
Formal Hazard Analysis of Hybrid Systems in cTLA�

Peter Herrmann and Heiko Krumm
Universität Dortmund, Fachbereich Informatik, D-44221 Dortmund

fherrmannjkrummg@ls4.cs.uni-dortmund.de

Abstract

Hybrid systems like computer-controlled chemical plants
are typical safety critical distributed systems. In present
practice, the safety of hybrid systems is guaranteed by haz-
ard analysis which is performed according to procedures
(e.g., HazOp) where experts discuss a series of informal
argumentations. Each argumentation considers a specific
required system property. Formal property proofs can in-
crease the reliability. They, however, have often to deal
with very complex hybrid systems. Therefore, methods are
needed which structure and decompose formal verification
tasks into manageable substasks. With respect to this, our
approach achieves a relatively direct translation of informal
argumentations into formal proofs. Since the informal argu-
mentations mostly do not refer to the system as a whole but
do only address specific parts and aspects, the formal proofs
also can deal with partial, less complex system models. In
result, even very complex systems can be verified in well-
manageable subtasks. The direct translation is supported
by the characteristics of the specification technique applied.
The temporal logic based technique cTLA supports the mod-
ular description of hybrid process systems. In particular,
one can model a system as a composition of behavior con-
straints. Properties which are implied by a subsystem of
constraints also are properties of the system as a whole.
Therefore a subsystem can correspond to the parts and as-
pects addressed by an informal argumentation. We outline
cTLA and introduce the formalizationof hazard analysis ar-
gumentations by means of an hybrid example system. Ad-
ditionally, we sketch a framework of specification modules
and theorems which supports the formal hazard analysis of
hybrid systems.

1. Introduction

Today, HazOps (hazard and operability studies) [20] are
an established method in hazard analysis. In a systematic

�This work was funded by the German research foundation DFG.

way, teams of experts examine descriptions of hybrid sys-
tems in order to detect subtle system faults and sources of
danger. Systems are reduced into subsystems which are
examined for faults. Furthermore, the teams detect the
sources of a fault, predict possible consequences, and de-
velop counter-measures. Various approaches to support the
normally time-consuming and expensive HazOps have been
developed. Besides expert systems assisting the examina-
tion of technical plants (cf. [5, 8, 22, 25]), mainly model-
based approaches were investigated. For the plants abstract
models are created, where the continuous flows of the plant
are specified by a discrete set of states. The models are
specified by qualitative equations [3, 27], Petri nets [23],
or temporal logical formulas [21]. Simulation [6, 27], state
space exploration [24], fault trees [7], and symbolic model
checking [21] are used to detect faults in the models of the
technical plants. Our approach is based on formal mod-
elling and temporal logic specifications, too. In particular,
we apply symbolic reasoning which is directly oriented at
informal argumentations.

The informal argumentations of traditional hazard anal-
ysis procedures mostly supply well-understandable proof
strategies. Moreover, very often, they induce an appropriate
decomposition of the system analysis into a series of prop-
erty proofs which only refer to smaller parts of the system.
The reliability of the hazard analysis, however, would be
enhanced by formal proofs, which on the other hand would
require the costly development of complex proofs. There-
fore approaches are of interest, which support the relatively
direct translation of informal argumentations into formal
proofs. They promise to provide for reliable formal proofs
under reduced complexity and costs, since they consider
subsystems only and already existing argumentations guide
their development.

This objective demands for the application of a suitable
formal specification and verification technique. Since the
informal argumentations mainly consider the structure of
a plant, i.e., its structuring into components and the cou-
pling of the components, the formal technique has to sup-
port compositional specifications, which define a system ac-
cordingly by its set of components and their connections

(cf. [2, 14]). The components themselves are described
by modular component specifications. Nevertheless, when
proving interesting system properties, most compositional
specifications have to be considered as a whole. It is not
possible to reduce the scope of the proof to a small sub-
system since the verification technique in general does not
support the deduction of system properties from subsys-
tems or since the special structuring of the system speci-
fication is not adequate. With respect to the first point, in
system proofs many techniques abstract from component
internals. They need, however, at least an abstract specifi-
cation for each component, since in generaleach compo-
nent of a system can influence all relevant system proper-
ties. With respect to the second point, many compositional
specifications reflect the physical implementation structure
of a system. The components of the specification corre-
spond directly to real plant components which indeed have
many different aspects and may influence a system in vari-
ous ways. Thus, an interesting system property may depend
on the proper cooperation of nearly all components. Our ap-
proach therefore applies so-called constraint-oriented speci-
fication structures (cf. [26]). The components of a specifica-
tion do not directly model physical system components as
a whole. Instead, specification components describe con-
straints which refer to single aspects of the behavior of
physical parts. Thus, specifications have a finer structuring
which is oriented at the logical connections in the system.
Moreover, we combine constraint orientation with superpo-
sition (cf. [4]). The composition operation of our specifica-
tion technique cTLA is equivalent to the consistent logical
conjunction of component descriptions. Therefore, all rele-
vant properties of components or subsystems are also prop-
erties of the system as a whole. In combination, one can
restrict the proof of a system property to the consideration
of a very small subsystem, if a suitable constraint-structured
system specification exists.

