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ABSTRACT
We present a model-driven method to incrementally intro-
duce fault-tolerance mechanisms into application models that
are initially developed with assumptions of ideal transmis-
sion semantics. As main structuring units, our models use
collaborative building blocks in UML that can encapsulate
the behaviour of several participants in order to perform a
certain task. Since these building blocks can be designed
and analysed separately, fault-tolerance mechanisms can be
introduced block by block, which reduces the size and com-
plexity of specifications that have to be understood at a
time. Applying fault tolerance at the application layer also
brings the benefits of easily porting applications to other
platforms and applying model-level analysis tools to the
fault-tolerance mechanisms themselves. We illustrate our
method through the development of an access control sys-
tem.

1. INTRODUCTION
A major challenge when developing distributed, reactive

applications is that each component an application consists
of typically has to maintain interactions with several other
components. This implies a considerable amount of coordi-
nating logic. Such logic gets even more complex once ap-
plications should handle situations in which communication
is disturbed by flaws like message loss. Luckily, in many
cases, already simple fault-tolerance mechanisms can lead
to more reliable applications. For example, timers started
when waiting for response signals can protect a component
from waiting forever for an answer that may have been lost
in a channel.

Though the introduction of even simple fault-tolerant be-
haviour itself is a task that increases development time, it
has an additional effect that makes it problematic during
the development: Fault-tolerance mechanisms obscure the
essence of the actual application logic, making it harder to
understand in the beginning and maintain in the long run.
For instance, in a finished, fault-tolerant specification it may
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not be immediately clear if a certain timer is an important
application feature or only has the task to monitor a com-
munication channel, since fault-tolerance mechanisms and
application logic are mixed together.

Another reason demanding a clear strategy for the intro-
duction of fault tolerance is rather practical. The exper-
tise needed for securing an application with respect to fault
tolerance is different from the expertise needed for applica-
tion development in specific domains. Only few engineers
cover both. Our method therefore explicitly addresses two
separate groups of experts; one for the specific application
domain in which the system should be applied and one for
fault tolerance in general. This is analogous to our method
presented in [14] to handle security aspects by a separate
team of experts.

For these reasons, we propose a two-phase method, de-
picted in Fig. 1, based on our engineering method for reac-
tive system, SPACE [22]. In a first phase, a system speci-
fication is developed by experts for the specific application
domain in step D1. As major specification units, we use
special self-contained UML building blocks addressing a sin-
gle task. Several case studies have shown reuse proportions
of 71 % on average, see [20]. Therefore, domain-specific li-
braries can offer existing solutions that can be composed to
more comprehensive units, until a complete system is ob-
tained. We will detail this development phase in Sect. 2.
Once this specification passes the analysis based on model
checking A1, the majority of domain-specific design is com-
plete and fault-tolerance experts become involved. We refer
to a specification at this stage as idealized, meaning that it
is fault-intolerant, but free from the design faults checked
for by the analysis step.

Within the second phase, the initially idealized specifica-
tion is incrementally improved to match more realistic trans-
mission semantics in which messages in transit can be lost
(step D2). This task is performed by an expert on fault
tolerance, assisted by an expert on the application domain
when necessary. Similar to the initial development in D1,
this step is supported by a library of fault-tolerance mech-
anisms that store solutions to reoccurring problems. This
development phase is the main contribution of this paper
and is further detailed in Sect. 4.

Once the system passes analysis A2 it is considered re-
liable (fault-tolerant and free from design faults) and can
be implemented by our automated process consisting of a
model transformation [19] with a subsequent code genera-
tion step. This step supports different execution platforms
such as standard Java, embedded Java for Sun SPOTs [21],
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Figure 1: Development Method

Android [15], as well as Telenor’s Connected Objects Oper-
ating System (COOS, [16]).

