Self-Adaptive Control in Cyber-Physical Systems:
The Autonomous Train Experiment

Alexander Svae
NTNU Trondheim, Norway

Amir Taherkordi
NTNU Trondheim and

alexandersvae@gmail.com University of Oslo, Norway

Peter Herrmann
NTNU Trondheim, Norway

herrmann@ntnu.no

ABSTRACT

Autonomous systems become more and more important in today’s
transport sector. They often operate in dynamic environments in
which unpredictable events may occur at any time. These events
may affect the safe operation of vehicles, calling for highly effi-
cient control software technologies to reason about and react on
their appearance. A crucial efficiency parameter is timeliness as
vehicles often operate under high speed. The contribution of this
paper is the presentation and analysis of design aspects of dynamic
control software in the context of an autonomous train experiment.
This is achieved through a self-adaptation software framework in-
tended for autonomous trains and built on a demonstrator using
Lego Mindstorms. The main mission of the framework is to col-
lect context information, reason about it, and adapt the train behav-
ior accordingly. The adaptation framework is implemented using
the development tool Reactive Blocks and tested on the demon-
strator. The evaluation results provide useful insights into the per-
formance of the framework, particularly about the time needed to
reason about the context and to carry out reconfigurations.

Keywords

Cyber-Physical Systems; Timeliness; Autonomous Trains; Self-
Adaptation

1. INTRODUCTION

For many decades, public transport services have been an essen-
tial part of people’s everyday life, in particular in large cities. Due
to the growth of many urban municipalities to densely populated
mega-cities, the provision of seamless transportation is becoming
more and more complex. This calls for smart, robust and highly dy-
namic next-generation transportation systems. A key research area
of focus for such systems is Intelligent Transport Systems (ITS).
These systems incorporate advanced applications based on intelli-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SAC’17, April 3-7, 2017, Marrakesh, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. . .$15.00
http://dx.doi.org/xx. XXX X/XXXXXXX.XXXXXXX

amirhost@ifi.uio.no

Jan Olaf Blech
RMIT University, Australia

janolaf.blech@rmit.edu.au

gent information handling and communication technologies to pro-
vide innovative services for traffic management and transport in or-
der to avoid traffic congestions and accidents [3]. As an interdisci-
plinary field of research, ITS development requires cosnidration to
many different areas such as electronics, control, communications,
sensing, robotics, signal processing and information systems [7].

As advanced Cyber-Physical Systems (CPS), the operation of ITS
depends on complex yet reliable and seamless interactions between
the computer systems of a vehicle and its physical components.
While most of these systems are operated by humans, fully au-
tonomous means of transport become more popular. In order to
guarantee safety, robustness, efficiency, performance, and security,
this requires complex features that guarantee various capabilities
with respect to context-awareness, timeliness, and self-* properties
of the transport systems [15].

An important application area of ITS is railroading. Trains have
gone through a rapid evolution and there has been a significant
growth of fully automatically operated systems in recent years. The
vehicle dynamics of trains can be quite complicated, involving as-
pects such as starting, traction, coasting, speeding, braking, and
stopping, in addition to the complex states under different load-
ing and weather conditions [5]. To guarantee safety and the other
relevant properties for all of these aspects, modern train systems
are provided with a large number of sensors in order to be able to
recognize contextual changes. For instance, an up-to-date human-
driven diesel locomotive is equipped with about 250 sensors that
produce 150,000 data points a minute [29]. Due to the dynamic
nature of their environment, vehicles need to be able to process this
vast information in a very short time intervals in order to adapt to
changing spatiotemporal properties.

An approach to develop the control software of such autonomous
CPS is the use of model-driven development techniques which, due
to the complexity of the train dynamics, are not used very often
(e.g., [13, 21]). On the other hand, developing and experimenting
self-adaptive control software for real autonomous CPS can pro-
vide very useful insights to the design and efficiency aspects of
such software. To the best of our knowledge, there is no work re-
porting such experiments for this category of CPS applications.

This paper adopts an experimental approach to the design, devel-
opment and evaluation of dynamically reconfigurable control soft-
ware in autonomous CPS. That is realized through a software adap-
tation framework for autonomous trains operating on a Lego Mind-

Xtrinsic sense board

Motor HAT w/prototyping area
Raspberry Pi 2
NFC reader

Light color sensor

Lego LiPo battery

Lego extension wire splice

Figure 1: A vehicle of the Lego Mindstorms platform (taken
from [25])

storms-based model. To enable self-adaptation of the control soft-
ware, the framework encompasses components for context mon-
itoring (via various sensors of the train), context reasoning, and
implementing adaptation decisions made by the reasoning process.
For context reasoning and run-time software adaptation, the frame-
work exploits the state design pattern and the OSGi framework,
respectively. The framework is implemented using the modular
development tool Reactive Blocks [4, 14]. The proposed frame-
work serves as an example of how context awareness, reasoning,
and adaptation should be implemented for controlling autonomous
train systems. Given that such a framework should react timely to
quick environmental changes, we particularly investigate the run-
time costs of reconfiguring a control system.

The rest of the paper is organized as follows: In Sect. 2, we sketch
the platform used for our autonomous trains. Section 3 presents
the overall design model for the control software, while implemen-
tation details are discussed in Sect. 4. Performance issues are de-
scribed in Sect. 5. Section 6 refers to the lessons learned from our
experiment. Then, we present related work in Sect. 7 and conclude
the paper with future directions in Sect. 8.

