
In Proceedings of the Workshop on Semantics of Objects as Processes (SOAP'99), NS-99-2,pages 7{22, BRICS, 1999Composing object-oriented speci�cations andveri�cations with cTLAG�unter Graw, Peter Herrmann, Heiko KrummDept. of Computer Science, Dortmund University, D-44221 Dortmund, GermanyInternet: fgrawjherrmannjkrummg@ls4.cs.uni-dortmund.deAbstractIn order to support formally correctness preserving re�nement steps of object-oriented system designs, we refer at one hand to the practically well-accepted Uni�edModelling Language (UML) and at the other hand to L. Lamport's Temporal Logicof Actions (TLA) which supports concise and precise notions of properties of dy-namic behaviours and corresponding proof techniques. We apply cTLA which is anextension of TLA and supports the modular de�nition of process types. Moreover,in cTLA process composition has the character of superposition which facilitates themodular transformation of UML diagrams to corresponding formal cTLA processsystem de�nitions and their structured veri�cation. We exemplify transformationand formal veri�cation. Moreover we outline the application of this method forthe establishment of domain-speci�c speci�cation frameworks which can directlysupport the UML-based correct design of OO-systems.1 IntroductionMeanwhile, the practical design of object-oriented application systems is mostly basedon the Uni�ed Modelling Language UML [21]. Systems are modeled and described by aseries of UML diagrams where each diagram corresponds to a partial view of a systemand concentrates on certain property types and aspects. So, class diagrams describethe static class structure. Use case diagrams are devoted to speci�c utilizations and theobjects instances which are responsible for their realization. Collaboration diagrams focuson the partners and interactions of speci�c cooperation relations. Statechart diagramsdescribe the behaviour of object instances. While several approaches exist which assignformal semantics to the di�erent diagram types (e.g., [16]), usually UML-based designsare non-formal. Since the diagrams support intuitive interpretations, the designers easilyunderstand their pragmatical meanings without reference to formal models. Therefore,often formal designs are not desirable, especially, since the development and analysisof formal models would introduce considerable additional costs. Furthermore, for manyinteresting formal design checks separate formal models of single diagrams would notsu�ce. Instead, very complex models of diagram combinations would be necessary whichmodel a set of diagrams in context with each other in order to cover interrelations.The design of critical systems, however, can essentially pro�t from formal veri�cations.We expect bene�ts at least from formal checks of those functions, aspects, and properties1

which are as well crucial as their provision depends on complex and not easy-to-understandmechanisms. In particular, aspects of the design of dynamic object system con�gurationat runtime, of concurrent execution threads, of combined behaviour of object instances,and of object interactions are inherently complex and di�cult to master without formalsupport. In order to support formal modelling and analysis of partial aspects of UML-based object-oriented system designs, especially with respect to questions of concurrency,object behaviour, and interactions, we developed transformations from UML diagrams toformal cTLA speci�cations [9] and underlying state transition system models.cTLA is based on L. Lamports Temporal Logic of Actions (TLA) [17] and refers to theconcepts of state transition systems, re�nement mappings [1], and the separate de�nitionof both safety and liveness properties. Unlike TLA, the cTLA composition principle isoriented at CCS [19] and Lotos [14] and applies the principle of superposition like DisCo[6]. In comparison with [2], the cTLA processes do not interact via shared variables butperform joint actions. This stateless way of interaction has di�erent bene�ts. Especiallyconstraint-oriented processes can be represented (cf. [23]) which are well suited for thediagrams of the UML. Furthermore, cTLA supports decompositional proofs. A systemis the logical conjunction of its processes and the style conventions assure the absence ofcontradictions in the system formula. Thus, process properties are directly inherited tothe system. The compositionality of cTLA supports the transformation of UML-baseddescriptions since each UML diagram of a system description can be modelled by a singlecTLA process which contributes to the system as a whole in a well-de�ned way. For theanalysis of properties of interrelations relatively small subsystems can be used comprisingonly those processes which inuence the properties of special interest.This paper shortly outlines our approach as a whole and concentrates on the formalveri�cation of re�nement steps where a step is represented by two sets of UML diagrams.The �rst set describes the starting point of the re�nement which we call the abstractmodel. The second set speci�es the result of the re�nement by means of the so-calledre�ned model. Both models can be transformed to cTLA. Thus, there are two corre-sponding systems of cTLA processes, the �rst describing a more abstract state transitionsystem, the second describing a re�ned state transition system. The formal veri�cationshall prove that the re�ned system has in fact all those safety and liveness propertieswhich are required by the speci�cation of the abstract system. Since TLA's formal re�ne-ment relation directly corresponds to this practically relevant notion of correct re�nement,veri�cations can be performed on the basis of TLA where a re�nement step is correct,exactly if the implication `Re�ned System implies Abstract System' can proved to be avalid TLA-formula cf. [17].Of course, the transformation of UML diagrams to cTLA processes and the TLA-based veri�cation introduces additional e�orts. Therefore methods are of high interestwhich support correctness relations directly applying to UML speci�cations of abstractand re�ned systems. These objectives are similar to those of the pUML group whosemembers investigate diagrammatical transformation rules where a rule directly applies toan abstract diagram and transforms it to the re�ned diagram of a correct re�nement [20].Thus, the approach of pUML transformation rules is very ambitious and shall combine theadvantages of correctness-preserving source-code transformations [4] with those of graph-ical speci�cation and modelling support. With respect to the preservation of behavioural2