In the following, we will detail the development steps of
phase 1 for the application domain in Sect. 2 by the exam-
ple of an access control system. The models in Sect. 2 as-
sume ideal transmission semantics, i.e. perfect channels. In
Sect. 3, we introduce realistic transmission semantics. This
is the starting point for development phase 2, discussed in
Sect. 4, that incrementally evolves the idealized system to a
reliable one by introducing fault-tolerance mechanisms. We
present related work in Sect. 5 and discuss our method in
Sect. 6. We end with some concluding remarks in Sect. 7.

While our tools also handle activity diagrams with object
nodes, operations and flows, we disregard data within this
paper for clarity. For system specifications that include data,
see [21, 22].

2. IDEALIZED APPLICATION MODELS
To illustrate our approach, we consider an access control

system. At the top of Fig. 2 the system’s structure is spec-
ified by a UML collaboration, with the icons representing
its participants (UML collaboration roles). They show that
the system consists of the actual door to control, an input
panel, a local station located in the vicinity of the door and
the panel, a central station and two servers for authenti-
cation and authorization. The ellipses (UML collaboration
uses) in between refer to collaborations that describe func-
tions between their participants. The collaboration use pc:
Panel Control, for instance, covers the behaviour between
the local station and the panel, in which users provide their
access code.
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Figure 2: Access Control System

Since UML collaborations are a structural description with-
out any behaviour, we use UML activities to complement the
specification, as shown in the lower part of Fig. 2. Here we
see that each collaboration role is represented by its own
activity partitions for the panel, the door, the stations and
the servers. The collaboration uses are represented by call
behaviour actions that in turn refer to activities. At their
frames, they have pins attached which are used to control
their behaviour.

The system is started via the initial node within the local
station, which starts the panel. Once users enter their per-
sonal identification (pid), the corresponding pin from block
pc emits a token containing it onto the flow. The token is
forwarded to the central station, where it is forwarded, af-
ter the fork node, to both the authenticate and authorize
collaborations, more generally referred to as building blocks.

The internal behaviour of the authenticate block is shown
by the UML activity diagram to the left in Fig. 3. It is
a simple inquiry pattern, where a server validates the pid
and the client interprets its answer as either ok or not. The
authorization works in a similar way.

To utilize these blocks within the access control system,
however, the internal details are not important. It is suf-
ficient to look at the external behaviour of these blocks,
expressed by the so-called external state machine (ESM) to
the right in Fig. 3. It shows that after a token is provided
via input node pid, the authentication terminates either via
ok or nok.

The central station of Fig. 2 collects the answers of both
the authenticate and the authorize collaborations. Note
that they were started simultaneously, but the servers may
respond in any order. The results are fed into the block
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a:And, which realizes a logical function that corresponds to
a boolean and gate: Only when both the authentication and
the authorization are ok, true is sent back to the local sta-
tion upon which the door is opened. In all other cases, the
door remains closed. The ESMs of Panel Control and Door
Control are depicted in Fig. 4.

Since all building blocks are encapsulated by ESMs, the
access control system of Fig. 2 can be simulated and anal-
ysed even if the panel or door control blocks are not yet
specified internally. Once all building blocks are complete,
the system (although assuming ideal channels) can also be
implemented and executed as an early prototype. This can
be used to uncover situations not yet considered and to get
early feedback from the customers.

e0

open/

/closed

«esm» Door Control

e0

/nok

start/

/reset/ok

e1

e2

/pid

e0

e0

«esm» Panel Control

Figure 4: External descriptions of the Panel Control
and Door Control building blocks

The tool suite that accompanies our method has analytic
capabilities to aid the developer in creating a well-formed
specification. Syntactic inspectors check that the model is
syntactically correct, for example that all output pins have
a connected flow. Semantic analysis is achieved through the
use of a model checker [30]. The semantics of our models are
precisely defined so that an automated transformation to a
model checking language can be done [22]. Properties like
freedom from deadlocks and that the composition respects
all ESMs are then automatically formulated and verified.

The access control system is analysed and does not violate
any properties as it is now.