The name of the specification technique cTLA [11, 12]
stands for compositional TLA. cTLA is an extension of the
Temporal Logic of Actions [19]. As in TLA, systems are
modelled by state transition systems. A specification has the
character of a linear time temporal logic formula which de-
scribes relevant properties of the system. Moreover, cTLA
recognizes the TLA-extensions to realtime systems [1] and
hybrid systems [18]. In difference to TLA, cTLA supports
the explicit notion of processes. Processes act as modular
specification components and can represent implementation
parts as well as logical constraints. As in the ISO/OSI spec-
ification language LOTOS, a set of processes interact in a
rendezvous-like way by performing actions jointly, and data
parameters of the actions can model the communication of
values between processes. Thus, cTLA processes are re-
lated to objects in DisCo [17]. They encapsulate private
state components and interact via joint actions.

A first attempt to specify and verify hybrid systems
based on cTLA was introduced in [10]. In the meanwhile,
we studied a series of other examples and identified reusable
specification and verification elements. In this paper, we de-
scribe the formal hazard analysis of an example system by
using the pre-defined elements. These elements also serve
as a basis for a framework consisting of libraries of specifi-
cation components and theorems which is introduced below.

In the remainder of this paper we outline cTLA first.
Thereafter we introduce the hybrid example system and de-
scribe its compositional specification. We sketch the infor-
mal argumentation of a safety property and outline the cor-
responding formal structured verification. Finally, we in-
troduce the framework for hazard analysis and outline the
application of a framework theorem for the example verifi-
cation.

2. cTLA

The cTLA [11, 12] notation refers to TLA [19] which
describes the safety and liveness properties of state transi-
tion systems by means of canonical formulas. The syntax
of cTLA is oriented at programming languages. Moreover,
cTLA omits the canonical parts of TLA formulas. There-
fore the formula character of cTLA-specifications is not di-
rectly visible. Nevertheless, each specification corresponds
to a TLA-formula. In difference to TLA, cTLA introduces
the notion of processes. A specification is structured into
modular definitions of process types. An instantiation of
a process type forms a process which either may have the
form of a simple process or that of a process composition.
Simple processes directly refer to state transition systems.

Fig. 1 shows the example of the very simple process type
ReactOnAlarm. The header declares the type name and
generic module parameters (e.g.,initialstate). The

React on a sensor alarm by switching an actor
PROCESS ReactOnAlarm

(initialstate : {"ready","alarm"})
controller initially active ?

BODY
VARIABLES

vastate : {"ready","alarm"}; actual alarm state

INIT
�

= vastate = initialstate;
ACTIONS

alarm
�

= vastate 0
= "alarm"; signal alarm

switch
�

= vastate = "alarm" ^

vastate 0
= "ready";

react by switching an actor
END

Figure 1. Process Type ReactOnAlarm

body defines the state transition system which corresponds
to an instantiation of the type. The state space is defined by
the state variablevastate . The initial conditionINIT is
a condition on state variables and defines the set of starting
states. Finally, the body declares actionseach describing a
set of state transitions (e.g.,alarm , switch). An action
can have action parameters. It is a condition on parameters
and state variables where the state variables can also occur
in so-called primed form (e.g.,vastate’). The primed
variables reference the successor state of a transition. The
union of the actions forms the next state relation of the pro-
cess. In the course of time, a process may perform action
steps (i.e., it changes its state in accordance with an action)
or stuttering steps (i.e., it does not change its state while the
environment performs a state transition).

Processes of a form likeReactOnAlarmdescribe safety
properties. Liveness properties are described by additional
fairness assumptions on actions, e.g.,WF: switch states
that the actionswitch has to be performed weak fairly.
Fairness forces the activity of a process. A fair action can-
not be enabled for an infinite period of time without being
executed. Weak fairness forces the execution if the action
would be enabled incessantly otherwise. Strong fairness
forces the execution even if the action is sometimes dis-
abled. Unlike TLA, cTLA provides for conditional fairness
assumptions to ensure the consistency of process composi-
tions. A fairness statement refers to periods of time where
an action is enabled as well as the environment of the pro-
cess is ready to tolerate the action.

According to [1], realtime is represented by means of a
real-valued state variablenow which is incremented lively
by a clock actiontick . Unlike other variables which are
private to exactly one process,now can be read by all pro-
cesses of a system. The clock variable forms the basis for
the definition of realtime and continuous properties. Ad-
ditional constructs describe activity retarding and activity
forcing realtime constraints. Inaccordance to [18], one
can specify minimum waiting times and maximum reaction
times for actions. Comparable to the distinction between
weak and strong fairness, one may refer to volatile and to
persistent enabling periods of an action. Also, the maxi-
mum reaction time construct is conditional. It forces an ac-

Maximum time for a controller to switch an actor in [sec]
PROCESS ReactMaxTime (maxtime : real)

maximum time
BODY

ACTIONS
switch;

V MAX TIME switch : maxtime;
END

Figure 2. Process Type ReactMaxTime

tion only with respect to periods where the action is enabled
and the environment does not block it. For instance, Fig. 2
shows the process typeReactMaxTime. It declares an action
switch with a volatile maximum reaction time modelled
by the generic module parametermaxtime .

Continuous properties of a process are expressed by
means of an action with the special nameCONT. All CONT-
actions of all processes of a system and thetick-action of
the clock are assumed to occur simultaneously. Thus, the
series ofCONT-steps of the system approximates the contin-
uous behaviour (cf. [18]). Usually, theCONT-actions con-
tain difference equations for continuous state variables. The
time difference corresponding to an execution ofCONTis
expressed bynow’-now . Action parameters model the in-
puts and outputs of continuous processes. As an example
Fig. 3 shows the processVesselVolumedeclaring a continu-
ous real-valued state variablevvolume . TheCONT-action
declares the continuous inputs and outputs and lists the dif-
ference equation forvvolume .