2. HARDWARE AND SOFTWARE
PLATFORMS

We illustrate our approach using a Lego Mindstorms-based train
system. Such systems are typically run by EV3 controllers [16]
that we also used in previous incarnations of the demonstrator [12].
To address the scope of this paper, however, we required a more
flexible platform. Therefore, the EV3 controllers in the trains were
replaced with a novel set of hardware [25] (see Fig. 1). The con-
trol software of a vehicle is now operated on a Raspberry Pi 2
board [31] that is connected with the motor of the train using an
Adafruit DC motor HAT. Further, each train is provided with four
different sensors: The original color sensor of Lego was replaced
by a TCS34725 color light sensor that gives better readings of the
colors of the sleepers on the track (see [12]). To allow communica-
tion with passive Near Field Communication (NFC) tags provided
in the vicinity of the tracks, the train is further equipped with a
PNS532 transceiver [18] that allows us to read from and to write
onto the tags. The other sensors used are an MAG3110 magne-

tometer and an MMA®8491Q accelerometer that are mounted on an
Xtrinsic sense board. These sensors can be combined to use sev-
eral self-localization strategies for the trains (see [25]). The power
supply is a USB-capable rechargeable Lithium battery.

The control system for a device runs on the Raspberry Pi. To sup-
port the dynamic adaptation of the control software according to
the current situation, a vehicle operates in, we use the well-known
OSGi framework [19] which is based on Java. OSGi is a powerful
underlying software platform for realizing the dynamic adaptation
of software modules. It allows us to structure code segments as
Java packages called business bundles. A business bundle can be
activated, deactivated, or replaced at runtime. Moreover, different
business bundles can cooperate with each other, and OSGi auto-
matically preserves the dependencies between them when bundles
are installed, uninstalled, or reconfigured. Business bundles are
suited to implement the control functionality of sensors and actu-
ators as well as certain control functionality. To operate OSGi on
the Raspberry Pi, we installed the well-known Eclipse Equinox im-
plementation [6] and the management agent Apache Felix on it.

For the development of the business bundles, we use the model-
driven engineering technique Reactive Blocks [4, 14]. This method
and tool-set facilitates the development of reactive software sys-
tems and also supports the creation of OSGi business bundles. A
business bundle is modeled using an arbitrary number of so-called
building blocks. A building block is a model of a subsystem or
a certain sub-functionality, and by composing building blocks, dif-
ferent sub-functions can be easily composed. Since building blocks
are stored in libraries and added by drag-and-drop to different sys-
tem models, the approach improves the reuse of code significantly.
Building blocks are modeled as UML activities and their inter-
faces by UML state machines, so-called Extended State Machines
(ESM). By providing the UML activities and state machines with
formal semantics, automatic formal correctness proofs of functional
properties with model checkers is possible. Further, the system
models are automatically transformed into business bundles or other
Java code. The use of building blocks is particularly helpful to
create bundles for accessing sensors and actuators in CPS since a
building block incorporating the complex logic to access a physi-
cal unit has to be created only once and can thereafter be reused
whenever the sensor or actuator is applied (see, e.g., [12]).

3. ADAPTATION MODULE

To respond to the contextual property changes of a train in a timely
and safe manner, we adapt its control system at runtime in order to
address the particular needs of the environment. Often, these adap-
tations have to meet challenging realtime properties to guarantee a
timely reaction of the train. Further, the adaptations must always
lead to consistent code since otherwise unexpected behavior can
occur that may have serious consequences. Although, in this pa-
per, we focus on automatically operated trains, situations may arise
in which a remote operator needs to take control of the adaptation
process. Thus, the realization of the runtime code changes should
include the support for external control and overriding.

To conduct the timely and correct adaptation of a control system,
we use an adaptation module that fulfills a number of properties.
The adaptation module must be able to receive sensor input from all
relevant train sensors, reason about the input, and make appropriate
decisions. Furthermore, it has to be able to change sensor proper-
ties without interfering with the rest of the system. In addition, the

Train Control System

Sensor Context Remote
Controller Reasoner Controller

Figure 2: High-level design of the adaptation module

Train Adapter

adaptation module must be designed in a way that allows modifi-
cation of code related to sensor, behavior and properties without
having to restart the module. Finally, it must be possible to control
the adaptation module from a remote location.

The above requirements primarily emphasize on modularity and
portability of the adaptation module to other systems with similar
software systems. We achieve this by placing the sensor manage-
ment in a separate building block. This will decouple the sensors
from the contextual reasoning and wrap sensor specific characteris-
tics inside a single component. Likewise, we use a special building
block for communication with the environment. The adaptation of
the control software is supported when the access to the sensors and
actuators is offered by special services. For that, we add another
component for tracking and managing the services. In Figure 2, we
propose the design model of the adaptation module which consists
of four main components and a fifth one wrapping the others:

e The Service Tracker handles the registration and update of
services. Further, it provides access for the Sensor Controller
and Remote Controller to the registered services.

e The Sensor Controller is in charge to handle and control the
various sensors of a train. It must ensure that all sensor read-
ings are timely and correctly received by the adapter. More-
over, it has to offer functionality enabling the reconfiguration
of the sensor reading process. Further, this component pro-
vides the Context Reasoning component with notifications
about sensor status changes.

e The Context Reasoner utilizes input from the Sensor Con-
troller and the Remote Controller to process the sensor inputs
and reason about them. The component keeps track of con-
textual properties, gets access to necessary resources, and re-
acts to changes in a correct and efficient way.

e The Remote Controller uses the communication infrastruc-
ture of the train system and provides a well-defined set of
commands through which the remote operators may inter-
act with the adaptation module and override the adaptation
process. Furthermore, this component offers an interface for
train-to-train communication.

e The Train Adapter is a building block composing the four
components listed above. It exposes the external API of the
adaptation module to other processes.