3. TRANSMISSION SEMANTICS
The activities in Fig. 2 and 3 use control flows that cross

partition borders. Since partitions denote physically dis-
tributed components, this implies some form of communica-
tion, in which data is transmitted from a sender to a receiver.
For all platforms we generate code for, this communication
is provided by an asynchronous message bus, in which the
sending operation is decoupled from the receiving of a mes-
sage, so that a sender does not get blocked. This also means

that there is no upper bound on the time it may take a
transmitted message to reach its receiver. To mirror this in
the execution semantics for activities based on token flows,
we therefore assume that tokens are buffered between parti-
tions in an implicit waiting place, as illustrated in Fig. 5. We
assume in the following that there is at most one message
corresponding to a certain activity flow under transmission,
that means that the place accepts at most one token.

a b b
≡

a

Figure 5: Implicit waiting place for transmissions

Ideal Transmission Semantics. The models in Fig. 2
and 3 assume an ideal form of communication, in which
messages are never lost. This means that the transmission
between partitions has the semantics described by the build-
ing block in Fig. 6, with a send and receive operation. Every
token sent will eventually be received, as expressed by the
ESM to its right.
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Figure 6: Ideal transmission semantics

Realistic Transmission Semantics. To represent mes-
sage loss, we define realistic transmission semantics by the
building block in Fig. 7. It has the same send and receive op-
erations as the idealized transmit in Fig. 6, but also models,
by pin and ESM transition lost, that tokens can be lost and
hence never be received. (Since lost and receive are mutually
exclusive, they technically belong to different UML param-
eter sets denoted by the additional box around them.)
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Figure 7: Realistic transmission semantics

4. RELIABLE APPLICATION MODELS
If we assume realistic transmission semantics, i.e. that

channels may lose messages, a single lost message anywhere
in the access control system will leave it deadlocked. The
analysis step A2 therefore reveals the following error scenar-
ios:

• The initial token from the local station to the central
station containing the pid is lost, so the local station
waits forever for a reply.

• Any one of the responses from the central station to
the local station are lost, also leaving the local station
waiting forever.



• Any token lost between the central station and one
of the servers causes both the local station and the
central station to wait forever.

In the event of a message being lost by a channel, the ap-
plication should be notified so that it can handle the event
in the best way possible for its specific domain. An ap-
plication could, for example, attempt to compensate for a
broken channel by using a redundant information source.
Otherwise, it could degrade its service, simply informing its
users that requests currently cannot be handled. To achieve
that the application is notified of message loss, it can ei-
ther register for such events through a platform API, or
use a timeout mechanisms explicitly represented within the
model. The rest of this section presents such a mechanism,
how it can be integrated with the access control system and
how it can be encapsulated for reuse.

4.1 Reliable Notify
Unreliable channels do not explicitly notify any party in

the event that a message is lost. Hence, detection must be
done at the endpoints. The sender of a message can start a
timer when sending a message onto a channel, and ask for
an explicit acknowledgement of receipt from the receiver. If
the acknowledgement message is received on the sender side,
the sender knows for sure that the message it sent reached
its destination. However, the lack of the acknowledgement
message when the timer expires can be interpreted as any
of the following situations:

• The sender’s message was lost before reaching the re-
ceiver.

• The acknowledgement message has been lost on its way
back do the sender.

• The sender’s message, or its acknowledgement mes-
sage, is still in the channel.

Hence, there is no way of being sure that the sender’s mes-
sage has been lost; all we can do is set a time after which
it is unlikely that the acknowledgement message will arrive
and consider the sender’s message as lost after that time. To
prevent a message or acknowledgement mistakenly assumed
to be lost from interfering with later interactions, we assume
a numbering mechanisms for filtering them out.