Several constructs stating safety, fairness, realtime, and
continuous properties may be contained in the same process
type definition. Thus, one can specify all relevant properties
of a hybrid system component by one process. However, to
support a fine-grained constraint-oriented system structure,
we mainly use process types which concentrate on single
properties of a single sort.

Systems and subsystems are described as compositions
of concurrent processes. Each process encapsulates its vari-
ables and can change its state by atomic executions of its

Volume of fluid in a vessel in[m3]
PROCESS VesselVolume (capacity : real ;

maximum volume in vessel
initvolume : real)
initial volume in vessel

BODY
VARIABLES

vvolume : real; actual volume

INIT
�

= vvolume = initvolume;
ACTIONS

CONT (INPUT inflow, outflow : real;
inflow to and outflow from vessel

OUTPUT volume : real)
�

=

actual volume in vessel
vvolume 0

=

Max(Min(vvolume +
(inflow - outflow) �

(now 0 - now),
capacity),0) ^

volume = vvolume;
END

Figure 3. Process Type VesselVolume

actions. The system state is the vector of the state vari-
ables of the processes. State transitions of the system corre-
spond to simultaneous process actions and process stutter-
ing steps. Each process performs either exactly one action
or a stuttering step. Thus, the system actions can be defined
by conjunctions of process actions and process stuttering
steps. Consequently, concurrency is modelled by interleav-
ing and the coupling of processes corresponds to joint ac-
tions. A system specification at first declares the processes
of the system as instantiations of process types. Thereafter
it describes the coupling of the processes by the definition
of the actions of the systems. An example of a system de-
scription is outlined in Fig. 6 (Sec. 6).

3. Example

As an example we use a chemical plant [15] employed as
a benchmark system in the working group on discrete con-
trol of the German Society for Measurement and Automa-
tion (GMA). A discontinuous process produces a sodium
chloride solution of a desired concentration by means of
mixing a higher concentrated sodium chloride solution with
water. After its utilization the solution is separated into its
original ingredients by vaporization again. The system is

Figure 4. Sketch of the example system

Description Function

BP2 Fill up vessel B2 with water
BP3 Produce sodium chloride solution of the

desired concentration in B3
BP3K Produce the highly concentrated sodium

chloride solution in B3
BP3U Pump the highly concentrated sodium

chloride solution from B3 to B1 by P1
BP5 Vaporize sodium chlorid solution in B5
BP6 Cool the water in B6
BP6A Empty water from B6
BP6S Pump water from B6 to B2 by P1
BP6U Pump water from B6 to B2 by P2
BP7 Cool sodium chloride solution in B7
BP7U Pump solution from B7 to B1 by P1
SP1 Clean ring pipe with water from B2
SP2 Clean ring pipe with water from B6

Figure 5. Batch processes contro lling the ex-
ample system

sketched in Fig. 4. From the vessel B1 highly concentrated
sodium chloride solution is introduced into vessel B3. To
dilute the solution, water is introduced from vessel B2 to
B3 afterwards. When the desired concentration is achieved,
the solution is stored in vessel B4 for further usage.

To separate the solution, it is introduced from B4 to
vessel B5, where as much water as necessary to produce
the original highly concentrated solution is vaporized. The
steam condenses in the heat exchanger K1 and drops into
vessel B6. In B6 the water is cooled to the temperature of
the environment and, afterwards, pumped back to the vessel
B2 by the pump P2. The highly concentrated sodium chlo-
ride solution, produced by the vaporization, is introduced
into the vessel B7 where it is cooled, too. Finally, the cooled
solution is pumped back to the vessel B1 by means of the
pump B1.

The process outlined above and additional processes as
the initial production of the sodium chloride solution in B3
or the cleaning of the plant are controlled by the batch pro-
cesses [16] listed in Fig. 5. For instance, the batch process
BP5 controls the separation of water and solution in vessel
B5. First, it triggers the introduction of solution from vessel
B4 to B5. When B5 is filled, the process starts the cooling
of vessel K1 and afterwards the heating of B5. During the
vaporization it constantly checks the cooling. After a failure
of the cooling the heating is switched off within 0.1 seconds.
The heating and cooling are switched off when the desired
concentration of the solution is reached. The batch process
introduces the solution into vessel B7 and terminates after-

wards. If the solution in B5 falls below a minimum during
the vaporiziation, the controller switches the heating and
cooling off, too. However, it aborts without introducing the
water into B7.

4. Specification

Our approach is based on a fine-grained constraint-
oriented structuring of the system specification. Therefore,
we develop a specification which is a composition of mod-
ular constraint processes each modelling a single constraint
of a physical system component. For instance, the filling
of a vessel in our example system can be viewed by the
following constraints: the masses of water, steam, and dis-
solved sodium chloride in the vessel (cf. process typeVes-
selVolumein Fig. 3), the temperature of the water/steam in
the vessel, and the pressure in the vessel. Thus, we specify
the vessel by five different cTLA-processes each describing
only one constraint.

To model a pump, a valve, or an electrical heating/cool-
ing in our example system, we use a hybrid process mod-
elling as well the interface to the discrete control software
as the actual actuator setting: the nominal amount of water
to be pumped, the diameter of the valve, resp. the amount
of power passed to or taken from the heated/cooled vessel.

The sensors of the example system detect the concen-
tration of sodium chloride solution, the temperature of wa-
ter, the amount of water in a vessel, the volume stream in a
pipe, and the pressure of a pump. A sensor is specified by
three processes: one process models a signal to the con-
troller when it detects an alarm state. A second process
models that the current value is measured on request of the
controller. Since the reaction on an alarm state has to be
performed within a certain period of time, we need a third
process which guarantees a maximum reaction time.