The Service Tracker, Remote Controller, and Sensor Controller are
all passive components in the sense that they listen to and react
on events triggered by their environments. In contrast, the Con-
text Reasoner component takes the appropriate action to change
the train’s properties and behavior. In the next section, we discuss
design and implementation details of the adaptation module and
other elements of our train system layout in greater detail.

TrainAdapter
CustomServiceTracker H
i ContextReasoner
SensorController TrainState Remote TrainAMQP
Controller Service
‘ SensorList ‘ TrainInfo
L X
" ! I }
Sensor Sensor Ma Train Train
Handler Configurator Checﬁer State Restriction
Controller Controller Controller Checker

Figure 3: Architecture of the adaptation module

4. DESIGN AND IMPLEMENTATION

The overall architecture of our approach is depicted in Fig. 3, where
the green boxes indicate OSGi services while the blue ones are the
components implemented as Reactive Blocks (henceforth simply
called blocks). The white boxes inside the blocks are Java property
objects which hold information important for the block containing
them, e.g. the list of sensors managed by the SensorController. In
the following, we first highlight the implementation details of the
four blocks in the TrainAdapter. Thereafter, we sketch how the train
controllers are adapted and failures of the sensors are handled.

4.1 Service Tracking

A way to support the dynamic cooperation between business bun-
dles in OSGi is a special Java class ServiceTracker. It allows a
business bundle to keep track which services provided by potential
partner bundles are currently registered. For that, the bundle ini-
tializes a service tracker object and identifies services, in which it
is interested. Whenever a service of interest is registered, modi-
fied, or removed in an OSGi system, a corresponding Java method
is called by the service tracker object.

Using this functionality, it is relatively easy for our building block
ServiceTracker, named CustomServiceTracker, to keep track of all
available sensors and actuators. The block tracks the sensors and
actuators in the train system using a filter following the Lightweight
Directory Access Protocol (LDAP) standard [17]. Moreover, it no-
tifies the SensorController about all state changes of sensors in our
system and forwards received sensor data to it. In the other direc-
tion, sensor reconfiguration commands received from the Sensor-
Controller are sent to the services representing the corresponding
sensors. Likewise, the CustomServiceTracker supports the cooper-
ation between the ContextReasoner and the sensors resp. actuators.

4.2 Sensor Control

As mentioned in Sect. 3, the SensorController block acts as an inter-
mediary between the sensors and the ContextReasoner. To enable
the flexible access of the TrainAdapter to sensors of very different
formats, we provide each sensor type with three particular OSGi
bundles through which the sensors will be accessed.

Two of these bundles are used to enable the transfer of sensor data
to the SensorController. One contains a publisher thread that is
started when the sensor is registered. It uses the OSGi class Event
Admin which allows the transfer of data between different OSGi
business bundles following the publish/subscriber pattern. Depend-
ing on the configuration of the sensor, the publisher sends the data
gauged in a raw format. The other bundle is a handler that allows
to convert raw sensor data into a format readable by the Contex-

tReasoner. Access to the two bundles from the SensorController is
managed by the OSGi service SensorHandlerController depicted in
Fig. 3. When the CustomServiceTracker shows the registration of
a new sensor, the SensorController subscribes to its publisher. Fur-
ther, it looks up the type of the publisher for this sensors and noti-
fies the SensorHandlerController which returns a link to the corre-
sponding handler. The links to the publisher and handler are stored
in a SensorList. When a sensor publishes raw data, these are con-
verted into a readable format using the respective handler and sub-
sequently forwarded to the ContextReasoner.

The third bundle attached to a sensor is a configurator that al-
lows to (re-)configure the sensor. This bundle is based on a utility
class SensorReconfiguration such that configurations follow a pat-
tern that is understandable by the SensorController. Moreover, we
use the OSGi service SensorConfiguratorController which manages
the access of the SensorController to the configurators of the sen-
sors. When the SensorController wants to change the configuration
of a sensor, it routes an object of class SensorReconfiguration to
the SensorConfiguratorController which checks the object for com-
patibility with the configurator. If the configuration command is
correct, the object is forwarded to the configurator which takes the
according configuration steps. Otherwise, the SensorController re-
ceives an error message.

4.3 Context Reasoning

For the evaluation of the incoming sensor values and the decision
how to react on them, we decided to use the State Design Pattern
approach [9]. That is a behavioral pattern in which each system
state is related to a particular state object that implements the be-
havior desired in the particular state. All objects implement a com-
mon interface such that they can easily replace each other when
the system state is changed. The state is managed by a so-called
context object that also keeps track about the state objects currently
used. In OSGi, the classes of the State Design Pattern can be re-
alized as business bundles, activated and deactivated by the bundle
realizing the context object.