We introduce a solution for a reliable notification service
in the form of a building block, Notify R, shown in Fig. 8.
(We use the naming convention that R is added as suffix
to the name to mark that a building block is reliable, i.e.
that it has passed analysis A2.) This building block encap-
sulates the behaviour just described to detect message loss:
When a token arrives through pin in, the sender side puts
it onto the channel while at the same time starting a timer.
Upon receiving the token from the channel, the receiver side
delivers it to the enclosing building block via pin out. The
receiver also sends an acknowledgement back to the sender
side. When the sender receives the acknowledgement, the
building block terminates via the ack pin. Terminating the
block also removes any token in the timer. Should the timer
expire before the acknowledgement arrives from the receiver
side, the building block will terminate via the noAck pin, in-
dicating to the enclosing building block that the token may
not have reached the receiver (yet).

The behaviour of Notify R is abstracted by its ESM, as
shown in Fig. 9. An important property is that the block

Notify R
receiversender

in

out

ack

noAck

Figure 8: Behaviour of the Notify R building block

always emits a token through ack or noAck before it termi-
nates, even if tokens are lost between partitions.
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Figure 9: ESM of the Notify R building block

4.2 Reliable Authenticate
Following our method from Fig. 1, we start our work on

the access control system by looking at the collaborations
it consists of, and begin with the one for authentication, as
introduced in Fig. 3.

We run analysis A2 on it, with realistic transmission se-
mantics. It finds that a deadlock occurs when the token
from pid is lost in the channel between client and server,
represented by the point where the topmost flow crosses the
partition border. As a result, we invoke a syntactic substi-
tution action on this flow that inserts an instance of Notify
R, changes the target of the old flow to its in pin and adds
a new flow going from pin out to the original target of the
first flow (the validate operation). The substitution algo-
rithm also connects ack to a flow final node and noAck to a
newly inserted pin in Authenticate named failed. The result
can be seen in Fig. 10.
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Figure 10: The Authenticate building block after
syntactic substitution of topmost flow



The analysis tool will detect property violations intro-
duced by the changes. For Fig. 10, the analysis finds a
deadlock to happen in the event that the token returning
from the server to the client is lost. In other words, the
client is waiting for a response from the server before termi-
nating, and we realize that the block must somehow detect
if this could also be lost. Substituting the flow carrying the
response for a new Notify R would only help in notifying
the server side of the possibly lost token, which is not help-
ful as the server has no interest in what happens after it has
sent its response. Instead, we connect the flow from the ack
pin to a timer, which we merge with the flow going to the
failed pin, as shown in Fig. 11. This way, Authenticate R
always terminates, something which the analysis in step A2
confirms.
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Figure 11: The reliable Authenticate building block
completed

The authorize building block is modified in exactly the
same way as the authenticate block, and the description is
hence omitted. The blocks for door control and panel control
are not further specified in this example, and are assumed
to be infallible.

4.3 Reliable Inquiry
We notice a pattern in the final version of Authenticate

R. The parts that we just added are useful for all instances
of this request–response pattern. Hence, we create a new
building block, Inquiry R, as shown in Fig. 12 to encapsulate
this communication pattern for future reuse. The ESM of
the block is depicted in Fig. 13.
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Figure 12: Behaviour of the Inquiry R building
block
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Figure 13: ESM of the Inquiry R building block

This building block now uses two timers in total, one
within n: Notify R waiting for the acknowledgement of the
request, and one that waits for the response. One could
say that the latter makes the first redundant since sending
the response is of course an indirect acknowledgement for
the initial request. However, when the computation time on
the server for producing the response is considerably longer
than the transmission time for a signal (since it for exam-
ple could include further communication with other compo-
nents), the extra acknowledgement would allow the client
to detect communication problems earlier. Anyway, if com-
putation for the response would be very short, one could
provide an extra version for Inquiry that uses the response
as acknowledgement for the request.

4.4 Reliable Access Control System
Having created reliable versions of the authenticate and

authorize blocks that reflect that messages may be lost, we
now make the access control system reliable as well. We see
a request–response pattern similar to that of Inquiry R be-
tween local station and central station. The difference here
is that there are two alternative responses, out of which only
one should arrive. This is easily added to our existing In-
quiry R building block to produce the Inquiry 2 R block by
simply adding a new pair of pins, responseIn2 and respon-
seOut2, and a flow between them.