The physical characteristics of the pipes linking the dif-
ferent vessels, actuators, and sensors are not modelled di-
rectly. Instead, we use processes describing the volumes of
water, steam, and sodium chloride running from one ves-
sel to another. To specify the flow of water and dissolved
sodium chloride between two vessels of a different altitude,
we use three processes. Two processes model the volumes
of water and sodium chloride flowing from the upper vessel
to the lower vessel in a certain amount of time. The vol-
umes are calculated according to the flow formula of Tor-
ricelli, where the diameter of the pipe corresponds to the
lowest diameter of all valves and pipes within the link. A
third process specifies the temperature of the water flowing
into the lower vessel. Similar processes are used to model
pipes through which water is pumped. The flow depends on
the amount of water pumped per time-unit. The flow of wa-
ter or steam between two vessels due to different pressures
is modelled by two processes according to the energy law of

Bernoulli. The flow of water or steam and the temperature
are described by two separate processes.

The batch process recipes controlling our example sys-
tem are modelled by separate cTLA-processes, too. More-
over, since some batch processes execute a series of differ-
ent tasks, one can split them into different cTLA-processes
each modelling one task only. For instance, the batch pro-
cess BP5 can be split into a series of cTLA-processes since
it controls different phases: the introductionof sodium chlo-
ride solution from vessel B4 to vessel B5, the vaporization
of water until a solution of the desired concentration is pro-
duced, and, finally, the introduction of the produced solu-
tion from vessel B5 to vessel B7. Moreover, in each phase
certain system actions have to be linked with additional con-
straints. For example, an instance of the typeReactOn-
Alarm in Fig. 1 specifies that in the vaporization phase BP5
switches off the heating in vessel B5 after a failure of the
cooling in K1. Since in our approach, safety, liveness, and
realtime constraints are modelled independently, we need
additional cTLA-processes describing that the commands
of the batch processes are executed fairly or within certain
time limits (e.g., an instance of process typeReactMaxTime
— see Fig. 2 — guarantees that the heating of B5 is not
switched off too late after a failure of the cooling in K1).

The complete specification of the example system is
available in the WWW (http://ls4-www.cs.uni-
dortmund.de/RVS/P-HYSYS/).

5. Informal Argumentation

A typical problem of the hazard analysis of our example
is the question, whether the excess pressure in the vessels
B5 and K1 can exceed a critical limit of 0:2 Bar during
the separation of the sodium chloride solution. Vessel B5
contains a heating in order to vaporize water. The steam
produced here flows to vessel K1. In K1, the steam shall
condense to water which drops into vessel B6.

The usual informal discussion of this question considers
the failure of the cooling in K1 as a possible reason which
can cause an increase of the excess pressure over the critical
limit. The system may run too long in a critical state where
the heating in B5 works but the cooling in K1 fails. Then
only a part of the steam coming from B5 condenses in K1
and the pressure in K1 as well in B5 rises.

The argumentation that the system does not run too long
in the critical state will be performed in three steps. First,
we determine the maximum difference�pmax between the
pressure in B5 and K1. Based on�pmax we calculate in a
second step the maximum timetmax the system may be in
the critical state without the pressure in one of the vessels
exceeding the limit of0:2 Bar. Finally, we check that the
discrete controller guarantees that the example system does
not remain in the critical state longer thantmax.

In order to calculate the maximum pressure difference
�pmax between B5 and K1, we take into consideration that
after switching on the heating the pressure in B5 increases
until the mass of steam vaporized equals the mass of steam
running to K1. The maximum mass of steam_mvap cre-
ated by vaporization depends on the maximum power of the
heating and is equal to2:66 � 10�3 kg

s
. Since, the mass of

steam running to K1 does not exceed this value, we can now
calculate the maximum pressure difference�pmax between
B5 to K1 on the basis of the law of Bernoulli:

�pmax =
_m2
vap

2 % A2
+ g z %

Since the density of steam% is equal to0:59 kg

m3 , the diame-
terA of the pipe linking B5 with K1 to28:27 �10�6m2, the
differencez between the altitudes of B5 and K1 to0:3 m,
and the acceleration of gravityg to 9:81m

s2
, the value of

�pmax equals to the value0:07504 Bar. Consequently,
the excess pressure in B5 does not exceed the critical limit
if the pressure in K1 equals to the athmosperic pressure.

Now, we will calculate the maximum timetmax, the
system may be in the critical state without the pressure in
one of the vessels exceeding the limit of0:2 Bar. Above,
we calculated that the pressure in B5 is at most by�pmax

larger than that of K1. To guarantee that it does not climb
over the limit, the pressurepK1max in K1 must not exceed
0:12496 Bar. Next, we calculate the increase of pressure
_pK1 in vessel K1 in the worst case that the cooling fails
completely and a maximum mass of_mvap = 2:66 � 10�3kg

s

steam runs from B5 into K1._pK1 is calculated on the basis
of the thermal state equation:

