to verify if a moving vehicle can come into conflict with
an obstacle since it might react too late on a corresponding
sensor input [9]. It can be used both at design and runtime [10].

III. TooL COMPOSITION

Reactive Blocks and BeSpaceD can be combined in two
different ways. In the first one, a model in Reactive Blocks is
supplemented with a simulator of the technical process to be
controlled [9]. Then, one carries out several simulations and
converts the log data into a BeSpaceD input formula. This ap-
proach can be relatively easily used for many Reactive Blocks
models, and BeSpaceD can prove the log data efficiently. The
analysis, however, is not exhaustive since only the results of
the simulation runs are effectively checked by BeSpaceD.

In the other composition type, the Reactive Blocks model
is checked for the presence of particular system functionality
from which descriptive formulas are extracted and converted
into BeSpaceD formulas [11]. This allows us to verify spa-
tiotemporal properties exhaustively but, in order to make the
automatic formula extraction possible, the Reactive Blocks
model has to use a certain set of building blocks. This takes
freedom away from the software engineer which aggravates
the development process.

In [12], we present a methodology for the model-based
development of control software using the two tool-sets. It
takes into account that one can only create controllers with
in-depth knowledge about central kinematic properties of the
system to be driven. This information, however, can often only
be gathered by testing real prototypes. That is reflected by our
methodology that uses the five steps listed in Fig. 2.

In step 1, one develops an initial version of the control
software that only contains tentative safety mechanisms but
allows us to test the prototype which happens in step 2. After
having learned the relevant kinematic parameters, the original
control software is extended in step 3 by functionality making
the system resilient and robust. This can be nicely done in
Reactive Blocks by simply extending the original model with
building blocks that realize the functions to be adjoined. In

step 4, we analyze the amended model with BeSpaceD using
one of the two combination mechanisms explained above.
If all spatiotemporal verifications succeed, we generate the
executable code in step 5.

Our methodology is not seen as a replacement for traditional
certification but as a supplement. The quality of the developed
software should be better than with traditional programming
making the certification process much easier.

IV. CONCLUSION

We discussed how one can combine Reactive Blocks and
BeSpaceD for the development of control software during
design time. In the next step, we plan also to utilize the ability
of BeSpaceD to be executed during runtime [10]. Particularly,
we will realize BeSpaceD execution environments in building
blocks that can be easily added to control software models.
The controllers can then simply trigger the verification of
certain spatiotemporal properties and directly react on the
results of these checks. A first sketch of using this for the
decision about reconfiguring controllers is presented in [13].

REFERENCES

[1] C. Valasek and C. Miller, “Car Hacking: The Content,” http://blog.
ioactive.com/2013/08/, 2013, accessed: 2017-06-23.

[2] A. Festag, “Cooperative Intelligent Transport Systems Standards in
Europe,” IEEE Communications Magazine, vol. 52, no. 12, pp. 166—
172, 2014.

[3] F. A. Kraemer, V. Slatten, and P. Herrmann, “Tool Support for the
Rapid Composition, Analysis and Implementation of Reactive Services,”
Journal of Systems and Software, vol. 82, no. 12, pp. 2068-2080, 2009.

[4] J. O. Blech and H. Schmidt, “Towards Modeling and Checking the
Spatial and Interaction Behavior of Widely Distributed Systems,” in
Improving Systems and Software Engineering Conference, 2013.

[5] P. Herrmann and J. O. Blech, “Formal Model-based Development in
Industrial Automation with Reactive Blocks,” in 3rd Human-Oriented
Formal Methods Workshop (HOFM2016), Vienna, July 2016.

[6] F. A. Kraemer and P. Herrmann, “Reactive Semantics for Distributed
UML Activities,” in Joint WG6.1 International Conference (FMOODS)
and WG6.1 International Conference (FORTE), ser. LNCS 6117.
Springer-Verlag, 2010, pp. 17-31.

, “Automated Encapsulation of UML Activities for Incremental
Development and Verification,” in Model Driven Engineering Languages
and Systems (MoDELS), ser. LNCS 5795. Springer-Verlag, 2009, pp.
571-585.

[8] F. A. Kraemer, P. Herrmann, and R. Brek, “Aligning UML 2.0 State

Machines and Temporal Logic for the Efficient Execution of Services,”

in 8th International Symposium on Distributed Objects and Applications

(DOAO06), ser. LNCS 4276. Springer-Verlag, 2006, pp. 1614-1632.

F. Han, J. O. Blech, P. Herrmann, and H. Schmidt, “Towards Ver-

ifying Safety Properties of Real-Time Probability Systems,” in //th

International Workshop on Formal Engineering approaches to Software

Components and Architectures (FESCA). EPTCS, 2014.

J. O. Blech, L. Fernando, K. Foster, Abhilash G, and Sudarsan SD,

“Spatio-temporal Reasoning and Decision Support for Smart Energy

Systems,” in 21st Conference on Emerging Technologies and Factory

Automation (ETFA). 1EEE Computer, 2016.

P. Herrmann, J. O. Blech, F. Han, and H. Schmidt, “A Model-based

Toolchain to Verify Spatial Behavior of Cyber-Physical Systems,” Inter-

national Journal of Web Services Research (IJWSR), vol. 13, no. 1, pp.

40-52, 2016.

S. Hordvik, K. @seth, H. H. Svendsen, J. O. Blech, and P. Herrmann,

“Model-based Engineering and Spatiotemporal Analysis of Transport

Systems,” in Evaluation of Novel Approaches to Software Engineering,

ser. CCIS 703. Springer-Verlag, 2017, pp. 44-65.

A. Taherkordi, P. Herrmann, J. O. Blech, and A. Férnandez, “Service

Virtualization for Self-Adaptation in Mobile Cyber-Physical Systems,”

in Management of Service-Oriented Cyber-Physical Systems (MCPS),

Banff, Canada, 2016.

[7]

[9

—

[10]

(11]

[12]

[13]