properties of concurrent and distributed systems, however, we made the experience thatgeneral correctness-preserving transformation rules are very di�cult to handle in thecourse of practical design processes. Moreover, the rules are accompanied by so-calledapplication conditions. The correctness of a transformation is only assured if the appli-cation condition holds. Since many application conditions are relatively complex, e�ortsfor their proofs are necessary which are comparable to that of a posterio veri�cations offreely designed re�nements.Under these considerations, our present work investigates another direction of di-rect re�nement support. It follows up the framework approach of software development(cf. [15]) and translates it into the �eld of speci�cation development. Consequently, westudy special domains of application (e.g., protocol design [11], distributed control ofchemical plants). Corresponding collections of speci�cation modules and patterns forabstract and re�ned systems are under development. Moreover, the relations betweenthose abstract and re�ned modules and patterns are investigated which correspond tocorrect re�nement steps. The results are documented by a collection of theorems. Thetheorems are implications between re�ned system patterns and abstract patterns. Inprinciple, their function is comparable to that of general correctness preserving transfor-mation rules. Nevertheless, the theorems connect domain-speci�c speci�cation patternsand therefore can provide direct application-speci�c design support.In the remainder, we outline the formal speci�cation language cTLA. Thereafter weaddress basic notions of dynamic behaviours of object systems and their representationsin UML models. We describe the essentials of the transformation from UML diagramsto cTLA processes. From that, the TLA-based veri�cation of re�nements is discussed.Transformation and veri�cation are exempli�ed by means of a small application scenario.Finally, we sketch our present work which is constructing a domain-speci�c speci�cationframework for distributed control of chemical plants.2 Compositional speci�cation style cTLAcTLA [10, 18] is based on Leslie Lamports Temporal Logic of Actions (TLA) [17] andsupports the de�nition of parametrized process and system types. A speci�cation ofa simple process or a (sub)system is formed by instantiating a cTLA process type resp.system type. As in the formal description language Lotos [14], systems are composed fromprocesses which interact by means of joint actions. Due to this method of composition,processes can model not only implementation parts but also logical system constraints(cf. [23]).As an example of a cTLA process type we outline Object in Fig. 1 describing thebehaviour of an UML object (cf. Sec. 4). In the process type header the name Objectand the process parameters cf, id, and class are declared. The state variables (e.g., state,lifecycle, qu) model the process state. The set of initial states is descibed by the predicateINIT. State transitions are speci�ed by means of actions. An action (e.g., callAction) isa predicate about action parameters (e.g., receiver), state variables describing the statebefore executing the action (e.g., lifecycle), and so-called primed state variables modellingthe state after executing the action (e.g., li�cycle'). Besides of state transitions speci�ed3