_pK1 =
_mvap Ri Z T

V

The individual gas constantRi of steam is equal to the value
461:5 J

kgK
, the temperatureT of the steam to373:16K, and

the volume of vessel K1 to7:854 � 10�3m3. Assuming a
pressure less than2 Bar the real gas factor equals to0:98.
Thus, the value of_pK1 is 0:5719Bar

s
. The maximum time

tmax is calculated bypK1max
_pK1

and equals to0:218 s.
In the last step we check that the disrete controller guar-

antees that the example system remains at most fortmax =
0:218 s in the critical state. In particular we outline, that ei-
ther the system is in a non-critical state where the heating is
switched off or the cooling works, or that the period of time,
the system is in a critical state, does not exceedtmax. The
controller consists of the batch processes listed in Fig. 5.
However, we have to examine the batch process BP5 (cf.
Sec. 3) only since in the other batch processes the heating
is always switched off. Moreover, only one of the activities
controlled by BP5 is critical, since the heating is switched
off during the introduction of solution from vessel B4 to B5

and from B5 to B7. Therefore, only the vaporization activ-
ity has to be analysed further. Since, if the cooling works
properly, the system state is non-critical, we concentrate on
cooling failures. The batch process BP5 checks the cooling
constantly and reacts on a failure within0:1 s by switching
off the heating. Thus, the system remains at most for0:1 s
in the critical state which is shorter than the maximum time
tmax = 0:218 s tolerated by the continuous components.

6. Formal Verification

In order to analyze questions of hazard analysis formally,
we translate informal argumentations straightforwardly into
formal cTLA-based proofs. As an example, we refer to the
informal argumentation of Sec. 5 and verify the last argu-
mentation step that the discrete controller prevents the sys-
tem to last in the critical state longer thantmax.

As mentioned in the introduction, we do not need the
specification of the whole system to perform the proof of a
property but only a subsystem specification containing only
constraints relevant to the proof. We look at the informal
argumentation for the property (cf. Sec. 5) and construct a
subsystemReactOnCoolingFailurewhich contains exactly
these constraint processes modelling relevant assumptions
of the argumentation.ReactOnCoolingFailureis listed in
Fig. 61. It consists of eight cTLA-processes.B5Heatmod-
els the heating with a maximum power of6000Watt. By
K1Powerwe describe that, when the cooling fails, the cool-
ing power decreases at most by20 Watt=s. The sensor
FIS801 which controls the cooling power is modelled by
three constraints.FIS801Sspecifies that the sensor sends
a signal to the discrete controller if the cooling power falls
below a limit of 6005 Watt. FIS801Tdescribes that this
signal is sent within0:1 seconds.FIS801Rmodels that the
sensor signals also the recovery of the cooling if the cooling
power climbs above6005 Watt again. The relevant com-
ponents of batch process BP5 are specified by three con-
straints. BP5ROA(cf. Fig. 1) models that the controller
reacts on a signal from FIS801 indicating a cooling failure
by switching off the heating of vessel B5. ByBP5ROAT(cf.
Fig. 2) we specifiy that the heating is switched off within0:1
seconds. The constraintBP5BHguarantees that the heating
is not switched on during the failure of the cooling.

As pointed out in the informal argumentation, the system
has always to fulfill the condition that either the heating is
switched off, the cooling supplies sufficient power, or the
system lasts in the critical state shorter thantmax = 0:218 s.
We describe this invariant condition by the formulaI:

I
�

= B5Heat.vstate = "off" _

K1power.vpower � 6000_ tfail < 0:218

1To simplify the specification, we partly omitted to list stuttering pro-
cesses in the description of the actions.

PROCESS BP5ReactOnCoolingFailure

PROCESSES
Heating B5

B5Heat : Heating (6000, 20, 20);
Maximum power: 6000 Watt, power inc/dec 20 Watt/sec

Cooling K1
K1Power : PowMaxDecrease (20);

Constraint: cooling power decreases max. by 20 Watt/sec
Sensor FIS801 to detect failure of cooling for vessel K1

FIS801S : SenseMin (6005);
Signal minimum condense power of 6005 Watt

FIS801T : SenseMaxTime (0.1);
Signal of cooling failurewithin 0.1 sec!

FIS801R : SenseMax (6005);
signal recovery of the cooling

Batch process BP5
BP5ROA : ReactOnAlarm ("ready");

Switching off heating after a cooling failure
BP5ROAT : ReactMaxTime (0.1);

Switch off heating after a cooling failure within 0.1 sec
BP5BH : BlockOnAlarm ("block");

Block heating until the cooling is recovered

ACTIONS

CONT (OUTPUT B5Hpow, K1CPow)
�

=

Continuous flow: Output parameters B5Hpow, K1CPow:
heating/cooling powers

B5Heat.CONT(; B5Hpow) ^

K1Power.CONT (; K1Cpow) ^

FIS801S.CONT(K1Cpow ;) ^

FIS801R.CONT(K1Cpow ;) ^ : : :;

CoolingFailure
�

=

Signal failure of the cooling
FIS801S.alarm ^ FIS801T.alarm ^

BP5ROA.alarm ^ BP5BH.alarm ^

B5Heat.stutter ^ : : :;

CoolingRecovery
�

=

Signal recovery of the cooling after a failure
FIS801R.alarm ^ BP5BH.release ^ : : :;

HeatingOffAfterCoolingFailure
�

=

Switch off heating after cooling fails
B5Heat.off ^ B5ROA.switch ^

B5ROAT.switch ^ : : :;

HeatingOffOtherReason
�

=

Switch off heating for other reasons
(e.g., fluid dissolved; too few fluid in B5)
B5Heat.off ^ : : :;

HeatingOn
�

=

Switch on heating only if cooling did not fail
or is recovered
B5Heat.on ^ BP5BH.switch ^ : : :;

END

Figure 6. Subsystem Specification ReactOn-
CoolingFailure

The variablevstate of the cTLA-processB5Heatspeci-
fies the state of the heating. The variablevpower of the
processK1powerdescribes the power supply of the cool-
ing. tfail is an auxiliary variable2 which indicates the time
elapsed since the failure of the cooling. The proof that the
formulaI always holds corresponds to the TLA-theorem

ReactOnCoolingFailure) 2I

The temporal operator2 means that the subsystemReact-
OnCoolingFailureimplies thatI is always valid, i.e.,I is an
invariant ofReactOnCoolingFailure.