Using this new block, we obtain the version of the access
control system shown in Fig. 14, which satisfies analysis A2.
In particular, it is free from deadlocks. As the application
already has logic to handle a negative authentication or au-
thorization result (from the nok pins), we simply merge the
outputs of the failed pins with these. The same is the case
when a token is lost between the local station and the cen-
tral station; the flow from failed is merged with the negative
response. Note that this is a design decision that has to in-
volve an expert on the application domain. The application
specified under the ideal transmission semantics assumption
does not, in the general case, contain the necessary informa-
tion to algorithmically transform it into a reliable version.
Specifying the best action to take upon detecting message
loss hence requires manual intervention, just as the specifi-
cation of the functionality itself.

5. RELATED WORK
There are several other approaches that combine model-

driven development with fault tolerance and techniques for
fault removal, like model checking or testing.

Bucchiarone et al. [8] present plans for an approach that
utilizes techniques for both fault tolerance and fault removal
to increase the dependability of systems. They specify func-
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tional and fault-tolerance requirements by UML use cases
and validation scenarios by sequence diagrams. A system
architecture is created in the form of UML component dia-
grams for structure and state machines for behaviour. Each
component has one state machine describing normal be-
haviour and another one describing exceptional behaviour.
They already have a tool-supported method, Charmy ca-
pable of model checking and test case generation that they
expect to be able to extend for fault-tolerant system ar-
chitectures without major changes. While combining fault-
tolerance mechanisms with model checking to uncover de-
sign faults is similar to what we are planning, our approach
differs in that we generate the code directly from our speci-
fications, instead of manually implementing the system and
then testing it.

In [11], Ermagan et al. specify services using interaction
models (sequence diagrams) that are assumed to be com-
plete. The authors propose to add detectors and mitiga-
tors to manage these services without altering the services
themselves at all. Detectors observe the communication of
the service and attempt to detect cases of unexpected be-
haviour (a message was sent when it should not have been)
or of non occurrence behaviour (a message that should have
been sent is not). The idea of keeping the functional ser-
vice specification separated from the fault-tolerance mech-
anisms that detect and handle errors seems very elegant,
but we suspect it is somewhat restrictive in terms of what
solutions for error handling can be employed. This will typ-
ically also require a complex platform that can, for example,
completely transparently re-route messages between service
roles, if mitigators are activated to help the system recover
from a process crash.

Guelfi et al. present the DRIP Catalyst method in [13].
Here, coordinated atomic actions (CAAs, [29]) are used to
specify all system behaviour. A CAA is represented by an
activity diagram with each role in its own activity partition,
similarly to the way we use activity diagrams to describe the
collaboration of roles. The authors intend to follow the MDA
approach [24] of refining a platform-independent model to

a platform-specific model (PSM) and then generating code,
but at the time of writing they create the PSM directly. Ver-
ification of the system behaviour is planned as future work.
The main difference from our work is that this approach is
built around the concept of CAAs, and the DRIP framework
for expressing them in Java, so that all behaviour is speci-
fied as CAAs from the start. Hence both normal behaviour
and fault-tolerance mechanisms are specified at once. We,
instead, allow for a naive initial specification and then uti-
lize tool-assisted analysis to help developers introduce fault-
tolerance mechanisms in a following step.

Our approach of adding fault tolerance to a functional
model bears similarities to aspect-oriented modelling where
such cross-cutting concerns are also specified in separation as
aspects and then weaved into the model. An aspect consists
of a pointcut model that specifies a matching place to insert
the advice model, which is the additional logic for handling
the aspect.

Domokos and Majzik [10] look at how to incorporate de-
pendability via aspect-oriented modelling. They operate at
a purely architectural level, so that the behaviour of the
system is not included. The method does, however, output
an analysis model in the form of stochastic Petri nets, which
can be used to determine the dependability properties of the
system, i.e. the failure and repair processes of the system
components and how errors propagate between them.