PROCESS Object (cf : ClassFrame ; id : OId ; class : ClassName)VARIABLESstate : cf.State ; ! object data, links, and controllifecycle : (unborn, alive, dead); ! life cycle statequ : queue of Message ; ! messages receivedawaitReturnOf : MessageId ; ! if blocked: call message id: : :; ! message id management, etc.INIT b= lifecycle = unborn ^ : : : ; ! initially, object does not existACTIONScallAction (receiver : OId ; objState, objNextState : cf.State ;message : Message ; mode : SyncMode) b= ! send Call-messagelifecycle=alive ^ lifecycle 0=lifecycle ^cf.nextState(state,state,message,receiver,mode) ^awaitReturnOf 0=IF mode=blocking THEN message.id ELSE nullId ^qu 0=qu ^ : : : ;receiveAction (objState, objNextState : cf.State ;message : Message) b= : : : ; ! receive a message! if message is a return message awaited, it is inserted at the front! of qu otherwise appended.returnAction (receiver : OId ; objState, objNextState : cf.State ;message : Message) b= : : : ; ! send Return-messagecreateAction (receiver : OId ; objState, objNextState : cf.State ;message : Message) b= : : : ; ! send Create-message: : :;END Figure 1: Process type Object.by actions, a process may perform stuttering steps where it does not change its state whilethe process environment performs a state transition.The cTLA process type Object describes safety properties. Liveness constraints (cf. [3])are described by additional weak or strong fairness assumptions forcing the execution of anaction if it would be enabled for an in�nite period of time otherwise. Weak fair actions (de-noted by WF : callAction) are only required to execute if the action would otherwise beincessantly enabled while execution of strong fair actions (denoted by SF : callAction)is guaranteed even if the action is sometimes disabled. Unlike the de�nition of [3] andTLA, cTLA provides for conditional fairness assumptions in order to keep the composi-tionality of systems. A fair action has to execute only if otherwise in�nitely many statesexist where the action is enabled as well as its execution is tolerated by the environment.Systems and subsystems are described as compositions of concurrent processes whichencapsulate their state variables and change their local states according to the processactions. The vector of the process state variables represent the state of the entire system.System state transitions are described by system actions which are logical conjuncts ofprocess actions and process stuttering steps. Since each process contributes to each systemaction by exactly one action or a stuttering step, concurrency is modeled by interleavingand the coupling of processes by joint actions. The action parameters are used to describedata transfer between processes. 4

PROCESS GlobalSystem (cfs : [class ! ClassFrame]; OId : data type;classOf : [OId ! class])PROCESSES ! the infinite array of object processesARRAY obs [OId] of Object(cfs[classOf(index)],index,classOf(index));ACTIONS ! system actions defining the coupling of the objectsoperationCall (caller, callee: OId ;callerState, callerNextState,calleeState, calleeNextState : State ;message : Message ; mode : SyncMode) b=! caller calls operation of calleeobs[caller].callAction(callee,callerState,callerNextState,message,mode) ^obs[callee].receiveAction(calleeState,calleeNextState,message) ^8 i 2 OId n fcaller,calleeg obs[i].Stutter ;operationReturn (: : :) b= : : :; ! callee operation returns to callerobjectCreate (: : :) b= : : :; ! object sends create message: : :;END Figure 2: Process type GlobalSystem.As an example Fig. 2 shows the system type GlobalSystem modelling a system of UMLobjects. The processes composing the system are listed in the section PROCESSES. For in-stance, GlobalSystem consists of OId many instances obs[i] of the process type Object (cf.Fig. 1). The system actions are listed in the section ACTIONS. In the example, the actionoperationCallmodels that the object obs[caller] calls an operation of the object obs[callee].Therefore obs[caller] participates to operationCall by the process action callAction andobs[callee] by the process action receiveAction. The other processes participate to oper-ationCall by stuttering steps. Data between the caller and the callee are described bythe system action parameter message. During the execution of operationCall, the processaction parameters message in obs[caller].callAction and obs[callee].receiveAction have tocarry identical values.cTLA facilitates the combination of di�erent property types like safety and liveness.Thus, in the resource oriented speci�cation style, all relevant aspects of a component canbe described by a single process type. In the constraint-oriented speci�cation style onecan specify di�erent aspects of a component by separate constraint processes. In orderto support the modularity of veri�cations, however, liveness properties may be combinedwith models of the safety behaviour of the component's environment (cf. [11]).3 Dynamic behaviourSince we concentrate on the issues of concurrency and concurrent object interaction wegive a short outline of the according UML concepts. We view an object system as a set ofobjects and a set of threads of activity. An object system evolves during runtime from aninitial object con�guration performing steps of execution changing the system state. Therelevant state of a system depends on the set of currently existing objects and their control5