Yet, we cannot proveI directly but need a stronger in-
variantIh

�

=I1 ^ I2 where

I1
�

= B5Heat.vstate = "off" _

K1power.vpower � 6005 _
(FIS801S.vsense = "alarm" ^

6000 � K1power.vpower < 6005) _
(BP5ROA.vastate = "alarm" ^ tfail < 0:1)

I2
�

= BP5BH.vastate = "block" _

K1power.vpower � 6005 _
(FIS801S.vsense = "alarm" ^

6000 � K1power.vpower < 6005)

Ih reflects that in our informal argumentation we assumed
some implicit conditions which have to be proven formally
now. By I1, which impliesI, we describe the different
states passed while the system reacts to a cooling failure.
If the cooling power is below the sensor limit of6005Watt
but the heating still works, either the sensor FIS801 or
the discrete controller are in an alarm state. If FIS801
is active but, yet, did not send a signal to the controller
(FIS801S.vsense = "alarm"), the cooling power is
still higher than the maximum heating power of6000Watt.
If the controller received a signal but, yet, did not switched
off the heating (BP5ROA.vastate = "alarm"), at
most0:1 seconds passed since the cooling power falling be-
low the limit of 6000Watt. I2 describes that the heating is
not switched on during the failure of the cooling. In partic-
ular, either the cooling power is above6005Watt, FIS801
is in the alarm state, or the controller blocks the heating
(BP5BH.vastate = "block").

SinceI1 implies the invariantI, it is sufficient to prove
the theorem

ReactOnCoolingFailure) 2Ih

Typically invariants are verified in two steps: The invariant
must hold initially and the actions of the system must not
falsify the invariant.

First, we verify thatIh holds in the inital state. Since
initially the heating is switched off (B5Heat.vstate

2Auxiliary variables are used for verification purposes only and do not
influence the behaviour of a system.

= "off") and the controller blocks the heating (BP5BH.
vastate = "block"), I1 andI2 hold.

Second, we prove that the actions of the subsystem
specificationReactOnCoolingFailurekeepIh. Exemplar-
ily we outline the proof that the actionHeatingOn does
not falsify Ih which corresponds to the formulaIh ^

HeatingOn) I0h.

In I0h
�

=I01 ^ I02 the variables occur in the primed form
(e.g., B5Heat.vstate’ ; cf. Sec. 2). It describes that
the invariant holds in the state after performing the action
HeatingOn .

To prove thatI01 holds, we must take into consideration
that Ih (in particularI2) is true before performing the ac-
tion. HeatingOn is only enabled if the controller does
not block the heating (BP5BH.vastate = "ready").
Due toI2 in this state either the cooling power is also suf-
ficient (K1power.vpower � 6005) or the sensor FIS801
is in an alarm state (FIS801S.vsense = "alarm" ^

6000 � K1power.vpower < 6005). Since the ac-
tion does not alter the variablesK1power.vpower and
FIS801S.vsense ,

K1power.vpower’ � 6005 _
(FIS801S.vsense’ = "alarm" ^

6000 � K1power.vpower’ < 6005)

also holds. This formula, however, impliesI01. I02 is
trivially true sinceI2 holds before the execution of the
HeatingOn and this action does not alter the variables
BP5BH.vastate , K1power.vpower , and FIS801.
vsense used inI2.

Likewise, we can prove that the other actions of the
subsystem specificationReactOnCoolingFailurekeep Ih.
ThereforeIh andI are always true in the subsystem mod-
elled by ReactOnCoolingFailureand the subsystem does
not last longer thantmax = 0:218 s in the critical system
state.

Since the invariant proof includes the real time properties
of the actionsCoolingFailure and HeatingOff-
AfterCoolingFailure , however, we cannot general-
ize this proof to the whole example system directly. Further-
more, we have to ensure that these actions are not blocked
by the environment ofReactOnCoolingFailure. Otherwise
the verification thatCONTkeeps the invariantIh might be
spoiled due to the conditional character of realtime proper-
ties. This proof, however, is trivial since the other processes
of the system either participate toCoolingFailure
and HeatingOffAfterCoolingFailure with ac-
tions which are always enabled or with stuttering steps.

7. A framework for Hazard Analysis

Hybrid systems often contain similar subsystems. For
instance, our example configuration of a boiler and a con-

denser is used in various plants to separate solutions. Con-
sequently, during the hazard analysis of different plants,
most questions and argumentations recur in a similar way.
Therefore, we developed a framework that facilitates as well
the design of formal system specifications as the proofs.
It contains a library of modular component specifications
modelled by cTLA process types. A system specification is
developed by instantiating and composing component spec-
ifications to a system specification. Furthermore, the frame-
work contains theorems, each stating that a subsystem pat-
tern fulfills a safety property. These theorems are already
verified in the way explained in Sec. 6. Thus, the user can
prove safety properties by application of the theorems and
has to check only that a pattern in a theorem is consistent to
the specification of the technical system. These consistency
checks are much simpler than the complete formal verifi-
cation of a safety property. Comparable work in the field
of computer communication protocols exists, showing that
even difficult and very complex protocols can be verified
quite easily [13].