Both Fuentes and Sanchez [12] and Cui et al. [9] use ac-
tivity diagrams to model system behaviour and aspect ad-
vice. The former operates on executable models, like our
approach, so that design faults can be found before imple-
mentation. However, neither of them apply aspect orien-
tation for fault tolerance, rather persistence, authorization
and other aspects whose addition has little consequence for
the application.

Kienzle and Guerraoui [17] argue that mechanisms for
fault-tolerance (they use transactions) may not be suitable
to be separated into an aspect of their own. As a reason they
identify that the addition of fault-tolerance mechanisms, at
least in their case, requires big changes to the application
logic that cannot be made automatically. The experiment
described is, however, conducted in the context of aspect-
oriented programming, not at a modelling level. The appli-
cability to the works in the previous paragraph could hence
be questioned.

There are also approaches that incorporate fault tolerance
already at the requirements stage of the development pro-
cess.

Berlizev and Guelfi [6] use UML activity diagrams to de-
tail the behaviour of UML use cases that are again used
to express system requirements. In addition to the system
functionality, they also incorporate fault tolerance into the
requirements, specifying both deviations from normal be-
haviour and recovery strategies.

Mustafiz et al. [25] present a way to express degraded
service outcomes, as well as exceptional modes of operation
during the requirements engineering phase of development.
They elaborate use cases with UML activity diagrams and
mark the possible outcomes of an activity by stereotypes
�success�, �degraded� or �failure� in order to clearly
distinguish them. The authors also advocate the explicit
specification of exceptional operation modes that may result
from degraded service outcomes. This allows for adjusting
the expectations and behaviour of the system users to match



the current situation.
Although the syntax of the two papers above is somewhat

similar to ours, the semantics are not. For example, Berl-
izev and Guelfi use activity partitions to separate between
normal and abnormal behaviour, not to separate distributed
collaboration roles that could be physically distributed, and
hence subject to unreliable communication. As these works
focus on requirements, they cover an earlier stage of the de-
velopment process than ours; what must happen, not how.

Both Bucchiarone et al. [8] and Mustafiz et al. [25]
structure their specifications similar to ideal fault-tolerant
components [3], meaning that all behaviour at the inter-
face of a component is specified for both normal and ex-
ceptional cases. Our building blocks also completely specify
their interface behaviour, but we do not syntactically sep-
arate the exceptional from the normal behaviour. This is
because there is (currently) no semantic difference between
normal and exceptional behaviour; everything is alternative
behaviour that is enabled under certain conditions.

There is some work on automating the process of adding
fault tolerance to fault-intolerant systems. In [23], for ex-
ample, Kulkarni and Arora automatically transform a fault-
intolerant program into a fault-tolerant one. However, if
all variables cannot be read and written in a single atomic
step, which is the case for our asynchronously communicat-
ing components, their algorithms have exponential complex-
ity, limiting their practicality.

To sum up, our work looks for a middle ground between
the approaches that require developers to design for func-
tionality and fault tolerance at once and the approaches
that would add the fault-tolerance aspect automatically at
the end. In our experience, fault-tolerance mechanisms can
be encapsulated and reused in another application, but they
still need a human developer to make the decisions on how
to integrate them with that particular application. Com-
bining this with tools for analysis that keep developers from
introducing design faults in the integration process, as well
as tools for code generation, makes for a practical approach
that stands apart from the alternatives that we are aware
of.

6. DISCUSSION
We have described an incremental, corrective approach

that takes a potentially unreliable specification and incre-
mentally introduces fault-tolerance mechanisms. For inst-
ance, during the development of the access control system,
we developed reliable versions of Authenticate and Autho-
rize. From their externals, they differ from their idealized
counterparts just by the pin failed. Of course, once the re-
liable versions of these blocks exist, domain experts can di-
rectly refer to the reliable blocks in the first place. This
reduces the effort in the second development phase, since
fewer blocks have to be made reliable.