O2 : Business Account O3 : Proxy O1 : BusinessTransaction

AO2 : Business Account AO1 : BusinessTransaction

2. withdraw(a)

1. withdraw(a)

1. withdraw(a)

Figure 3: Collaboration diagram of the example systemand data (attribute values) states (cf. Fig. 1). The state of the object system as a wholeidenti�es the set of currently existing objects and moreover contains the object statesas components (see [9] for the according cTLA speci�cation of the global system). TheUML uses statechart, interaction (sequence and collaboration), and use case diagrams forthe description of the dynamic behaviour. In the UML, an execution step with an objectcorresponds to an action which is modelled in a statechart. Actions may e�ect the localand foreign objects as well. There are several kinds of actions:� A call action results in the invocation of an operation.� Send actions result in the asynchronous sending of a signal.� Create actions cause the creation of an instance of a class. They are not permittedto have a target object.� By return actions a value or a set of values is returned to the caller.� A terminate action results in the self-destruction of an object. It should not haveparameters.� Local invocation actions cause the local invocation of an operation without gener-ating a call or signal event.� Actions that are not previously de�ned are called uninterpreted actions.Like the UML-metamodel [21] we assume run-to-completion semantics (RTC) for statemachines which follows the idea that requests are processed in sequence one after theother. This assumption simpli�es the synchronization of an object, since an incomingrequest is only processed, if the object has reached a stable state con�guration. Commu-nication between objects is speci�ed by means of signal or operation requests. Objectscommunicate by means of operation (service provided for another object) requests if thecalling object demands a service by the called object. A request is forwarded by a mes-sage instance which can carry a set of arguments. Operations can be called synchronously(sender is blocked, cross in message symbol) or asynchronously, which is modelled whichis modelled in collaboration diagrams. The number which precedes the name of a messagerepresents its order in an execution sequence.6

4 TransformationSince cTLA facilitates constraint-oriented speci�cations, the di�erent diagrams of UMLspeci�cations can be modeled formally by a couple of individual cTLA-processes. Be-low, we will outline the transformation of UML collaboration diagrams and statechartsby means of a simple example speci�cation. The idea of the example is that money iswithdrawn from a business account in a business transaction. In the top of Fig. 3 a col-laboration is shown which represents the withdrawal of money from the business account.A re�ned design of the example is presented in the bottom of Fig. 3. The re�nementis manifested in the introduction of a new proxy object for the business account whichis located in another address space. The statecharts of the according object classes aregiven in Fig. 4.Collaboration diagrams are transformed to the cTLA process type CollaborationDia-gramUnit shown in Fig. 5. We introduce a new process instance for each two objects whichare relevant in the context of the according use case. The process parameters O1 and O2in CollaborationDiagramUnit are used to address the corresponding process types. More-over, a constraint process instance should manage the set of active use cases. This causesthe introduction of a corresponding parameter activeUseCases to the actions. The statevariable actMessage keeps track of call messages and callerLocked of blocking caused bysynchronous calls (callerLocked). Since the process type CollaborationDiagramUnit shallconstrain only those actions, which are related to the objects O1, O2 and to the activeuse case myUseCase, each action is furnished with a term applying a stuttering step ofthe constraint process to those action occurrences which are irrelevant for the constraint(synchronous mode, no other message until termination.), except for disjunctive termsapplying real constraints (under condition caller = O1 ^ callee = O2 ^ myUseCase 2activeUseCases).The transformation of UML statechart diagrams to cTLA processes is performed intwo steps. At �rst, a statechart which may contain nested states and transitions labelledby action sequences is transformed to an ordinary state transition system following theprinciples explained in [13, 22]. For instance, the statechart at the right side of Fig. 4describing the BusinessTransaction O1 is transformed to a simple state transition system
withdraw