The ContextReasoner keeps track of relevant data, e.g., the posi-
tion, speed or length of a train, in the TrainInfo object. It has a
TrainState object which is the context object of the State Design
Pattern. When our example train operates on the main track layout
in our lab, this object manages altogether seven distinct states:

e A state Stopped is active when the train is standing.

e The states Running, City, and InnerCity refer to the normal
operation of the train in which all of its sensors are correctly
working. Further, the state relates to the area in which the
train operates. The speed will be lower when the train runs
in densely populated areas since there an impact with humans
is more likely.

e We will discuss in Sect. 4.6 that a train is still allowed to
operate when its NFC transceiver is out of order. The opera-
tion without the NFC receiver is handled by the states Run-
ningNFC, CityNFC, and InnerCityNFC.

To make useful decisions, the ContextReasoner relies on further in-
formation like the physical limits of the train that, of course, could
be hardcoded in the block ContextReasoner. But to keep our ap-
proach as general as possible, we use instead three additional OSGi
services that can be easily exchanged when some of the information
alters. The TrainStateController provides the functionality mapping

the current situational information (i.e., speed, position, and check-
ing if the NFC transceiver is alive) to the state, into which the train
shall be set. Position data is provided from the MapChecker which
contains a map of the track layout including information about
zones. Finally, the TrainRestrictionChecker keeps data about the
physical restrictions of a particular train layout, e.g. the maximum
speed it may have crossing a switch point. Using the data of all the
aligned bundles, the active state object of the ContextReasoner can
now compute correct actuator output data, necessary state changes
as well as sensor reconfigurations. That will be described more in
detail in Sect. 4.5.

4.4 Remote Control

The RemoteController block is responsible for all communication
between the train adapter and its environment like switch point
management or external monitoring, e.g., [11]. In our realization,
we use the Advanced Message Queuing Protocol (AMQP) [1], a
protocol that was already applied in similar work [11, 12]. AMQP
is a feature-rich open standard application layer message queuing
protocol designed to support a variety of communication patterns
in an effective way. The Raspberry Pi running the control software
of a train has a Wi-Pi dongle which allows for WiFi connections to
arouter residing in the lab. To keep the communication access flex-
ible and also to make an easy change to other protocols like MQTT
or CoAP possible, we realize the communication with a generic
OSGi service called TrainAMQPService. This service provides the
RemoteController with functionality to send and receive message
as well as to maintain a fine-grained control of connections. Thus,
for instance, one can restrict the access to only those switch point
managers that operate switch points in the area the train is running
in. The communication is realized with a standard building block
RabbitAMQP that is based on the RabbitMQ client library.

4.5 Train Adaptation

The TrainAdapter block wraps the other four blocks of the adap-
tation module. One of its main tasks is to ensure that the OSGi
bundles realizing these blocks are managed correctly. Further, the
TrainAdapter models the cooperation of the four inner blocks that
we summarize in the following:

Processing a sensor reading and carrying out state changes.
When a sensor (e.g., the color light sensor) publishes a reading, it
sends it as an event to the publisher which, in turn, sends the event
to the responsible handler (see Sect. 4.2). The handler processes the
event and creates a new ColorReading object, which is sent to the
SensorController. When the SensorController receives the object, it
forwards it to the ContextReasoner, which sends the ColorReading
object to its active state object (see Sect. 4.3). The state object rea-
sons about the data and decides which actions shall be taken (e.g.,
reducing the speed of the train). Further, it checks the TrainState-
Controller service to find out whether the state of the train has to be
changed. When that is the case, the TrainStateController will return
a new TrainState which will be set as the new active state by the
ContextReasoner.

Reconfiguration process. If a train state object decides to recon-
figure a sensor, it calls the reconfigureSensor function of the Con-
textReasoner with a SensorReconfiguration object as a parameter.
Then, the ContextReasoner sends this object to the SensorCon-
troller which forwards it to the SensorConfiguratorController. The
latter routes the object to the configurator of the sensor to be re-
configured which accesses the publisher of the sensor and calls the

necessary methods. If the reconfiguration leads to a status change
for the sensor, the SensorController creates a new SensorStateEvent
object and sends it to the ContextReasoner, which forwards the ob-
ject to the TrainStateController that updates the TrainInfo with the
new sensor state.

4.6 Failure Handling

To ensure a hazard-free operation, the train controller has to know
under which circumstances the train can still run safely. Relevant
for the safe operation is the failure of sensors. The TrainRestric-
tionChecker has assigned a criticality level to all of the sensors that
can be vital, important or peripheral. If a peripheral sensor fails, no
action is taken, while in the case of failure of an important sensor,
the train has to change its state. In the case of a vital sensor failure,
the train will be stopped immediately. In our train system, the color
light sensor is defined as vital, the NFC transceiver as important
and the magnetometer resp. accelerometer as peripheral.

To handle failures of the NFC transceiver, we defined a set of spe-
cial state objects as outlined in Sect. 4.3. These objects, for in-
stance, try to replace missing information read from the NFC tags
by similar, albeit less precise data provided by the MapChecker. To
detect failures of the NFC transceiver, each NFC tag is aligned with
a blue sleeper. When the color light sensor indicates such a sleeper,
a timer is started. If the train state does not receive an NFC reading
before the timer expires, the ContextReasoner will issue an accord-
ing state change and the train is again in a safe operation mode.