Building blocks can be analysed separately for their suit-
ability in systems with realistic transmission semantics, since
they are encapsulated by ESMs. Once fault-tolerance mech-
anisms are added, the external behaviour has to be extended
in some cases, such as the additional pin failed for the au-
thenticate block in Fig. 11. This additional pin is necessary
since the transmission failure cannot be (guaranteed to be)
handled within the authenticate block, but has to be prop-
agated to the surrounding application, which must decide
what should be done. This can trigger a kind of domino ef-

fect, where in the worst case the entire system specification
has to be extended, starting at the innermost building blocks
until the highest level of composition is reached. To prevent
this effect, one could follow a specification style in which
building blocks are equipped with failure pins by default, as
a default hook for any exceptions related to communication
errors.

The soundness of our approach can be demonstrated by
the behaviour of the executable state machines that it pro-
duces. They expose the same behaviour as state machines
that would have been designed manually. For a compari-
son, we consider the state machines for the central station’s
component:

• The state machine for the central station of the unre-
liable system as specified in Sect. 2, for instance, has 1
initial state, 6 control states, 6 decisions and 14 tran-
sitions as shown in Fig. 15.

• The state machine for the central station of the reliable
system as specified in Sect. 4, in comparison, consists
of 1 initial state, 5 control states, 6 decisions and 40
transitions as can be seen in Fig. 16.
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Figure 15: Idealized executable state machine for
central station component

These numbers demonstrate how the additional mecha-
nisms for fault tolerance considerably increase the complex-
ity of the resulting logic. We must note that the number
of transitions is also due to the automation within our ap-
proach. If we would have designed these state machines by
hand, some transitions could be saved by using composite
states or transitions that are declared for a group of states.
However, this does not change the intrinsic complexity of the
problem: Due to the fault-tolerance mechanisms, we must
also keep track of 5 timers, and the number of signals to re-
ceive by the central station has grown from 3 in the idealized
central station to 7 for the reliable one.

The comparison of the activity models and the result-
ing state machines reveals another benefit of our method:
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Figure 16: Reliable executable state machine for central station component

On the state machine level, we are not able to reuse fault-
tolerance mechanisms in the way we are on the level of ac-
tivity diagrams. In state machines, elements belonging to
one interaction partner are mixed together with elements
responsible for other things. Furthermore, the collabora-
tive nature of our building blocks allows developers to study
fault-tolerance properties from a holistic viewpoint, where
the behaviour of all participants is contained in a single di-
agram. The activity for Authenticate, for instance, spec-
ifies both participants in the collaboration. This means
that also fault-tolerance mechanisms can be provided as self-
contained building blocks.

Another way to separate fault-tolerance mechanisms from
application logic is to move the first into a middleware layer
providing robust communication primitives to the applica-
tion layer. However, no matter how sophisticated this mid-
dleware layer is, failure-free communication cannot be guar-
anteed (since somebody can still unplug the ethernet cable),
and at some point the application has to be involved, as de-
scribed by the end-to-end arguments of Saltzer et al. [28].
Moreover, putting advanced mechanisms into the middle-
ware layer makes it a critical asset that demands develop-
ment and maintenance resources, especially once it should be
provided for a wide range of software platforms and devices.
We therefore explicitly propose in this paper a method of
including these mechanisms into a model that does not re-
quire perfect channels from an implementation. This makes
an adaptation to different platforms easier, since they only
need to provide simple communication primitives. For this
reason, we can quickly create code generators for different
execution platforms, as the ones named in the introduction.
This strong focus on models, however, does not rule out the
possibility to have a middleware layer that offers some form

of fault tolerance; while a noAck within Notify R is trig-
gered in our case by a timeout in the model, it could also
be triggered by an exception of a middleware layer. The
actual integration with the application logic (namely by pin
noAck) would be equivalent. Figure 17 shows how we would
model an Authenticate R 2 like this. This illustrates the
flexibility we have in implementing fault-tolerance mecha-
nisms; we can use mechanisms from both middleware and
application-layer libraries as long as the interface behaviour
of the mechanisms are described in the model so that the
integration with the application logic can be analysed. Mid-
dleware will often have a performance advantage, whereas
the libraries can provide better portability.