The library of cTLA processes consists of three differ-
ent kinds of specification modules. The first group con-
tains processes of components and component constraints
of a technical plant (fi., the processesReactOnAlarm, Re-
actMaxTime, andVesselVolumeintroduced in figures 1–3).
In a second group processes are listed that specify potential
hazards. By these specifications one can introduce defective
components like leaking valves or blocked lines to a system
specification. The third group contains processes describing
safety properties. For instance, the process typeVesselMax-
Pressure (maxpress)describes that the pressure of a vessel
does not exceedmaxpress. Refering to this process type, we
can express the property of our example — that the pressure
in the boiler does not exceed0:2Bar — by means of a pro-
cess instance of the typeVesselMaxPressure (0.2).

Fig. 7 lists an example of a framework theorem which
can be used to prove that the pressure in the boiler and
the condenser does not exceed a certain value. The theo-
rem exemplifies the general form of framework theorems
which are implications. Each theorem states that a subsys-
temSysof a certain pattern implies an interesting property
if the subformulasPars and EnvCondare true. The sub-
system patternSysis structured similarly to cTLA system
specifications (cf. fig. 6). The sectionPROCESSESlists the
processes forming the pattern and the actual parameter set-
tings. Besides processes specifying components of a techni-
cal system and besides hazard descriptions this section also
may contain specifications of assumed system properties.
The correctness of these assumed properties can be proven
by other theorems of the framework. The coupling of the
process actions ofSysis described in the sectionACTIONS.
Pars is a boolean condition guaranteeing that the processes
of Sysand the property to be proven are parametrized con-

THEOREM MaxPressureBoilerCondenser
LET

Sys
�

= PROCESSESSubsystem
Modular components of a technical plant:

BoilerVol : VesselVolume
(bcapacity, binitvolume);

CondenserVol : VesselVolume
(ccapacity, cinitvolume);

Vaporization : VesselVaporize
(fluiddense, gasdense,

enthalpy);
: : :;

Already proven safety properties:
CoolingPowerDecrease : PowerMaxDecrease

(cdecrate);
BoilerMaxFluid : VesselMaxVolume

(bfluidmaxvolume);
: : :;

ACTIONS

CONT (INPUT : : : ; OUTPUT : : :)
�

= : : :;
continuous volume flow

Alarm
�

= : : :; alarm cooling below minimum

Release
�

= : : :; alarm cooling power above minimum

HeatingOff
�

= : : :; switch off heating

HeatingOn
�

= : : :; switch on heating

Pars
�

= sensedpower > bmaxpower +
cdecrate � sensetime ^ : : :;

EnvCond
�

= Enabled(SensorAlarm.alarm))

Sys.e Alarm = "enab" ^ : : :;
IN Sys ^ Pars ^ 2EnvCond)

VesselMaxPressure (maxpress);

Figure 7. Theorem MaxPressureBoilerCondenser

sistently. EnvCondmodels an invariant to be kept by the
environment. It assures that the environment of the pattern
does not block the actions ofSysand therefore does not
spoil liveness and realtime assumptions.

In order to prove a safety property, the user selects a
suitable theorem from the framework and instantiates the
parameters in the theorem according to the generic parame-
ter replacements in the system specification. Since the the-
orems are already proven, one only has to check thatSys
is a subsystem of the system specification, that the instan-
tiated parameters fulfill the conditionPars, and that that
the processes of the system specification not listed inSys
keep the environment conditionEnvCond. The selection of
theorems as well as the three checks are facilitated by the
tool COAST [9]. Based on the system specification and the
specifications of safety properties, COAST selects suitable
theorems and performs the checks ofSysandEnvConddi-
rectly. Furthermore, COAST proves the conditionPars by
means of a theorem prover.

8. Concluding remarks

We reported on the present results of a current research
project funded by DFG which started with the proposal of
“hybrid cTLA” as a TLA-based technique for modular tem-
poral logic specifications of hybrid systems [12]. There-
after, we investigated the suitability of constraint-oriented
specification structures for the decomposition of formal
verifications [10]. In the meanwhile, we identified recur-
ring system patterns and hazard analysis problems and con-
structed the framework which we outlined in Sec. 7. Since
the reuse of specification modules and theorems facilitates
the formal specification of hybrid systems and the formal
verification of safety properties, the framework is a use-
ful means to support experts in performing HazOps. It
is available via WWW (http://ls4-www.cs.uni-
dortmund.de/RVS/P-HYSYS/).

In addition to COAST, a tool is in development exam-
ining specifications of hybrid systems for certain system
faults and selecting, based on this examination, safety prop-
erties from the framework to be proven (fi., if the tool de-
tects a vessel provided with a heating, it selects the safety
propertyVesselMaxPressureto prevent the pressure in the
vessel exceeding a maximum limit).

References

[1] M. Abadi and L. Lamport. An old-fashioned recipe
for real time. ACM Transactions on Programming
Languages and Systems, 16(5):1543–1571,September
1994.

[2] R. Alur, C. Courcoubetis, Th. A. Henzinger, and P.-H.
Ho. Hybrid Automata: An Algorithmic Approach to
the Specification and Verification of Hybrid Systems.
In R. L. Grossman, A. Nerode, A. P. Ravn, and H.
Rischel, editors,Hybrid Systems, LNCS 736, pages
209–229. Springer Verlag, 1993.

[3] C. A. Catino and L. H. Ungar. A model-based ap-
proach to automated hazard identification of chemical
plants.AIChE Journal, 41(3):97–109, 1995.