S. EXPERIMENTAL EVALUATION

Due to the tough realtime properties demanded for autonomous
trains operating under high speed, we are interested to find out if
the proposed framework reacts sufficiently fast to quick changes in
the environment. The results of our tests will be discussed in this
section. In particular, we investigate if the adapter is able to re-
act within a reasonable time. It should be noted that the results of
the experiments performed are, of course, specific to the hardware
and software platforms presented in this paper. Nevertheless, using
off-the-shelf software platforms such as OSGi, the results reported
below provide in our opinion great insights to the time efficiency
of adaptable control software.

We conducted two types of experiments. The first type, so-called
Response time to sensor events, tests the time needed from issuing a
sensor reading through the publisher of the sensor to the reception
of the corresponding object by the active state object in the Con-
textReasoner. The second type is a Complete performance test in
which we evaluated the performance of the complete TrainAdapter
module. To measure the time in different phases of the experi-
ments, we used the Log Service offered by the Equinox framework.
A useful feature of Log Service is that it allows one to register a
LogListener to a building block. The LogListener receives all mes-
sages (i.e., the LogEntry) being logged to the system. We have de-
veloped a bundle, named TrainAdapterLogger, that contains all the
LogListeners used in our experiments. In the following, we discuss
both types of experiments.

5.1 Response Time to Sensor Events

In this experiment, we conducted two test runs for reading the color
light sensor as well as the NFC transceiver. For both tests, the
train ran on a circular track on which blue sleepers were passed
approximately every 3 seconds.

| From | To | Avg. | Max | Min |
Sensor Publisher | Sensor Handler | 3.08 | 640 <1
Sensor Handler Train State 1.12 19 <1

Train State State Object 0.47 8 <1

State Object Train Actuator | 0.49 10 <1
Sensor Publisher | Train Actuator | 5.17 | 641 <1
Sensor Handler | Train Actuator | 2.08 20 <1

Table 1: Response time on color events (in ms)

Interval Number of occurrences
Less then 2 ms 2824
Between 2 ms and 10 ms 48
Between 10 ms and 100 ms 7
Greater then 100 ms 18
| Number of readings | 2897 |

Table 2: Number of time intervals between the publisher and
the handler of the color sensor

Response time on color events. In this test run, the publisher of
the color light sensor was set to publish a sensor reading every 10
milliseconds (ms). For simplicity, we used only one state object in
the ContextReasoner that reduces the speed of the train for a while
when a blue sleeper was detected.

The obtained results are shown in Table 1. From the results, we
can see that it takes about 5 ms on average for the TrainAdapter to
react to a sensor event. This result was better than what we ex-
pected. However, there seems to be an issue with some events that
are significantly delayed on the way from the publisher to the han-
dler using the OSGi class Event Admin (see Section 4.2). Table 2
shows the distribution of the time between the publisher and the
handler of the color sensor in certain intervals. More then 97% of
the events were received within 2 ms. Nevertheless, there were 18
instances where it took more than 100 ms, with the longest delay
being 640 ms. The most likely reason for this is that the Event Ad-
min cannot timely handle all the events sent to it. To mitigate this
problem, the publication rate for the color sensor can be decreased
as we will see in the following experiment.

Using color events to trigger NFC readings. This time, we placed
an NFC tag under each of our blue sleepers. Further, we doubled
the interval between two sensor readings of the color sensor by
setting its publisher to send a reading every 20 ms. The state object
was amended such that after detecting a blue sleeper, it activated
the NFC transceiver to read the content of the tag following the
procedure discussed in Sect. 4.5.

The obtained results are reported in Table 3. We see that increasing
the publish rate of the color sensor helped with the issues related to
the Event Admin. Out of the 541 readings, only five of them took
more then 100 ms with the highest value of 364 ms. Further, the
tests revealed that it takes on average less then 1 ms from the train
state receives the event until it activates the sensor. This means
that the adapter performed well enough to use the color events as
triggers for the NFC event before the train left the NFC tag.

5.2 Complete Performance Test

In the experimental setup for the complete performance test, the
train ran on the track displayed in Fig. 4. The thin colored lines
represent sleepers of the same color, and the boxes indicate the
different map zones. Under each blue sleeper, an NFC tag was in-

From |

To | Average | Max | Min |

Color Event
Sensor Publisher | Sensor Handler 3.12 364 <1
Sensor Handler Train State 1.34 15 <1
NFC Event
Train State Start read tag 0.69 5 <1
Start read tag Finishread tag | 118.63 | 164 | 71
Finish read tag | Sensor Handler 4.86 416 | <1
Sensor Handler Train State 1.44 9 <1
Number of readings 541

Table 3: Results on color events and NFC sensor (in ms)

Normal

| From | To | Avg. | Max | Min |
Publisher Event Handler | 1.05 | 156 <1
Event Handler Train State 1.02 4 <1
Train State Train 0.47 3 <1
Publisher Train 2.55 | 157 1
Event Handler Train 1.49 6 <1

Table 5: Response time on color events (in ms)

city o H%

InnerCity

2

Figure 4: The track layout for the complete performance test

stalled. The train traveled only on the outer perimeter of the track.
The TrainAdapter reacted to different sensor readings in accordance
with the adaptation plan shown in Table 4. In this experiment, the
publishing rate for the color sensor was decreased to 25 ms. The
publishing rate of the magnetometer was between 600 ms to 680 ms
depending on which zone the train was traveling in. In the follow-
ing, we present the results of three tests carried out for this setup:

Noticing trains about turns. In this test, we wanted to see how
long it takes for the TrainAdapter to notify the train about an up-
coming turn. From the results shown in Table 5, we can see that
the TrainAdapter uses on average less then 3 ms to notify the train,
which is satisfactory. There is still a problem with the OSGi class
Event Admin. With the further decrease of the publishing rate, how-
ever, we experienced only two occurrences out of 287 yellow color
readings in which the Event Admin used more the 10 ms to send the
event to the handler.