finished/return

WithdrawCalled

CallBA(a)

done

withdraw/CallBA(a)

receiveReturn/return

waiting for reply

Figure 4: Statechart diagrams of the example system7

PROCESS CollaborationDiagramUnit (O1, O2 : OId; myusecase : UseCase)BODYVARIABLESactMessage : SUBSET(Message.Id); ! List of active messagescallerLocked : f"yes","no"g; ! Is caller locked ?INIT actMessage = ; ^ callerLocked = "no";ACTIONSoperationCall (caller, callee : OId; message : Message;mode : SyncMode; activeUseCases : SUBSET(UseCase)) b=! If O1 is caller, O2 is callee, and myusecase is an active use case, only! messages of type "Withdraw" may be send; message becomes active and! caller is locked(caller = O1 ^ callee = O2 ^ myusecase 2 activeUseCases ^callerLocked = "no" ^((message.operationname = "Withdraw" ^ mode = "synchronized" ^actMessage 0 = actMessage [fmessage.idg ^callerLocked 0 = "yes"))) _! Otherwise process performs a stuttering step((caller 6= O1 _ callee 6= O2 _ myusecase 6= activeUseCases) ^actMessage 0 = actMessage ^ callerLocked 0 = callerLocked);operationReturn (caller, callee : OId; message : Message;activeUseCases : SUBSET(UseCase)) b= : : :;! If O2 is caller, O1 is callee, and myusecase is an active use case, only! messages of type "Withdraw" may be returned; furthermore a message must! be active; message becomes passive and caller is unlockedFigure 5: Process type CollaborationDiagramUnit.listed in Fig. 6.In the second step the transition system is transformed to a cTLA process type. SincecTLA process types model state transitions in a direct way, this step is very simple.The process type BusinessTransaction (Fig. 7) contains the state variable state modellingthe three states of the state transition system. The condition INIT speci�es that "i" isthe initial state and the actions callAction, receiveAction, and internalAction model thetransitions. The process parameter id describes the object identi�er while myusecase isused to manage the active use cases in accordance with a further constraint process.Relations between UML diagrams are modeled in cTLA by means of process action
receiveAction
("withdraw")

donei tcallAction

("withdraw")

internalAction

Figure 6: State transition system of the BusinessTransaction O1.8

PROCESS BusinessTransaction (id : OId; myusecase : UseCase)BODYVARIABLESstate : f"i","wfr","t"g; ! actual process stateINIT state = "i";ACTIONScallAction (caller : OId; message : Message;activeUseCases : SUBSET(UseCase)) b=(state = "i" ^ myusecase 2 activeUseCases ^ id = caller ^message.operationname = "Withdraw" ^ state 0 = "wfr") _((state 6= "i" _ myusecase =2 activeUseCases _id 6= caller _ message.operationname 6= "Withdraw") ^state 0 = state);receiveAction (callee : Oid; message : Message;activeUseCases : SUBSET(UseCase)) b=(state = "wfr" ^ myusecase 2 activeUseCases ^ id = callee ^message.operationname = "Withdraw" ^ state 0 = "wfr") _((state 6= "wfr" _ myusecase =2 activeUseCases _id 6= callee _ message.operationname 6= "Withdraw") ^state 0 = state);internalAction (this : OId; activeUseCases : SUBSET(UseCase)) b= : : :;END Figure 7: Process Type BusinessTransaction.conjunctions. Assume that O1 : BusinessTransaction is the cTLA process specifyingthe example object O1 and CollO1O3 : CollaborationDiagramUnit the cTLA processdescribing the operation call withdraw in which O1 is the caller and O3 the callee. Sincethe operation call is triggered by O1 performing a callAction, the process actions callActionof cTLA process O1 and operationCall of CollO1O3 are conjoined. Likewise, the processactions returnAction in O1 and operationReturn in CollO1O3 are coupled. The actioninternalAction of O1 does not correspond to any collaboration diagram transitions andtherefore is linked with a stuttering step of CollO1O3.5 An example proofBelow we will outline the proof that the abstract system consisting of the business trans-action object AO1 and the business account object AO2 is realized by a more detailedsystem consisting of O1, O2, and an additional proxy O3. The UML collaboration di-agrams and statecharts are transformed into cTLA speci�cations according to Sec. 4.The proof utilizes the compositionality of cTLA. It can be decomposed into three sim-pler proof steps. At �rst, we have to prove that the subsystem SO1=3 consisting of theprocesses representing the statecharts of O1 and O3 (Fig. 4) composed with the processCollO1O3 modelling the collaboration diagram unit connecting O1 with O3 (Fig. 3) ful-�lls the process representing the abstract business transaction object AO1. Secondly, weprove that the process representing O2 implies that implementing AO2. Finally, we haveto verify that the process describing the collaboration between O3 and O2 realizes that9