[4] K. M. Chandy and J. Misra.Parallel Program Design
— A Foundation. Addison Wesley, 1988.

[5] M. Göring and H. G. Schecker. HAZEXPERT: An
integrated expert system to support hazard analysis in
process plant design.Computers Chemical Engineer-
ing, 17:429–434, 1993.

[6] H. Graf and H. Schmidt-Traub. A Model-Based Ap-
proach to Process Hazard Identification. InProceed-
ings of 13th International Congress of Chemical and
Process Engineering (CHISA), Prague, August 1998.

[7] K. M. Hansen, A. P. Ravn, and V. Stavridou. From
Safety Analysis to Software Requirements.IEEE
Transactions on Software Engineering, 24(7):573–
584, July 1998.

[8] P. Heino, A. Poucet, and J. Soukas. Computer tools for
hazard identification, modelling and analysis.Journal
of Hazardous Materials, 29:445–463, 1992.

[9] P. Herrmann, O. Dr¨ogehorn, W. Geisselhardt, and
H. Krumm. Tool-supported formal verification of
highspeed transfer protocol designs. InProceedings
of the 7th International Conference on Telecommuni-
cation Systems — Modelling and Analysis, pages 531–
541, Nashville, TN., USA, March 1999. ATSMA.

[10] P. Herrmann, G. Graw, and H. Krumm. Compositional
Specification and Structured Verification of Hybrid
Systems in cTLA. InProceedings of the 1st IEEE In-
ternational Symposium on Object-oriented Real-time
distributed Computing (ISORC98), pages 335–340,
Kyoto, April 1998. IEEE Computer Society Press.

[11] P. Herrmann and H. Krumm. Compositional Specifi-
cation and Verification of High-Speed Transfer Proto-
cols. In S. T. Vuong and S. T. Chanson, editors,Proto-
col Specification, Testing, and Verification XIV, pages
339–346, Vancouver, 1994. IFIP, Chapman & Hall.

[12] P. Herrmann and H. Krumm. Specification of Hybrid
Systems in cTLA+. InProceedings of the 5th Inter-
national Workshop on Parallel & Distributed Real-
Time Systems (WPDRTS’97), pages 212–216, Geneva,
1997. IEEE Computer Society Press.

[13] P. Herrmann and H. Krumm. Modular Specification
and Verification of XTP.Telecommunication Systems,
9(2):207–221, 1998.

[14] J. Hooman. A Compositional Approach to the Design
of Hybrid Systems. In R. L. Grossman, A. Nerode,
A. P. Ravn, and H. Rischel, editors,Hybrid Systems,
LNCS 736, pages 121–148. Springer Verlag, 1993.

[15] S. Kowalewski, S. Engell, M. Fritz, R. Gesthuisen,
G. Regner, and M. Stobbe. Modular discrete mod-
elling of batch processes by means of condition/event
systems. InWorkshop on Analysis and Design of
Event-Driven Operations in Process Systems, Impe-
rial College, London, April 1995.

[16] S. Kowalewski and H.-M. Hanisch. Permissive con-
trol of boolean condition/event systems: synthesis and
limits. In IEEE Symposium on Intelligent Control,
pages 118–123, Ohio, 1994. IEEE.

[17] R. Kurki-Suonio. Fundamentals of object-oriented
specification and modeling of collective behaviors. In
H. Kilov and W. Harvey, editors,Object-Oriented Be-
havioral Specifications, pages 101–120. Kluwer Aca-
demic Publishers, 1996.

[18] L. Lamport. Hybrid Systems in TLA+. In R. L. Gross-
mann, A. Nerode, A. Ravn, and H. Rischel, editors,
Hybrid Systems, LNCS 736, pages 77–102. Springer
Verlag, 1993.

[19] L. Lamport. The Temporal Logic of Actions.ACM
Transactions on Programming Languages and Sys-
tems, 16(3):872–923, May 1994.

[20] H. G. Lawley. Operability Studies and Hazard Anal-
ysis. Chemical Engineering Progress, 70(4):45–56,
April 1974.

[21] S. T. Probst.Chemical Process Safety and Operability
Analysis using Symbolic Model Checking. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA 15213,
May 1996.

[22] Y. Shimada, K. Suzuki, and H. Sayama. Computer-
aided operability study.Computers Chemical Engi-
neering, 20(6/7):905–913, 1996.

[23] R. Srinivasan and V. Venkatasubramanian. Petri Net-
Digraph models for automating HAZOP analysis of
batch process plants.Computers Chemical Engineer-
ing, 20:719–725, 1996.

[24] O. Stursberg, H. Graf, S. Engell, and H. Schmidt-
Traub. A concept for safety analyses of chemical
plants based on discrete models with an adapted de-
gree of abstraction. InProceedings of 4th Interna-
tional Workshop on Discrete Event Systems (WODES),
Cagliari, August 1998.

[25] R. Vaidhyanathan and V. Venkatasubramanian. Expe-
rience with an expert system for automated HAZOP
analysis.Computers Chemical Engineering, 20:1589–
1594, 1996.

[26] C. A. Vissers, G. Scollo, and M. van Sinderen. Archi-
tecture and specification style in formal descriptions
of distributed systems. In S. Agarwal and K. Sabnani,
editors,Protocol Specification, Testing, and Verifica-
tion VIII, pages 189–204, 1988. IFIP, Elsevier.

[27] A. Waters and J. W. Ponton. Qualitative simulation
and fault propagation in process plants.Chemical En-
gineering Research Descriptions, 67:407–422, 1989.