Reconfiguring a sensor. This test was made to see how long it
takes to perform a sensor reconfiguration. The reconfiguration per-
formed during this test was to start or stop the magnetometer when-

State Event | Condition Action
Out of turn | Color Red Turn off magnetometer
In turn Color Red Turn on magnetometer
Out of turn | Color Yellow Indicate incoming turn
In turn Color Yellow Indicate end of turn
Everywhere | Color Blue Read from NFC sensor
Everywhere | NFC | Location ID Change train state

Table 4: Adaptation plans with respect to the sensor readings

| From | To | Avg. [Max | Min |
Publisher Event Handler | 2.79 | 247 <1
Event Handler Train State 1.06 8 <1
Train State Sensor started | 0.69 3 <1
Train State Sensor stopped | 0.65 3 <1
Number of color events Starts | Stops
234 117 117

Table 6: Time used to reconfigure a sensor after receiving a
color reading (in ms)

ever a red sleeper is passed. As shown in Table 6, again we see that
the adapter performs well. It uses on average less than 1 ms since
it receives the event until the sensor is reconfigured. The Event
Admin class caused a single significant delay of 247 ms.

Performing an NFC transceiver reading and changing state of
the system. In this test, we wanted to learn how fast the adapter
was able to change its state when entering a new map zone. Again
the results, reported in Table 7, are very good for the TrainAdapter
since only the reading of an NFC tag costs a significant amount of
time which, however, was expected. It is worthwhile to consider
that the Event Admin used here at maximum only 10 ms to send
the event to the handler of the color sensor. The reason for this can
be that in the track layout the red and yellow colored sleepers are
fairly close to each other, while the blue colored sleepers are not
close to any of them.

6. LESSONS LEARNED

The experiments discussed above were the first practical tests of our
approach to use adaptive control software for autonomous systems
that is based on Java and OSGi and is built using the model-based
engineering technique Reactive Blocks. Of course, we tested our
idea only on a laboratory train platform that is equipped with just
four sensors. But on the other side, also in real systems like the
diesel engine mentioned in the introduction [29] will, of course,
not use a small piece of hardware like a Raspberry Pi to manage all

| From | To | Average | Max | Min |
Color Event
Publisher Event Handler 0.46 10 <1
Event Handler Train State 0.99 3 <1
NFC Event
Train State Tag read 11053 | 142 | 89
Publisher Event Handler 0.85 4 <1
EventHandler Train State 0.87 3 <1
Train State State changed 0.52 3 <1
Color Publisher | State changed | 114.22 | 148 | 91
| Number of readings | 123]

Table 7: Time used by the Adapter to change state when enter-
ing a new map zone (in ms)

of its 250 sensors (in modern passenger cars, between 100 and 200
separate processors are used). Instead, one can expect such hard-
ware units to control small subsystems of up to 10 sensors which
is not very different from our system layout. Therefore, we think
that our experiment is definitely meaningful. It gave us deep in-
sight into the performance, flexibility, and correctness of the built
software, which will be sketched in the following subsections.

6.1 Performance

Starting our experiments, we were curious about the performance
results achieved since we saw several issues which might impede
a fast computation. For example, the code on the Raspberry Pi is
based on Pi OS, a comprehensive operating system that is close to
Linux. Thus, it comprises many operating system processes that
may consume significant processing time. Further, our work is
based on Java which is interpreted by a virtual machine, and we
were also not sure about the rapidity claimed for the OSGi plat-
form. Finally, our code was produced using the model-based engi-
neering technique Reactive Blocks such that we use automatically
generated code. Considering all these issues, the measured average
performance was satisfactory. We see the necessity, however, to ad-
dress the delays of some packets caused by the Event Admin class
as discussed in Sect. 5. To alleviate this problem, we currently ex-
periment with a simple load balancing mechanism preventing that
too many events are handed of between the publisher of a sensor
and its handler at the same time.

6.2 Flexibility

In Sect. 4, we pointed out that achieving a flexible solution was a
major decision point in our project. The realization of the Train-
Adapter in a way that all specific functions were implemented as
separate OSGi bundles communicating via standardized interfaces
proved to be quite helpful in this respect. For example, it was very
easy to convert the control system used for the tests explained in
Sect. 5.1 to the one applied for the tests shown in Sect. 5.2. Thanks
to OSGi, the adaptations can even be applied during runtime.

6.3 Correctness

With respect to correctness, we see two different aspects: One con-
siders the handling of hardware failures, in particular, sensors. The
opportunity to conduct reconfigurations of sensor settings makes it
in our view easier to implement strategies for failing sensors as the
discussion in Sect. 4.6 points out.