representing the collaboration between AO1 and AO2.Here, we will sketch only the �rst proof corresponding to the veri�cation of the impli-cation SO1=3) AO1 which is performed as a regular TLA re�nement proof (cf. [17]). Inorder to compare the two state spaces of SO1=3 and AO1, we de�ne a mapping betweenthem, the so-called re�nement mapping:RM b=O3:state = "i"! AO1:state = "i"O1:state = "t"! AO1:state = "t"otherwise! AO1:state = "withdrawCalled"Instead of AO1 we use the equivalent process AO1 for the proof where the local variableAO1:state is replaced by variables of O1 and O3 according to RM .Firstly, we have to verify that all initial states of SO1=3 are also initial states of AO1.Since in the initial states of both processes the equation O3:state = "i" holds, this proofis trivial. Secondly, we have to prove that each action of SO1=3 implies either an actionor a stuttering step in AO1. This proof, however, cannot be performed directly. Before,we have to prove that the following formula I is an invariant of the subsystem SO1=3:I b=O1:state = "i") O3:state = "i" ^O1:state = "t") O3:state = "t"^O3:state = "waitingForReply") O1:state = "withdrawCalled"^"withdraw" 2 O3:qu) (O1:state = "withdrawCalled" ^O3:state = "i")^"withdrawReturn" 2 O1:qu) (O1:state = "withdrawCalled" ^O3:state = "t")The invariant proof is performed by checking that I holds initially and is preserved by allactions of SO1=3.Using the proven fact, that I holds before and after execution of any action in SO1=3,we can now verify that the actions of SO1=3 correspond to actions or stuttering steps ofAO1. As an example we outline that the action T changing the state state of O1 fromwithdrawCalled to t implies the action T of AO1 changing the state O1:state 6= "t" ^O3:state 6= "i" (AO1:state = "withdrawCalled") to O1:state = "t". T is a joint actionconjoining the actions receiveAction of O1 and operationReturn of the collaborationbetween O1 and O3. It can only be executed if the message "withdrawReturn" is in themessage queue O1:qu of O1. This implies that due to the last conjunct of I the conditionO1:state = "withdrawCalled" ^ O3:state = "t" holds before executing T . Thus, theenabling condition of T implies the enabling condition of T . After the execution thecondition O1:state = "t" holds as well in SO1=3 as in AO1. Therefore, the e�ect of Timplies the e�ect of T , too, and T implies T as a whole. Likewise, all actions of SO1=3are proven.6 Veri�cation with cTLA patternsIn this section we focus on the UML descriptions of properties of a software producton di�erent levels of abstraction and the correctness of these descriptions. Therefore weintroduce two models on di�erent levels of abstraction which stem from the software lifecycle(requirements engineering, design) of a given product. These are:10