pid

ok

Authenticate R 2

nok

validate

client server

failed
exception

ok

else

Figure 17: An alternative reliable Authenticate
building block using middleware exceptions

To estimate productivity gains from our modelling method
based on building blocks, we compared it in [5, 18] to man-
ual programming. The numbers indicate that development
time when building blocks are provided is only a fraction of



that needed to manually program a system. These gains are
of course only real when building blocks are actually reused
among several systems. This, however, is very likely when
we consider the high reuse proportions of building blocks
observed within our case studies summarized in [20].

7. CONCLUDING REMARKS
For the example, we developed the simple Notify R col-

laboration that uses a timer to protect the access control
system against deadlocks. In the absence of a reliable end-
to-end transport protocol at lower layers, one may want to
handle message resending or reordering within the models
as well. This requires a more advanced version of Notify R,
similar to the Alternating Bit Protocol [4], but leaves the
application models utilizing it unchanged.

The error handling presented for the example is rather
simple, as a failure is simply reported back as any other nega-
tive result. For more complex error handling, one could find
that the additional behaviour specified amounts to much
more. Hence, we would look into separating the specifica-
tion of this error handling behaviour from the functional
one, so that the functionality of the application (in an ideal
world) can still be easily understood. An exception han-
dling mechanisms utilizing UML exceptions [26] may facil-
itate this. Aspect-oriented modelling is another possibility.
We may also modify the syntax of the error handling be-
haviour to improve the readability of the diagrams.

We currently ensure a finite state space of our specifica-
tions by limiting the number of messages in a channel. This
way, we can use model checking to verify some properties
of our specifications. Abdulla and Jonsson [1] prove that
even with unbounded channels, some verification problems
are decidable. In [2], they prove that model checking live-
ness properties [27] is not decidable. More recent work in [7]
states that using probabilistic system models, this limitation
can be overcome. If modelling unbounded channels should
be desirable in the future, we will look into incorporating
these techniques into our tools.

In the current approach, the error handling mechanisms
are introduced manually, motivated by deadlocks identified
in analysis A2. For example, in the Access Control Sys-
tem R shown in Fig. 14, we manually insert an Inquiry 2
R block to protect the communication between local station
and central station from message loss. By utilizing our ex-
isting analysis tool, we see the possibility for automatically
suggesting inserting these blocks where suitable, based on
patterns identified in the state space obtained during model
checking.

Further, we want to expand the scope of our method to
also deal with unreliable processes that may crash and pro-
vide building blocks for detecting this, as well as for main-
taining a consistent shared state. Also, in [14] we developed
an analogous approach in which unsecured system specifica-
tions are extended with security mechanisms in a separate
development phase. In an ideal setting, this security en-
hancement of the system would just follow our development
phase that introduces fault tolerance.

In the introduction, we started our argumentation by the
observation that fault tolerance mechanisms can draw the
attention away from the actual application logic. In the state
machines as in Fig. 16, this is clearly the case: The original
logic of an access control system is not immediately obvious
from it. With our method, however, this state machine rep-

resentation is generated automatically, and does not have
to be understood by humans. Instead, systems are specified
in the form shown in Fig. 14, where separate functions are
represented by separate blocks, which can be studied in iso-
lation, like the one in Fig. 11. So far, our approach has been
tested on several academic examples. For its suitability for
real-sized systems, we rely on the scalability of the under-
lying development method SPACE. Consequently, we have
started a larger evaluation based on an industrial system,
within the project ARCTIS V, supported by the Research
Council of Norway.
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