The other correctness aspect refers to the quality of the program
code. On the one hand, adaptive code tends to be more com-
plex than non-adaptive one which can lead to a larger number of
programming errors. On the other hand, the structure of our ap-
proach in which the overall functionality consists of several rela-
tively small OSGi bundles, makes it easier to understand the func-
tionality of each single one. Thus, it is easier to create a bundle
correctly. Also the use of the various analysis capabilities of Reac-
tive Blocks is helpful since we can model check the bundle models
for various errors and check other issues by, for instance, animating
system runs [14]. Moreover, OSGi guarantees that the dependen-
cies of the bundles are kept which also removes a source of error.
Altogether, in spite of the greater complexity, we expect a higher
quality of the produced software than achieved through traditional
programming which may alleviate the certification process for an
autonomous transport system.

7. RELATED WORK

A variety of software adaptation frameworks exist which fit into
our cyber-physical transportation domain. A framework for dy-
namic adaptation of CPS is discussed in [8]. It features the map-
ping of the large component model Kevoree into micro controller-
based architectures. This pushes dynamics and elasticity concerns
directly into resource-constrained devices and is based on the no-
tion of models @runtime. Another approach for the development of
adaptable software applications for embedded systems is proposed
in [22]. It is based on a Domain-Specific Language (DSL) to spec-
ify adaptation policies and strategies at a high level, and use rules
that produce the necessary runtime reconfigurations independent
from the application logic. A targeted application area is a frame-
work for Lego NXT Mindstorm robots exploring an environment.
The frameworks PLASMA [28] and Sykes [26] feature dynamic
replanning for robots in the architectural domain by utilizing ADL
and planning-as-model-checking technologies. The need for chal-
lenges arising with realtime aspects have been addressed through
introducing special adaptation frameworks (see, e.g., [2]). In [27],
an adaptation framework is proposed to enable adaptation coordi-
nation between cooperative CPS devices through providing a virtu-
alized application-level view to adaptation requirements. Modeling
contextual properties, in particular for CPS, is a related research
problem for which a survey lists different approaches [20]. Un-
like the above works, this paper is devoted to an experimental de-
sign and analysis approach for self-adaptation of control software
in autonomous CPS with special focus on the time overhead of the
designed framework.

Several transportation projects have applied results from software
adaptation research. The RailCab project [30] constructed a demon-
strator featuring driverless taxi-like, but rail-bound vehicles that
can be grouped into larger trains. Part of this project was behav-
ioral adaptation based on situation analysis [13]. In contrast to
our work, however, whole controllers are changed instead of single
modules which makes the approach less flexible. This restriction
also holds for studies on adaptation aspects carried out in the con-
text of the European Rail Traffic Management System (ERTMS)
initiative [21]. Adaptive control was also used for grouping vehi-
cles into platoons (see, e.g., [24]), where the adaptivity is mostly
limited to adapting control parameters.

From the modeling perspective, the approach to model and develop
the dynamics of control software in autonomous trains is of vital
importance due to their unique actuation characteristics, interaction
with the physical environment, and high performance needs (e.g.,
real-time constraints). Most existing work addresses the modelling
aspect of control in such platforms while some approaches com-
prise modeling control aspects through, e.g., numeral modeling,
fuzzy logic [23], and artificial neural networks [10].

8. CONCLUSION AND FUTURE WORK

Autonomous trains, as a prominent category of CPS, have to pro-
cess the vast physical information in real-time in order to adapt
and react to changing contextual properties. Therefore, their con-
trol software should be carefully designed with respect to the dy-
namic changes and real-time performance requirements. To inves-
tigate these, we proposed a self-adaptation software framework for
autonomous trains, built on a Lego Mindstorms-based hardware
platform. The framework, implemented with the modular devel-
opment tool Reactive Blocks, exploits the state design pattern and

OSGi for context reasoning and run-time software adaptation, re-
spectively. The evaluation results provided useful insights on the
real-time performance and flexibility of the adaptation framework.
As a future plan, we intend to enhance and evaluate the design of
the framework (e.g., the RemoteControl and MapChecker blocks)
for scenarios involving cooperative trains that, like in the RailCab
project, may be grouped together. Moreover, we build up a coop-
eration with the Norwegian Public Road Administration. In this
context, we intend to try out our approach with real-life vehicles.

9. REFERENCES

[1] AMQP.org. Advanced Message Queuing Protocol (AMQP).
www.amqp.org/, 2016. Accessed: 2016-02-01.

[2] T. E. Bihari and K. Schwan. Dynamic Adaptation of
Real-time Software. ACM Transactions on Computer
Systems (TOCS), 9(2):143-174, 1991.

[3] S. Bitam and A. Mellouk. ITS-cloud: Cloud Computing for
Intelligent Transportation System. In GLOBECOM, 2012.

[4] Bitreactive AS. Reactive Blocks. www.bitreactive.com,
2016. Accessed: 2016-01-28.

[5] H. Dong, B. Ning, B. Cai, and Z. Hou. Automatic Train
Control System Development and Simulation for
High-Speed Railways. IEEE Circuits and Systems Magazine,
10(2), 2010.

[6] Eclipse. Eclipse Equinox Framework.
http://www.eclipse.org/equinox/, 2016. Accessed:
2016-09-23.