� The abstract software model (ASM) serves as interface between application engi-neering and software development. It models the structuring of the software partsof the system into logical components. It is a result of analysis activities performedduring the requirements engineering of a software product which typically bases onknowledge from previously performed domain engineering.� The concrete software model (CSM) is a re�nement of the ASM. It structures thesoftware into implementation-oriented components. It explicitly refers to distribu-tion and network communication, to fault- tolerant mechanisms and performanceoptimisation as well as to the allocation and management of resources.Both models are described in terms of patterns which have currently a growing impact onsoftware development. On the one hand there are the well- known design patterns (e.g.given in [8]). On the other hand, analysis patterns have to be de�ned for each individualdomain on their own applying techniques for domain engineering. Analysis patterns havebeen applied by Fowler [7] who has found and applied them in several industrial projects.Analysis patterns are described by the terms and concepts of an application domain.Taking these concepts, it is obvious that analysis patterns are applied in the ASM whiledesign patterns are used in the CSM. Furthermore, some practitioners claim that thereexist relationships between collections of patterns which might be expressed in a so calledsystem of patterns [5].Now we concentrate on the veri�cation of a CSM-level speci�cation against the ab-stract requirements expressed by an ASM-level speci�cation. We have to prove that theCSM speci�cation implements the relevant properties of the ASM speci�cation. For thatpurpose comprehensive and compatible formal models of the dynamic semantics of both,the ASM and the CSM model, are needed. Moreover, one needs the formal inferencesystem TLA to perform these proofs. While cTLA is well-suited to the formal mod-elling of highly structured systems, there is a very high complexity when ASM and CSMspeci�cations of practical systems are transformed to cTLA. As previously stated, thestatecharts are translated to process behaviour descriptions. The interaction diagramsand the activity diagrams (used for the modelling of synchronisation aspects) are trans-lated to con�guration and process coupling descriptions. To model the dynamic creationof objects, in�nite state space structures (i.e., for each object type an in�nite array ofobject instances) are used which are accompanied with an explicit state representationof the current existence of an object. In general, the operations of objects can be exe-cuted concurrently and there is a wide spectrum of object interaction mechanisms andsynchronisation methods. Since state transition systems model behaviours by series ofatomic transitions, the wide spectrum of object interactions induces a very �ne granu-larity of atomicity. Thus, models with a very complex state space and with a very �netransition structure are needed in general. We think that these models are too di�cult-to-understood to form a convenient basis of manageable formal veri�cations in practice. Onthe other hand, we are aware that the complexity of the models does not result from cTLAbut is a direct consequence of the modelling power of UML-descriptions of object-orientedsystems. Therefore, the approach has to be enhanced by additional concepts.In order to render possible manageable formal proofs of practical systems, we utilisethe proposed application of conceptual patterns in the ASM and of software design pat-11

terns in the CSM for the veri�cation, too. The bene�ts of patterns are twofold. On theone hand, patterns restrict system structures, the interactions, the concurrency, and thesynchronisation of objects. The formal modelling recognises the restrictions and providesfor less complex models which are more easy-to-understand since they directly correspondto application-oriented interaction schemes. On the other hand, there are logical relation-ships between conceptual patterns and software design patterns since a design patternserves for the purpose of implementation of a conceptual pattern. This implementationrelation between patterns of a system of patterns are formally modelled by the re�nementrelation of TLA, i.e., there exist valid implications from design patterns to conceptual pat-terns. In connection with the modularity and the genericity features of cTLA, theoremsare stated which correspond directly to the logical relationships between patterns. E.g.in the example proof listed in section 5 there is a theorem which states the re�nementrelationship from a proxy pattern and a re�ned controller to the more abstract analysispattern controller. These theorems can easily be instantiated to represent the particularre�nement relations of a speci�c practical project.In the domain of communication protocols comprehensive libraries of patterns andtheorems are already established [11] and the experience showed that even complex prac-tical protocols can be veri�ed by means of theorems only, i.e., in order to verify a protocolit was not necessary to perform basic TLA deductions since all necessary implications ofthe proofs were instantiated from theorems [12].7 ConclusionWe reported on present work which aims to the establishment of domain-speci�c speci-�cation frameworks for the object-oriented and pattern-based design of concurrent anddistributed software systems. In particular, the frameworks will supply theorems whichdescribe patterns of correct re�nements and facilitate formal veri�cation enormously sincetheorems can replace nearly all complex original proofs of veri�cations. Our report con-centrated on the formal background of theorems which is given by transformations ofUML diagrams to modular cTLA speci�cations enabling the application of TLA-basedproof methods. According to this procedure the theorems of the speci�cation frameworksunder development are proven. Besides of our former work supporting the cTLA-basedformal speci�cation and veri�cation of communication protocols, there is additional workthe speci�cation framework approach is related to. So, meanwhile extensions of cTLA ex-ist which support the handling of real-time and continuous properties. Under applicationof these extensions already several hazard analysis and safety proofs for chemical plantswere accomplished.References[1] M. Abadi and L. Lamport. The Existence of Re�nement Mappings. Theoretical ComputerScience, 82(2):253{284, May 1991.[2] M. Abadi and L. Lamport. Composing speci�cations. ACM Transactions on ProgrammingLanguages and Systems, 15(1):73{132, Jan. 1993.12

[3] B. Alpern and F. B. Schneider. De�ning liveness. Information Processing Letters, 21:181{185, 1985.[4] The CIP Language Group: The Munich Project CIP Volume I: The Wide Spectrum Lan-guage CIP-L. Lecture Notes in Computer Science 183 : Springer 1985[5] F. Buschmann, R. Meunier, H. Rohnert Pattern Oriented Software Architecture : A Systemof Patterns. Addison-Wesley, 1996.[6] R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with a centralizedcontrol. Distributed Computing, (3):73-78, 1989.[7] M. Fowler. Analysis Patterns : Reusable Object Models. Addison-Wesley, 1996.[8] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of ReusableObject Oriented Software. Addison-Wesley, 1994.[9] G. Graw, P. Herrmann, and H. Krumm. Constraint-Oriented Formal Modelling of OO-Systems. To appear in: Second IFIP WG 6.1 International Working Conference on Dis-tributed Applications and Interoperable Systems (DAIS 99), Helsinki, June 1999. KluwerAcademic Publisher.[10] P. Herrmann and H. Krumm. Compositional Speci�cation and Veri�cation of High-SpeedTransfer Protocols. In S. T. Vuong and S. T. Chanson, editors, Protocol Speci�cation, Test-ing, and Veri�cation XIV, pages 339{346, Vancouver, B.C., Canada, 1994. IFIP, Chapman& Hall.[11] P. Herrmann and H. Krumm. Re-Usable Veri�cation Elements for High-Speed TransferProtocol Con�gurations. In P. Dembi�nski and M. �Sredniawa, editors, Protocol Speci�cation,Testing, and Veri�cation XV, pages 171{186, Warsaw, Poland, 1995. IFIP, Chapman &Hall.[12] P. Herrmann and H. Krumm. Modular Speci�cation and Veri�cation of XTP. Telecommu-nication Systems 9(2):207-221, 1998.[13] J. Hooman, S. Ramesh, and W.-P. de Roever. A compositional axiomatization of State-charts. Theoretical Computer Science, 101:289{335, 1992.[14] ISO. LOTOS: Language for the temporal ordering speci�cation of observational behaviour,International Standard ISO 8807 edition, 1989.[15] R. Johnson and B. Foote. Designing reusable classes. The Journal of Object-OrientedProgramming, 1(2):22{35, 1988.[16] K.C.Lano and A.S.Evans. Rigorous Development in UML. In ETAPS'99, FASE workshop.LNCS, 1999.[17] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming Lan-guages and Systems, 16(3):872{923, May 1994.[18] A. Mester and H. Krumm. Composition and Re�nement Mapping based Construction ofDistributed Applications. In Proceedings of the Workshop on Tools and Algorithms for theConstruction and Analysis of Systems, Aarhus, Denmark, 1995. BRICS.13

[19] R. Milner. A Calculus for Communicating Systems. Number 92 in Lecture Notes in Com-puter Science. Springer, Berlin, 1980.[20] The pUML group. http://www.cs.york.ac.uk/puml/[21] The UML Group, Rational Software Corporation. Santa Clara, CA-95051, USA. UMLSemantics. Version 1.1, July 1997.[22] A. C. Uselton and S. A. Smolka. A Compositional Semantics for Statecharts using LabeledTransition Systems. In B. Johnsson and J. Parrow, editors, CONCUR'94: ConcurrencyTheory, number 836 in Lecture Notes in Computer Science, pages 2{17. Springer-Verlag,1994.[23] C. A. Vissers, G. Scollo, and M. van Sinderen. Architecture and speci�cation style informal descriptions of distributed systems. In S. Agarwal and K. Sabnani, editors, ProtocolSpeci�cation, Testing and Veri�cation, volume VIII, pages 189{204, Elesevier, 1988. IFIP.

14