[7] L. Figueiredo, L. Jesus, J. A. T. Machado, J. R. Ferreira, and
J. L. M. de Carvalho. Towards the Development of
Intelligent Transportation Systems. In Intelligent
Transportation Systems, 2001. Proceedings. 2001 IEEE,
pages 1206-1211, 2001.

[8] F. Fouquet et al. A Dynamic Component Model for Cyber
Physical Systems. In Proc. of 15th ACM Symposium on
Component Based Software Eng. (CBSE ’12). ACM, 2012.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns — Elements of Reusable Object-Oriented Software.
Addison-Wesley, 2 edition, 1995.

[10] S. Gao, H. Dong, Y. Chen, B. Ning, G. Chen, and X. Yang.
Approximation-Based Robust Adaptive Automatic Train
Control: An Approach for Actuator Saturation. /[EEE
Transactions on Intelligent Transportation Systems,
14(4):1733-1742, Dec 2013.

[11] P. Herrmann, A. Svae, H. H. Svendsen, and J. O. Blech.
Collaborative Model-based Development of a Remote Train
Monitoring System. In Evaluation of Novel Approaches to
Software Engineering, COLAFORM Track, 2016.

[12] S. Hordvik, K. @seth, J. Blech, and P. Herrmann. A
Methodology for Model-based Development and Safety
Analysis of Transport Systems. In /1th Int. Conf. on
Evaluation of Novel Approaches to Software Engineering
(ENASE), 2016.

[13] B. Klopper, C. Sondermann-Wolke, and C. Romaus.
Probabilistic Planning for Predictive Condition Monitoring
and Adaptation Within the Self-Optimizing Energy
Management of an Autonomous Railway Vehicle. Journal of
Robotics and Mechatronics, 24(1):5-15, 2012.

[14] F. A. Kraemer, V. Slatten, and P. Herrmann. Tool Support for
the Rapid Composition, Analysis and Implementation of

Reactive Services. Journal of Systems and Software,
82(12):2068-2080, 2009.

[15] K. D. Kusano and H. C. Gabler. Safety Benefits of Forward
Collision Warning, Brake Assist, and Autonomous Braking
Systems in Rear-End Collisions. [EEE Transactions on
Intelligent Transportation Systems, 13(4), Dec 2012.

[16] Lego Group. Lego Mindstorms EV3, Accessed September
2016. http://www.lego.com/nb-no/mindstorms/products/
mindstorms-ev3-31313.

[17] Network Working Group. Request for Comments: 4511 —
Lightweight Directory Access Protocol (LDAP): The
Protocol. https://tools.ietf.org/rfc/rfc4511.txt, 2006.
Accessed: 2016-09-26.

[18] NXP Semiconductor. PN532/C1 — Near Field
Communication (NFC) Controller. http://cache.nxp.com/
documents/short_data_sheet/PN532_C1_SDS.pdf, 2012.
Accessed: 2016-09-22.

[19] OSGi Alliance. OSGi Service Platform.
http://www.osgi.org/, 2016. accessed: 2016-01-22.

[20] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos.
Context Aware Computing for The Internet of Things: A
Survey. IEEE Communic. Surveys Tutorials, 16(1), 2014.

[21] M. Sango, C. Gransart, and L. Duchien. Safety
Component-based Approach and its Application to
ERTMS/ETCS On-board Train Control System. In TRA2014
Transport Research Arena 2014, Paris, France, Apr. 2014.

[22] A. C. Santos et al. Specifying Adaptations through a DSL
with an Application to Mobile Robot Navigation. In
SLATE’13,2013.

[23] S. Sezer and A. E. Atalay. Dynamic Modeling and Fuzzy
Logic Control of Vibrations of a Railway Vehicle for
Different Track Irregularities. Simulation Modelling Practice
and Theory, 19(9), 2011.

[24] M. Sun, F. Lewis, and S. Ge. Platoon-stable Adaptive
Controller Design. In Decision and Control, 2004. CDC.
43rd IEEE Conference on, volume 5. IEEE, 2004.

[25] H. H. Svendsen. Self-Localization of Lego Trains in a
Modular Framework. Master’s thesis, NTNU Trondheim,
2016.

[26] D. Sykes et al. From Goals to Components: A Combined
Approach to Self-Management. In SEAMS *08, 2008.

[27] A. Taherkordi, P. Herrmann, J. O. Blech, and A. Fernandez.
Service Virtualization for Self-Adaptation in Mobile
Cyber-Physical Systems. In International Workshop on
Management of Service-Oriented Cyber-Physical Systems
(MCPS), co-located with ICSOC. Springer, 2016.

[28] H. Tajalli et al. PLASMA: A Plan-based Layered
Architecture for Software Model-driven Adaptation. In
IEEE/ACM Conf. on Automated Software Engineering
(ASE), 2010.

[29] D. Terdiman. How GE got on Track Toward the Smartest
Locomotives ever. https://www.cnet.com/news/
at-ge-making-the-most-advanced-locomotives-in-history/,
2014. accessed: 2016-09-19.

[30] University of Paderborn. Rail Cab System.
https://www.hni.uni-paderborn.de/en/
business-computing-especially-cim/projects/railcab/.
Accessed: 2016-09-29.

[31] E. Upton and G. Halfacree. Raspberry Pi User Guide. Wiley,
2014.

